Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = nitrile hydratase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4975 KiB  
Article
Efficient Biodegradation of the Neonicotinoid Insecticide Flonicamid by Pseudaminobacter salicylatoxidans CGMCC 1.17248: Kinetics, Pathways, and Enzyme Properties
by Yun-Xiu Zhao, Jing Yuan, Ke-Wei Song, Chi-Jie Yin, Li-Wen Chen, Kun-Yan Yang, Ju Yang and Yi-Jun Dai
Microorganisms 2024, 12(6), 1063; https://doi.org/10.3390/microorganisms12061063 - 24 May 2024
Cited by 2 | Viewed by 1489
Abstract
Nitrile-containing insecticides can be converted into their amide derivatives by Pseudaminobacter salicylatoxidans. N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) is converted to 4-(trifluoromethyl) nicotinoyl glycine (TFNG) using nitrile hydratase/amidase. However, the amidase that catalyzes this bioconversion has not yet been fully elucidated. In this study, [...] Read more.
Nitrile-containing insecticides can be converted into their amide derivatives by Pseudaminobacter salicylatoxidans. N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) is converted to 4-(trifluoromethyl) nicotinoyl glycine (TFNG) using nitrile hydratase/amidase. However, the amidase that catalyzes this bioconversion has not yet been fully elucidated. In this study, it was discovered that flonicamid (FLO) is degraded by P. salicylatoxidans into the acid metabolite TFNG via the intermediate TFNG-AM. A half-life of 18.7 h was observed for P. salicylatoxidans resting cells, which transformed 82.8% of the available FLO in 48 h. The resulting amide metabolite, TFNG-AM, was almost all converted to TFNG within 19 d. A novel amidase-encoding gene was cloned and overexpressed in Escherichia coli. The enzyme, PmsiA, hydrolyzed TFNG-AM to TFNG. Despite being categorized as a member of the amidase signature enzyme superfamily, PsmiA only shares 20–30% identity with the 14 previously identified members of this family, indicating that PsmiA represents a novel class of enzyme. Homology structural modeling and molecular docking analyses suggested that key residues Glu247 and Met242 may significantly impact the catalytic activity of PsmiA. This study contributes to our understanding of the biodegradation process of nitrile-containing insecticides and the relationship between the structure and function of metabolic enzymes. Full article
(This article belongs to the Special Issue Microbial Biocatalysis and Biodegradation 2.0)
Show Figures

Figure 1

12 pages, 2330 KiB  
Article
High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis
by Senwen Deng, Shujing Zhu, Xinyi Zhang, Xi Sun, Xiaoqiang Ma and Erzheng Su
Processes 2022, 10(3), 544; https://doi.org/10.3390/pr10030544 - 11 Mar 2022
Cited by 3 | Viewed by 2798
Abstract
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a [...] Read more.
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a colorimetric method. NHase from Pseudonocardia thermophila JCM3095 was selected, fused with a His-tag and one-step purified. The enzymatic properties of recombinant NHase were studied and indicated robust thermal stability and inhibition of cyanide ions due to substrate degradation. After systematic optimization of fermentation conditions, the OD600 (optical density at 600 nm), enzyme activity and specific activity of recombinant strain E. coli BL21(DE3)/pET-28a+NHase reached 19.4, 3.72 U/mL and 1.04 U/mg protein at 42 h, representing 5.86-, 26.6- and 4-fold increases, respectively. These results offered an efficient recombinant whole-cell biocatalyst for ADBA synthesis. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

16 pages, 11259 KiB  
Review
Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions
by Robert Rädisch, Miroslav Pátek, Barbora Křístková, Margit Winkler, Vladimír Křen and Ludmila Martínková
Microorganisms 2022, 10(3), 549; https://doi.org/10.3390/microorganisms10030549 - 2 Mar 2022
Cited by 13 | Viewed by 3837
Abstract
In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile [...] Read more.
In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime–nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions. Full article
(This article belongs to the Special Issue Plant-Bacteria Interactions)
Show Figures

Graphical abstract

13 pages, 2726 KiB  
Article
Examination of the Catalytic Role of the Axial Cystine Ligand in the Co-Type Nitrile Hydratase from Pseudonocardia thermophila JCM 3095
by Irene R. A. M. Ogutu, Martin St. Maurice, Brian Bennett and Richard C. Holz
Catalysts 2021, 11(11), 1381; https://doi.org/10.3390/catal11111381 - 16 Nov 2021
Cited by 3 | Viewed by 2375
Abstract
The strictly conserved αSer162 residue in the Co-type nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), which forms a hydrogen bond to the axial αCys108-S atom, was mutated into an Ala residue. The αSer162Ala yielded two different protein species: one was [...] Read more.
The strictly conserved αSer162 residue in the Co-type nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), which forms a hydrogen bond to the axial αCys108-S atom, was mutated into an Ala residue. The αSer162Ala yielded two different protein species: one was the apoform (αSerA) that exhibited no observable activity, and the second (αSerB) contained its full complement of cobalt ions and was active with a kcat value of 63 ± 3 s−1 towards acrylonitrile at pH 7.5. The X-ray crystal structure of αSerA was determined at 1.85 Å resolution and contained no detectable cobalt per α2β2 heterotetramer. The axial αCys108 ligand itself was also mutated into Ser, Met, and His ligands. All three of these αCys108 mutant enzymes contained only half of the cobalt complement of wild-type PtNHase, but were able to hydrate acrylonitrile with kcat values of 120 ± 6, 29 ± 3, and 14 ± 1 s−1 for the αCys108His, Ser, and Met mutant enzymes, respectively. As all three of these mutant enzymes are catalytically competent, these data provide the first experimental evidence that transient disulfide bond formation is not catalytically essential for NHases. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

10 pages, 937 KiB  
Article
Gordonia hydrophobica Nitrile Hydratase for Amide Preparation from Nitriles
by Birgit Grill, Melissa Horvat, Helmut Schwab, Ralf Gross, Kai Donsbach and Margit Winkler
Catalysts 2021, 11(11), 1287; https://doi.org/10.3390/catal11111287 - 26 Oct 2021
Cited by 4 | Viewed by 2814
Abstract
The active pharmaceutical ingredient levetiracetam has anticonvulsant properties and is used to treat epilepsies. Herein, we describe the enantioselective preparation of the levetiracetam precursor 2-(pyrrolidine-1-yl)butanamide by enzymatic dynamic kinetic resolution with a nitrile hydratase enzyme. A rare representative of the family of iron-dependent [...] Read more.
The active pharmaceutical ingredient levetiracetam has anticonvulsant properties and is used to treat epilepsies. Herein, we describe the enantioselective preparation of the levetiracetam precursor 2-(pyrrolidine-1-yl)butanamide by enzymatic dynamic kinetic resolution with a nitrile hydratase enzyme. A rare representative of the family of iron-dependent nitrile hydratases from Gordonia hydrophobica (GhNHase) was evaluated for its potential to form 2-(pyrrolidine-1-yl)butanamide in enantioenriched form from the three small, simple molecules, namely, propanal, pyrrolidine and cyanide. The yield and the enantiomeric excess (ee) of the product are determined most significantly by the substrate concentrations, the reaction pH and the biocatalyst amount. GhNHase is also active for the hydration of other nitriles, in particular for the formation of N-heterocyclic amides such as nicotinamide, and may therefore be a tool for the preparation of various APIs. Full article
(This article belongs to the Special Issue Enzymes and Biocatalysis)
Show Figures

Figure 1

18 pages, 6644 KiB  
Article
Computational Design of Nitrile Hydratase from Pseudonocardia thermophila JCM3095 for Improved Thermostability
by Zhongyi Cheng, Yao Lan, Junling Guo, Dong Ma, Shijin Jiang, Qianpeng Lai, Zhemin Zhou and Lukasz Peplowski
Molecules 2020, 25(20), 4806; https://doi.org/10.3390/molecules25204806 - 19 Oct 2020
Cited by 30 | Viewed by 4223
Abstract
High thermostability and catalytic activity are key properties for nitrile hydratase (NHase, EC 4.2.1.84) as a well-industrialized catalyst. In this study, rational design was applied to tailor the thermostability of NHase from Pseudonocardia thermophila JCM3095 (PtNHase) by combining FireProt server prediction [...] Read more.
High thermostability and catalytic activity are key properties for nitrile hydratase (NHase, EC 4.2.1.84) as a well-industrialized catalyst. In this study, rational design was applied to tailor the thermostability of NHase from Pseudonocardia thermophila JCM3095 (PtNHase) by combining FireProt server prediction and molecular dynamics (MD) simulation. Site-directed mutagenesis of non-catalytic residues provided by the rational design was subsequentially performed. The positive multiple-point mutant, namely, M10 (αI5P/αT18Y/αQ31L/αD92H/βA20P/βP38L/βF118W/βS130Y/βC189N/βC218V), was obtained and further analyzed. The Melting temperature (Tm) of the M10 mutant showed an increase by 3.2 °C and a substantial increase in residual activity of the enzyme at elevated temperatures was also observed. Moreover, the M10 mutant also showed a 2.1-fold increase in catalytic activity compared with the wild-type PtNHase. Molecular docking and MD simulations demonstrated better substrate affinity and improved thermostability for the mutant. Full article
(This article belongs to the Special Issue Nitrilases and Nitrile Hydratases)
Show Figures

Figure 1

11 pages, 1592 KiB  
Article
Functional Expression and Characterization of a Panel of Cobalt and Iron-Dependent Nitrile Hydratases
by Birgit Grill, Maximilian Glänzer, Helmut Schwab, Kerstin Steiner, Daniel Pienaar, Dean Brady, Kai Donsbach and Margit Winkler
Molecules 2020, 25(11), 2521; https://doi.org/10.3390/molecules25112521 - 28 May 2020
Cited by 4 | Viewed by 3224
Abstract
Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 [...] Read more.
Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were—in addition—able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts. Full article
(This article belongs to the Special Issue Nitrilases and Nitrile Hydratases)
Show Figures

Figure 1

14 pages, 2476 KiB  
Article
Novel Chaperones RrGroEL and RrGroES for Activity and Stability Enhancement of Nitrilase in Escherichia coli and Rhodococcus ruber
by Chunmeng Xu, Lingjun Tang, Youxiang Liang, Song Jiao, Huimin Yu and Hui Luo
Molecules 2020, 25(4), 1002; https://doi.org/10.3390/molecules25041002 - 24 Feb 2020
Cited by 13 | Viewed by 4548
Abstract
For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus [...] Read more.
For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus ruber, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, E. coli and R. ruber. In the E. coli host, fusion expression of nitrilase with either RrGroES or RrGroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32–47% reduction). The co-expression strategy was applied in R. ruber via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the R. ruber genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of RrGroES or RrGroEL with a plasmid, the engineered strains R. ruber TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroES) and TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the RrGroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-Pami-RrNit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts. Full article
(This article belongs to the Special Issue Nitrilases and Nitrile Hydratases)
Show Figures

Figure 1

15 pages, 4164 KiB  
Article
Substrate Profiling of the Cobalt Nitrile Hydratase from Rhodococcus rhodochrous ATCC BAA 870
by Adelaide R. Mashweu, Varsha P. Chhiba-Govindjee, Moira L. Bode and Dean Brady
Molecules 2020, 25(1), 238; https://doi.org/10.3390/molecules25010238 - 6 Jan 2020
Cited by 16 | Viewed by 7887
Abstract
The aromatic substrate profile of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870 was evaluated against a wide range of nitrile containing compounds (>60). To determine the substrate limits of this enzyme, compounds ranging in size from small (90 Da) to [...] Read more.
The aromatic substrate profile of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870 was evaluated against a wide range of nitrile containing compounds (>60). To determine the substrate limits of this enzyme, compounds ranging in size from small (90 Da) to large (325 Da) were evaluated. Larger compounds included those with a bi-aryl axis, prepared by the Suzuki coupling reaction, Morita–Baylis–Hillman adducts, heteroatom-linked diarylpyridines prepared by Buchwald–Hartwig cross-coupling reactions and imidazo[1,2-a]pyridines prepared by the Groebke–Blackburn–Bienaymé multicomponent reaction. The enzyme active site was moderately accommodating, accepting almost all of the small aromatic nitriles, the diarylpyridines and most of the bi-aryl compounds and Morita–Baylis–Hillman products but not the Groebke–Blackburn–Bienaymé products. Nitrile conversion was influenced by steric hindrance around the cyano group, the presence of electron donating groups (e.g., methoxy) on the aromatic ring, and the overall size of the compound. Full article
(This article belongs to the Special Issue Nitrilases and Nitrile Hydratases)
Show Figures

Graphical abstract

19 pages, 6203 KiB  
Article
Genetic and Functional Diversity of Nitrilases in Agaricomycotina
by Lenka Rucká, Martin Chmátal, Natalia Kulik, Lucie Petrásková, Helena Pelantová, Petr Novotný, Romana Příhodová, Miroslav Pátek and Ludmila Martínková
Int. J. Mol. Sci. 2019, 20(23), 5990; https://doi.org/10.3390/ijms20235990 - 28 Nov 2019
Cited by 14 | Viewed by 4069
Abstract
Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in [...] Read more.
Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in this division via GenBank. The majority of them occur in the subdivision Agaricomycotina. In this work, we analyzed their sequences and classified them into phylogenetic clades. Members of clade 1 (61 proteins) and 2 (25 proteins) are similar to plant nitrilases and nitrilases from Ascomycota, respectively, with sequence identities of around 50%. The searches also identified five putative cyanide hydratases (CynHs). Representatives of clade 1 and 2 (NitTv1 from Trametes versicolor and NitAg from Armillaria gallica, respectively) and a putative CynH (NitSh from Stereum hirsutum) were overproduced in Escherichia coli. The substrates of NitTv1 were fumaronitrile, 3-phenylpropionitrile, β-cyano-l-alanine and 4-cyanopyridine, and those of NitSh were hydrogen cyanide (HCN), 2-cyanopyridine, fumaronitrile and benzonitrile. NitAg only exhibited activities for HCN and fumaronitrile. The substrate specificities of these nitrilases were largely in accordance with substrate docking in their homology models. The phylogenetic distribution of each type of nitrilase was determined for the first time. Full article
(This article belongs to the Special Issue Molecular Biocatalysis 2.0)
Show Figures

Graphical abstract

12 pages, 2889 KiB  
Article
Biomimetic-Functionalized, Tannic Acid-Templated Mesoporous Silica as a New Support for Immobilization of NHase
by Jun-kai Gao, Zi-jun Zhang, Yan-jun Jiang, Yan Chen and Shu-feng Gao
Molecules 2017, 22(10), 1597; https://doi.org/10.3390/molecules22101597 - 25 Sep 2017
Cited by 17 | Viewed by 5641
Abstract
Tannic acid-templated mesoporous silica (TAMS) was synthesized using a simple nonsurfactant template method and dopamine-functionalized TAMS (Dop-TAMS), which was prepared via a biomimetic coating, was developed as a new support for immobilization of NHase (NHase@Dop-TAMS). The Dop-TAMS was thoroughly characterized by the transmission [...] Read more.
Tannic acid-templated mesoporous silica (TAMS) was synthesized using a simple nonsurfactant template method and dopamine-functionalized TAMS (Dop-TAMS), which was prepared via a biomimetic coating, was developed as a new support for immobilization of NHase (NHase@Dop-TAMS). The Dop-TAMS was thoroughly characterized by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and Fourier transform infrared (FT-IR) and the results showed that the Dop-TAMS possessed sufficiently large pore size and volume for the accommodation of NHase. Studying the thermal stability, storage, shaking stability, and pH stability of the free and immobilized NHase indicated that the catalytic properties of NHase@Dop-TAMS were significantly enhanced. Moreover, the NHase@Dop-TAMS exhibited good reusability. All the results demonstrated that Dop-TAMS could be used as an excellent matrix for the immobilization of NHase. Full article
(This article belongs to the Special Issue Mesoporous Silica in Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 822 KiB  
Article
Bio-Inspired Nitrile Hydration by Peptidic Ligands Based on L-Cysteine, L-Methionine or L-Penicillamine and Pyridine-2,6-dicarboxylic Acid
by Cillian Byrne, Kate M. Houlihan, Prarthana Devi, Paul Jensen and Peter J. Rutledge
Molecules 2014, 19(12), 20751-20767; https://doi.org/10.3390/molecules191220751 - 12 Dec 2014
Cited by 8 | Viewed by 9688
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide [...] Read more.
Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Graphical abstract

22 pages, 1023 KiB  
Article
An Aeroplysinin-1 Specific Nitrile Hydratase Isolated from the Marine Sponge Aplysina cavernicola
by Bartosz Lipowicz, Nils Hanekop, Lutz Schmitt and Peter Proksch
Mar. Drugs 2013, 11(8), 3046-3067; https://doi.org/10.3390/md11083046 - 21 Aug 2013
Cited by 18 | Viewed by 8288
Abstract
A nitrile hydratase (NHase) that specifically accepts the nitrile aeroplysinin-1 (1) as a substrate and converts it into the dienone amide verongiaquinol (7) was isolated, partially purified and characterized from the Mediterranean sponge Aplysina cavernicola; although it is [...] Read more.
A nitrile hydratase (NHase) that specifically accepts the nitrile aeroplysinin-1 (1) as a substrate and converts it into the dienone amide verongiaquinol (7) was isolated, partially purified and characterized from the Mediterranean sponge Aplysina cavernicola; although it is currently not known whether the enzyme is of sponge origin or produced by its symbiotic microorganisms. The formation of aeroplysinin-1 and of the corresponding dienone amide is part of the chemical defence system of A. cavernicola. The latter two compounds that show strong antibiotic activity originate from brominated isoxazoline alkaloids that are thought to protect the sponges from invasion of bacterial pathogens. The sponge was shown to contain at least two NHases as two excised protein bands from a non denaturating Blue Native gel showed nitrile hydratase activity, which was not observed for control samples. The enzymes were shown to be manganese dependent, although cobalt and nickel ions were also able to recover the activity of the nitrile hydratases. The temperature and pH optimum of the studied enzymes were found at 41 °C and pH 7.8. The enzymes showed high substrate specificity towards the physiological substrate aeroplysinin-1 (1) since none of the substrate analogues that were prepared either by partial or by total synthesis were converted in an in vitro assay. Moreover de-novo sequencing by mass spectrometry was employed to obtain information about the primary structure of the studied NHases, which did not reveal any homology to known NHases. Full article
(This article belongs to the Special Issue Enzymes from the Sea: Sources, Molecular Biology and Bioprocesses)
Show Figures

Figure 1

7 pages, 204 KiB  
Article
Hydrolysis of Ibuprofen Nitrile and Ibuprofen Amide and Deracemisation of Ibuprofen Using Nocardia corallina B-276
by Ricardo Lievano, Herminia Inés Pérez, Norberto Manjarrez, Aida Solís and Myrna Solís-Oba
Molecules 2012, 17(3), 3148-3154; https://doi.org/10.3390/molecules17033148 - 12 Mar 2012
Cited by 9 | Viewed by 7803
Abstract
A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 [...] Read more.
A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0). These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R)-ibuprofen was isolated with >99% ee by a deracemisation process catalysed by N. corallina B-276. This is the first report of this kind of catalysis with this microorganism. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop