Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = nickel retention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 217
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

12 pages, 10100 KiB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Viewed by 348
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

17 pages, 1693 KiB  
Article
Chirality Transfer and Oxazolidine Formation in Reaction of L and D Enantiomers of β-Hydroxy Amino Acids with Nitrogenous Carboxaldehydes and Nickel(II)
by Cynthia T. Brewer, Greg Brewer and Raymond J. Butcher
Molecules 2025, 30(14), 2913; https://doi.org/10.3390/molecules30142913 - 10 Jul 2025
Viewed by 365
Abstract
The reaction of either the L (2S3R) or D (2R3S) enantiomers of H2N-C*H(R)CO2 (R = -C*H(OH)CH3 or -C*H(OH)CH(CH3)2) and the L (2S) or D (2R) enantiomers [...] Read more.
The reaction of either the L (2S3R) or D (2R3S) enantiomers of H2N-C*H(R)CO2 (R = -C*H(OH)CH3 or -C*H(OH)CH(CH3)2) and the L (2S) or D (2R) enantiomers of H2N-C*H(C(CH3)2OH)CO2 with imidazole-4-carboxaldehyde and nickel(II) acetate in methanol yields a single stereoisomer of an oxazolidine. There is retention of chirality on ring positions 4 and 5 (if Cβ is chiral) of the oxazolidine, Cα and Cβ of the parent amino acid, and transfer of chirality to the newly generated stereogenic centers, ring positions 3, the amino acid nitrogen atom, NAA, and 2, the aldehyde carbon atom, Cald. Specifically, when Cα has an S configuration, both NAA and Cald are formed as R. Likewise, a Cα which is R results in both NAA and Cald being formed as S. For example, the reaction of L threonine (Cα is S and Cβ is R) with 4-imidazolecarboxaldehyde in the presence of nickel(II) gives the facial Λ NiL2, where L is (2R, 3R, 4S, 5R) 4-carboxylato-5-methyl-2-(4-imidazolyl)-1,3-oxazolidine. The same reaction with D threonine produces the enantiomeric Δ complex of (2S, 3S, 4R, 5S) 4-carboxylato-5-methyl-2-(4-imidazoyl)-1,3-oxazolidine. The high stereospecificity is thought to be based on the fused three-ring structure of the characterized nickel complexes in which the hydrogen atoms of Cα, NAA, and Cald must be cis to one another. Identical reactions occur with 2-pyridine carboxaldehyde and LT or DT. In contrast, the reactions of L allo threonine (2S3S) and the primary alcohols, L or D serine, give the conventional meridionally coordinated aldimine product. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Graphical abstract

12 pages, 2634 KiB  
Article
Enhancing the Cycle Life of Silicon Oxide–Based Lithium-Ion Batteries via a Nonflammable Fluorinated Ester–Based Electrolyte
by Kihun An, Yen Hai Thi Tran, Dong Guk Kang and Seung-Wan Song
Batteries 2025, 11(7), 250; https://doi.org/10.3390/batteries11070250 - 30 Jun 2025
Viewed by 731
Abstract
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel [...] Read more.
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel (Ni ≥ 80%) oxide cathodes for high-energy-density LIBs and their operation beyond 4.2 V have been pursued, which requires the anodic stability of the electrolyte. Herein, we report a nonflammable multi-functional fluorinated ester–based liquid electrolyte that stabilizes the interfaces and suppresses the swelling of highly loaded 5 wt% SiO–graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode simultaneously in a 3.5 mAh cm−2 full cell, and improves cycle life and battery safety. Surface characterization results reveal that the interfacial stabilization of both the anode and cathode by a robust and uniform solid electrolyte interphase (SEI) layer, enriched with fluorinated ester-derived inorganics, enables 80% capacity retention of the full cell after 250 cycles, even under aggressive conditions of 4.35 V, 1 C and 45 °C. This new electrolyte formulation presents a new opportunity to advance SiO-based high-energy density LIBs for their long operation and safety. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

21 pages, 5680 KiB  
Article
Polyvinylpyrrolidone-Functionalized NiCo2O4 Electrodes for Advanced Asymmetric Supercapacitor Application
by Rutuja U. Amate, Mrunal K. Bhosale, Pritam J. Morankar, Aviraj M. Teli and Chan-Wook Jeon
Polymers 2025, 17(13), 1802; https://doi.org/10.3390/polym17131802 - 28 Jun 2025
Viewed by 397
Abstract
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating [...] Read more.
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating the PVP concentration (0.5–2 wt%), hierarchical flower-like nanosheets were engineered, with the NiCo-P1 sample (1 wt% PVP) exhibiting an optimized structure, superior electroactive surface area, and enhanced ion accessibility. Comprehensive electrochemical analysis revealed that NiCo-P1 delivered an outstanding areal capacitance of 36.5 F/cm2 at 10 mA/cm2, along with excellent cycling stability over 15,000 cycles with 80.97% retention. Kinetic studies confirmed dominant diffusion-controlled redox behavior with high OH diffusion coefficients and minimal polarization. An asymmetric pouch-type supercapacitor device (NiCo-P1//AC) exhibited a wide operating window of 1.5 V, achieving a remarkable areal capacitance of 187 mF/cm2, energy density of 0.058 mWh/cm2, and capacitive retention of 78.78% after 5000 cycles. The superior performance is attributed to the synergistic integration of mixed-valence Ni and Co species, engineered nanosheet morphology, and low interfacial resistance. This work underscores the significance of surfactant-directed design in advancing cost-effective, high-performance electrodes for next-generation flexible energy storage technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3101 KiB  
Article
Construction of CuCo2O4@NiFe-LDH Core–Shell Heterostructure for High-Performance Hybrid Supercapacitors
by Yang Chen, Man Li, Chengyu Xue and Fuxiang Wei
Metals 2025, 15(6), 659; https://doi.org/10.3390/met15060659 - 13 Jun 2025
Viewed by 471
Abstract
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their [...] Read more.
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their application in supercapacitors. In this paper, core–shell heterostructures of nickel–iron layered double hydroxide (NiFe-LDH) nanosheets uniformly grown on CuCo2O4 nanoneedles were synthesized by hydrothermal and calcination methods. It is found that the novel core–shell structure of CuCo2O4@NiFe-LDH improves the electrical conductivity of the electrode materials and optimizes the charge transport path. Under the synergistic effect of the two components and the core–shell heterostructure, the CuCo2O4@NiFe-LDH electrode achieves an ultra-high specific capacity of 323.4 mAh g−1 at 1 A g−1. And the capacity retention after 10,000 cycles at 10 A g−1 is 90.66%. In addition, the assembled CuCo2O4@NiFe-LDH//RGO asymmetric supercapacitor device achieved a considerable energy density (68.7 Wh kg−1 at 856.3 W kg−1). It also has 89.36% capacity retention after 10,000 cycles at 10 A g−1. These properties indicate the great potential application of CuCo2O4@NiFe-LDH in the field of high-performance supercapacitors. Full article
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Using Douglas Fir and European Larch Needles for the Assessment of Their Retention Capacity for Atmospheric Heavy Metals
by Dušan Jokanović, Ivana Stojiljković, Vesna Nikolić Jokanović, Kristina Živanović, Marko Marinković, Bojan Tubić and Filip Jovanović
Forests 2025, 16(6), 980; https://doi.org/10.3390/f16060980 - 11 Jun 2025
Cited by 1 | Viewed by 470
Abstract
Among numerous global problems, one of the most significant is air pollution. In this paper, unwashed (U) and water-washed (W) needles of two conifers—European larch and Douglas fir—were used to assess their capacity for the retention and accumulation of heavy metals. The needle [...] Read more.
Among numerous global problems, one of the most significant is air pollution. In this paper, unwashed (U) and water-washed (W) needles of two conifers—European larch and Douglas fir—were used to assess their capacity for the retention and accumulation of heavy metals. The needle samples were used to represent the atmospheric deposition of heavy metals located on the surface of the needles. The sampled European larch and Douglas fir plantations were situated at three locations in Serbia: a least polluted (Kučevo), a moderately polluted (Avala), and a very polluted (Lazarevac) site. The content of five heavy metals (Ni, Cu, Co, Cd, Pb) was investigated in the study. The concentration of cadmium (Cd) was higher in the European larch needles compared to Douglas fir, while the differences in the content of the other heavy metals between the species studied were insignificant. For both species, the following trend applied with respect to the heavy metal content in their needles: Ni ˃ Cu ˃ Co ˃ Pb ˃ Cd. Based on the results obtained, we deduced that the concentrations of all investigated heavy metals at all three locations for both species were within the allowed limits, except for nickel (Ni) content, which was over the predicted limit values for both species in the highly polluted area (Lazarevac). A PCA (principal component analysis) undertaken suggests that European larch has a greater ability to accumulate Co than Douglas fir on sites contaminated with heavy metals. The predictive foliar metal accumulation index (MAI) value was slightly higher in Douglas fir (4.14) than in European larch (3.76); therefore, the results suggest that this species would be a good planting choice, particularly in urban and industrial environments. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 7645 KiB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 391
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

23 pages, 23602 KiB  
Article
Exploration of the Supercapacitive Performance of 3D Flower-like Architecture of Quaternary CuNiCoZnO Developed on Versatile Substrates
by Priya G. Gaikwad, Nidhi Tiwari, Rajanish K. Kamat, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Shriniwas B. Kulkarni
Micromachines 2025, 16(6), 645; https://doi.org/10.3390/mi16060645 - 28 May 2025
Viewed by 455
Abstract
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, [...] Read more.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material–substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm2 for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm2, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

15 pages, 3410 KiB  
Article
CeO2-Modified Ni2P/Fe2P as Efficient Bifunctional Electrocatalyst for Water Splitting
by Xinyang Wu, Dandan Wang, Yongpeng Ren, Haiwen Zhang, Shengyu Yin, Ming Yan, Yaru Li and Shizhong Wei
Materials 2025, 18(10), 2221; https://doi.org/10.3390/ma18102221 - 11 May 2025
Viewed by 719
Abstract
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement [...] Read more.
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement of satisfactory performance. Therefore, this study presents the highly efficient bifunctional electrocatalyst of CeO2-modified NiFe phosphide on nickel foam (CeO2/Ni2P/Fe2P/NF). Ni2P/Fe2P coupled with CeO2 was deposited on nickel foam through hydrothermal synthesis and sequential calcination processes. The electrocatalytic performance of the catalyst was evaluated in an alkaline solution, and it exhibited an HER overpotential of 87 mV at the current density of 10 mA cm−2 and an OER overpotential of 228 mV at the current density of 150 mA cm−2. Furthermore, the catalyst demonstrated good stability, with a retention rate of 91.2% for the HER and 97.3% for the OER after 160 h of stability tests. The excellent electrochemical performance can be attributed to the following factors: (1) The interface between Ni2P/Fe2P and CeO2 facilitates electron transfer and reactant adsorption, thereby improving catalytic activity. (2) The three-dimensional porous structure of nickel foam provides an ideal substrate for the uniform distribution of Ni2P, Fe2P, and CeO2 nanoparticles, while its high conductivity facilitates electron transport. (3) The incorporation of larger Ce3⁺ ions in place of smaller Fe3⁺ ions leads to lattice distortion and an increase in defects within the NiFe-layered double hydroxide structure, significantly enhancing its catalytic performance. This research finding offers an effective strategy for the design and synthesis of low-cost, high-potential catalysts for water electrolysis. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

27 pages, 3186 KiB  
Review
Anaerobic Bioremediation of Acid Mine Drainage Using Sulphate-Reducing Bacteria: Current Status, Challenges, and Future Directions
by Ditiro Mafane, Tholiso Ngulube and Mamasegare Mabel Mphahlele-Makgwane
Sustainability 2025, 17(8), 3567; https://doi.org/10.3390/su17083567 - 15 Apr 2025
Cited by 2 | Viewed by 2072
Abstract
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of [...] Read more.
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of AMD because it is cost-effective and efficient. Anaerobic bioremediation employing sulphate-reducing bacteria (SRB) presents a promising solution by facilitating the reduction of sulphate to sulphide. The formed can precipitate and immobilise heavy metals, assisting them in their removal from contaminated wastewater. This paper examines the current status of SRB-based bioremediation, with an emphasis on recent advances in microbial processes, reactor design, and AMD treatment efficiencies. Reviewed studies showed that SRB-based bioreactors can achieve up to 93.97% of sulphate reduction, with metal recovery rates of 95% for nickel, 98% for iron and copper, and 99% for zinc under optimised conditions. Furthermore, bioreactors that used glycerol and ethanol as a carbon source improved the efficiency of sulphate reduction, achieving a pH neutralisation from 2.8 to 7.5 within 14 days of hydraulic retention time. Despite the promising results achieved so far, several challenges remain. These include the need for optimal environmental conditions, the management of toxic hydrogen sulphide production, and the economic feasibility of large-scale applications. Future directions are proposed to address these challenges, focusing on the genetic engineering of SRB, integration with other treatment technologies, and the development of cost-effective and sustainable bioremediation strategies. Ultimately, this review provides valuable information to improve the efficiency and scalability of SRB-based remediation methods, contributing to more sustainable mining practices and environmental conservation. To ensure relevance and credibility, relevance and regency were used as criteria for the literature search. The literature sourced is directly related to the subject of the review, and the latest research, typically from the last 5 to 10 years, was prioritised. Full article
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Study on the Flotation Behavior of CMS-Na for Talc with Different Particle Sizes: Based on the Hydrophobicity Difference of Fracture Surfaces
by Runqing Liu, Wenye Man, Wenchao Dong, Yacong Wu and Zechao Huangfu
Minerals 2025, 15(4), 402; https://doi.org/10.3390/min15040402 - 11 Apr 2025
Viewed by 442
Abstract
Talc, as a phyllosilicate mineral, is often associated with sulfides such as copper, molybdenum, and nickel, which severely impact the flotation of target minerals. Micro-flotation experiments combined with SEM, contact angle, FTIR, TOC, and AFM analyses were performed to explore the influence and [...] Read more.
Talc, as a phyllosilicate mineral, is often associated with sulfides such as copper, molybdenum, and nickel, which severely impact the flotation of target minerals. Micro-flotation experiments combined with SEM, contact angle, FTIR, TOC, and AFM analyses were performed to explore the influence and mechanism of sodium carboxymethyl starch (CMS-Na) on the flotation behavior of talc with varying particle sizes in a butyl xanthate system. The flotation results indicate that when CMS-Na is used as a depressant, the recovery of coarse talc particles (−74 + 45 μm) is only about 1%, while fine talc particles (−23 μm) maintain a recovery rate of over 70%. FTIR analysis revealed that the interaction between CMS-Na and talc involves both chemical and physical adsorption mechanisms, with the most pronounced effect observed on fine-grained talc surfaces. TOC, AFM, and contact angle measurements further revealed that the proportion of exposed edge surfaces increases as the talc particle size decreases. These edge surfaces exhibited a higher affinity for CMS-Na, resulting in significant reagent adsorption. Consequently, at an equivalent reagent dosage, the adsorption of CMS-Na on the basal planes was reduced, leading to the retention of high surface hydrophobicity. This phenomenon is considered an important factor contributing to the poor depressive effect on fine-grained talc. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

16 pages, 2027 KiB  
Article
Effective Recovery of Gold from Chloride Multi-Metal Solutions Through Anion Exchange
by Isabel F. F. Neto, Márcia A. D. Silva and Helena M. V. M. Soares
Recycling 2025, 10(2), 64; https://doi.org/10.3390/recycling10020064 - 7 Apr 2025
Viewed by 765
Abstract
Leachates from electronic waste, slag dusts generated during the processing of electronic waste, sweeping jewelry, and municipal solid-waste incineration residues contain a myriad of base metals, such as aluminum (Al: 10–2000 mg/L), copper (Cu: 10–1000 mg/L), iron (Fe: 10–500 mg/L), nickel (Ni: 0.1–500 [...] Read more.
Leachates from electronic waste, slag dusts generated during the processing of electronic waste, sweeping jewelry, and municipal solid-waste incineration residues contain a myriad of base metals, such as aluminum (Al: 10–2000 mg/L), copper (Cu: 10–1000 mg/L), iron (Fe: 10–500 mg/L), nickel (Ni: 0.1–500 mg/L), lead (Pb: 1–500 mg/L), tin (Sn: 1–100 mg/L), and zinc (Zn: 5–500 mg/L), which are present at much higher quantities than Au (0.01–10 mg/L), which raises several drawbacks to the efficient recycling of Au with high purity using hydrometallurgical strategies. The aim of this work was to study the efficiency and selectivity of two strong basic anion exchange (DOWTM XZ-91419.00 and PurogoldTM A194) resins to recover Au from a chloride multi-metal solution containing these metals. For both resins, the adsorption kinetic and equilibrium parameters for Au(III), determined at 1.12 mol/L HCl, Eh = 1.1 V, and 25 °C, proceeded according to a pseudo-second order and a Langmuir isotherm (qmax was 0.94 and 1.70 mmol/g for DOWTM XZ-91419.00 and PurogoldTM A194 resins, respectively), respectively. Continuous adsorption experiments of Au (48 µmol/L; 2.0%) from a chloride multi-metal solution evidenced high Au retention capacity and selectivity to Au over Al, Cu, Fe, Ni, and Zn but low selectivity to Au over Ag and Sn for both resins. Concentrated (>3.3 mmol/L) and pure (>94%) Au eluates were obtained for both resins. Full article
Show Figures

Figure 1

25 pages, 10098 KiB  
Article
An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance
by Zijun Li, Zhe Zhou, Yu Xu and Yin Chen
Atmosphere 2025, 16(4), 395; https://doi.org/10.3390/atmos16040395 - 29 Mar 2025
Viewed by 676
Abstract
Mine ramps, serving as a critical transportation hub in underground mining activities, are beset by severe issues of dust pollution and secondary dust generation. While dust suppressants are more efficient than the commonly used sprinkling methods in mines, traditional single-function dust suppressants are [...] Read more.
Mine ramps, serving as a critical transportation hub in underground mining activities, are beset by severe issues of dust pollution and secondary dust generation. While dust suppressants are more efficient than the commonly used sprinkling methods in mines, traditional single-function dust suppressants are inadequate for the complex application environment of mine ramps. Building on the development of conventional single-function dust suppressants, this research optimized the components of bonding, wetting, and moisturizing agents. Through single-factor optimization experiments, a comparison was made of the surface tension water retention property and viscosity of diverse materials, thus enabling the identification of the primary components of the dust suppressant. By means of synergistic antagonism experiments, the optimal combination of the wetting agent and bonding agent with excellent synergy was ascertained. Ultimately, the wind erosion resistance and rolling resistance were measured through three-factor orthogonal experiments, and the optimal ratio of the dust suppressant was established. Specifically, fenugreek gum (FG) was selected as the bonding agent, cane sugar (CS) as the moisturizing agent, and alkyl phenol polyoxyethylene ether (Op-10) as the wetting agent. The research findings demonstrate that the optimal ratio of dust suppressant is 0.3 wt% fenugreek gum (FG) + 0.06 wt% alkyl phenol polyoxyethylene ether (Op-10) + 3 wt% cane sugar (CS). Under these conditions, the dust fixation rate can reach up to 97~98% at a wind speed of 8 m/s. The maximum rolling resistance can reach 65~73% after grinding the samples for 1 min. The surface tension of the solution is 13.74 mN/m, and the wetting performance improved by 81% compared to pure water. This dust suppressant is of great significance for improving the working environment of workers and ensuring the sustainable development of the mining industry. Full article
Show Figures

Figure 1

23 pages, 6217 KiB  
Article
Synergistic Effect of Redox-Active NiS-Co@C Ternary Nanocomposite for Supercapattery Hybrid Energy Storage Devices
by Mohan Reddy Pallavolu, Jyothi Nallapureddy, Arghya Narayan Banerjee and Sang-Woo Joo
Batteries 2025, 11(4), 116; https://doi.org/10.3390/batteries11040116 - 21 Mar 2025
Cited by 1 | Viewed by 578
Abstract
A highly redox-active ternary nickel sulfide and cobalt-anchored carbon nanocomposite (NiS-Co@C) electrochemical electrode is synthesized by a two-step pyrolysis-hydrothermal method using biomass-derived carbon. The high-crystalline hierarchical porous nanostructure provides abundant voids and cavities, along with a large specific surface area, to improve the [...] Read more.
A highly redox-active ternary nickel sulfide and cobalt-anchored carbon nanocomposite (NiS-Co@C) electrochemical electrode is synthesized by a two-step pyrolysis-hydrothermal method using biomass-derived carbon. The high-crystalline hierarchical porous nanostructure provides abundant voids and cavities, along with a large specific surface area, to improve the interfacial properties. The as-synthesized electrode achieved a specific capacity of 640 C g−1 at 1 A g−1, with a capacity retention of 93% over 5000 cycles, revealing outstanding electrochemical properties. Nickel sulfide nanoparticles embedded in the cobalt-anchored carbon framework improved redox activity, ion transport, and conductivity, resulting in a dominant diffusion-controlled battery-type behavior. Moreover, a hybrid supercapattery, based on battery-type NiS-Co@C as the positrode and capacitive-type activated carbon as the negatrode, achieved a maximum specific energy/power of 33 Wh kg−1/7.1 kW kg−1 with a 91% capacity retention after 5000 cycles. The synergistic effect of the combinatorial battery–capacitor behavior of the hybrid supercapattery has improved the specific energy–power considerably, leading the development of next-generation energy storage technologies. Full article
(This article belongs to the Section Supercapacitors)
Show Figures

Graphical abstract

Back to TopTop