Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = nickel composite plating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2756 KiB  
Article
Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity
by Haksung Lee, Man Kwon Choi, Seong-Hyun Kang, Woong Han, Byung-Joo Kim and Kwan-Woo Kim
Polymers 2025, 17(12), 1610; https://doi.org/10.3390/polym17121610 - 10 Jun 2025
Viewed by 483
Abstract
With the growing integration of electronic systems into modern infrastructure, the need for effective electromagnetic interference (EMI) shielding materials has intensified. This study explores the development of electroless Ni-plated fiber composites and systematically investigates the effects of post-heat treatment on their electrical, structural, [...] Read more.
With the growing integration of electronic systems into modern infrastructure, the need for effective electromagnetic interference (EMI) shielding materials has intensified. This study explores the development of electroless Ni-plated fiber composites and systematically investigates the effects of post-heat treatment on their electrical, structural, and interfacial performance. Both carbon fibers (CFs) and glass fibers (GFs) were employed as reinforcing substrates, chosen for their distinct mechanical and thermal characteristics. Ni plating enhanced the electrical conductivity of both fibers, and heat treatment facilitated phase transformations from amorphous to crystalline Ni3P and Ni2P, leading to improved EMI shielding effectiveness (EMI-SE). NGF-based composites achieved up to a 169% increase in conductivity and a 116% enhancement in EMI-SE after treatment at 400 °C, while NCF-based composites treated at 800 °C attained superior conductivity and shielding performance. However, thermal degradation and reduced interfacial shear strength (IFSS) were observed, particularly in GF-based systems. The findings highlight the importance of material-specific thermal processing to balance functional performance and structural reliability. This study provides critical insights for designing fiber-reinforced composites with optimized EMI shielding properties for application-driven use in next-generation construction materials and intelligent infrastructure. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

14 pages, 3946 KiB  
Article
Effect of TiC Addition on Microstructure and Performances of Double Pulse Electrodeposited Ni-TiC Coatings
by Haijun Liu, Hui Wang and Fafeng Xia
Coatings 2025, 15(5), 598; https://doi.org/10.3390/coatings15050598 - 17 May 2025
Cited by 1 | Viewed by 411
Abstract
Nickel–titanium carbide (Ni-TiC) coatings were synthesized on Q235 steel via double-pulse electrodeposition to enhance surface properties. The influence of TiC concentration on surface morphology, microstructure, and performance was systematically studied using SEM, TEM, XRD, microhardness testing, wear analysis, and electrochemical methods. At low [...] Read more.
Nickel–titanium carbide (Ni-TiC) coatings were synthesized on Q235 steel via double-pulse electrodeposition to enhance surface properties. The influence of TiC concentration on surface morphology, microstructure, and performance was systematically studied using SEM, TEM, XRD, microhardness testing, wear analysis, and electrochemical methods. At low TiC concentrations (2–4 g/L), the coatings exhibited typical cell-like morphology. At 8 g/L, the coating showed a dense structure, refined grains, and broad Ni diffraction peaks. TEM analysis revealed nickel and TiC grain sizes of 97.82 nm and 34.75 nm, respectively. The plating rate remained stable (~36.94 mg·cm−2·h−1), while surface roughness increased with TiC content. The 8 g/L TiC coating achieved the highest microhardness (743.13 HV), lowest wear loss (5.43%), and superior corrosion resistance, with a self-corrosion current density of 5.27 × 10−6 A·cm−2 and polarization resistance of 7705.62 Ω·cm2. These enhancements are attributed to uniform TiC dispersion and grain boundary pinning. Thus, 8 g/L TiC is optimal for fabricating Ni-TiC coatings with improved mechanical and electrochemical performance. This work demonstrates a practical strategy for developing high-performance Ni-based composite coatings via double-pulse electrodeposition. Full article
Show Figures

Figure 1

26 pages, 39179 KiB  
Article
Corrosion Behavior of Fe-Ni Electrodeposited Coatings in Weak Ammonium Hydroxide Solution
by Joel Andrew Hudson and Henry E. Cardenas
Corros. Mater. Degrad. 2025, 6(2), 15; https://doi.org/10.3390/cmd6020015 - 17 Apr 2025
Viewed by 786
Abstract
Iron and iron-nickel alloy electrodeposits synthesized from sulfate-based electroplating baths were applied to a mild carbon steel substrate. Coated specimens were immersed in an oxygen-saturated, weak ammonium hydroxide solution (pH 9.5–10.0), and their corrosion performance was evaluated using electrochemical techniques. Galvanic and general [...] Read more.
Iron and iron-nickel alloy electrodeposits synthesized from sulfate-based electroplating baths were applied to a mild carbon steel substrate. Coated specimens were immersed in an oxygen-saturated, weak ammonium hydroxide solution (pH 9.5–10.0), and their corrosion performance was evaluated using electrochemical techniques. Galvanic and general corrosion behaviors were analyzed to assess the sacrificial protection provided by Fe and Fe-Ni coatings relative to uncoated steel. The influence of anode-to-cathode (A/C) surface area ratios (1:1, 10:1, and 100:1) on the occurrence of plating-induced surface cracks was also examined. Surface morphology and elemental composition of the deposits were characterized. Results of the study indicated that increasing the Ni2+/Fe2+ molar ratio of the electroplating bath from 0 to 0.167 led to (1) reduced surface porosity and cracking, (2) decreased galvanic corrosion rates between the electrodeposit and substrate, and (3) a progressive increase in the temperature dependence of the general corrosion rate between 20 °C and 60 °C. The development of Fe and Fe-Ni alloy electrodeposits as protective coatings is of particular interest in water-tube power boiler applications, where production of corrosion products must be controlled. Further research is needed to develop coatings that perform predictably under elevated pressures and temperatures typical of operating boiler environments. Full article
Show Figures

Figure 1

19 pages, 5789 KiB  
Article
A Study on the Effect of Nickel-Plated Graphite Content on the Microstructure and Properties of AlZn/Nickel-Plated Graphite Composite Cold Spray Coatings
by Linggang Zhou, Zecheng Zheng, Qin Wang, Fangfang Wu, Jing Hong, Shengyi Xie, Hongwei Ni, Qiang Feng, Mengxuan Zhou, Mengzhao Li, Guodong Zhang and Chunxu Pan
Materials 2025, 18(2), 388; https://doi.org/10.3390/ma18020388 - 16 Jan 2025
Viewed by 793
Abstract
Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, [...] Read more.
Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, this paper explores the feasibility of using cold spraying technology for surface restoration. Using 6063 aluminum alloy as the substrate, AlZn/nickel-plated graphite composite coatings were applied through cold spraying. The effects of different nickel-plated graphite contents on the microstructure, mechanical properties, and corrosion resistance of the coatings were studied. Annealing treatments (200 °C, 300 °C, 400 °C) were further used to improve the coating’s density and performance. The results show that with an increase in the nickel-plated graphite content, the porosity of the coating gradually increases, while the coating’s density and bond strength improve. Additionally, the annealing treatment significantly enhanced the uniformity and hardness of the coating. Moreover, the cold-sprayed coatings exhibited excellent corrosion resistance, especially in the annealed coatings, which showed superior microstructural stability and lower corrosion current density. This study provides a new technological approach for the repair of aluminum busbars and offers an in-depth discussion on the application of cold spraying technology in the surface restoration of aluminum-based composite materials. Full article
Show Figures

Figure 1

17 pages, 6801 KiB  
Article
Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel
by Michael Piston, Laura Bartlett, Krista R. Limmer, Daniel M. Field and Billy C. Hornbuckle
Metals 2024, 14(12), 1342; https://doi.org/10.3390/met14121342 - 26 Nov 2024
Cited by 1 | Viewed by 916
Abstract
In this study, a novel lightweight Fe-Mn-Al-C steel composition and thermomechanical processing route was developed to produce a fully austenitic microstructure with a uniform intragranular dispersion of B2-NiAl precipitation in order to overcome the significant challenge of strengthening hot-rolled Fe-Mn-Al-C steels while retaining [...] Read more.
In this study, a novel lightweight Fe-Mn-Al-C steel composition and thermomechanical processing route was developed to produce a fully austenitic microstructure with a uniform intragranular dispersion of B2-NiAl precipitation in order to overcome the significant challenge of strengthening hot-rolled Fe-Mn-Al-C steels while retaining toughness. The new composition and processing methods allow for the processing of ultrahigh-strength Fe-Mn-Al-C steel containing nickel as thicker gauge plate for a multitude of new automotive and structural applications where lightweighting is critical. The composition investigated in this study was a fully austenitic Fe-21Mn-9Al-1C-8Ni wt% steel. Two hot rolling methods were investigated: the first procedure involved lower temperature rolling cycles to precipitate B2-NiAl during hot rolling and reheating. The second method involved higher temperature rolling to precipitate B2-NiAl after thermomechanical processing during a short isothermal treatment. The lower temperature rolling produced plate with an ultimate tensile strength of 1120 MPa and a Charpy V-Notch (CVN) toughness of 24 J at −40 °C. After the high temperature rolling procedure, precipitation of B2-NiAl through a subsequent precipitation hardening step resulted in reduced B2-NiAl size and improved the ultimate tensile strength above 1300 MPa. The two novel processing routes of a single composition can be performed with current manufacturing capabilities to produce hot rolled plate strengthened by B2-NiAl precipitation to various hardness (ranging from 33 to 41 HRC) and strength levels (ranging from 1100 to 1320 MPa ultimate tensile strength) while retaining 22–27% elongation. Full article
(This article belongs to the Special Issue Development of Advanced High-Strength Steels)
Show Figures

Figure 1

14 pages, 4037 KiB  
Article
Hydrogen and Oxygen Evolution on Flexible Catalysts Based on Nickel–Iron Coatings
by Dmytro Shyshkin, Loreta Tamašauskaitė-Tamašiūnaitė, Dijana Šimkūnaitė, Aldona Balčiūnaitė, Zita Sukackienė, Jūratė Vaičiūnienė, Birutė Šimkūnaitė-Stanynienė, Antanas Nacys and Eugenijus Norkus
Catalysts 2024, 14(12), 843; https://doi.org/10.3390/catal14120843 - 22 Nov 2024
Cited by 1 | Viewed by 1252
Abstract
The electrolysis of water is one of low-cost green hydrogen production technologies. The main challenge regarding this technology is designing and developing low-cost and high-activity catalysts. Herein, we present a strategy to fabricate flexible electrocatalysts based on nickel–iron (NiFe) alloy coatings. NiFe coatings [...] Read more.
The electrolysis of water is one of low-cost green hydrogen production technologies. The main challenge regarding this technology is designing and developing low-cost and high-activity catalysts. Herein, we present a strategy to fabricate flexible electrocatalysts based on nickel–iron (NiFe) alloy coatings. NiFe coatings were plated on the flexible copper-coated polyimide surface (Cu/PI) using the low-cost and straightforward electroless metal-plating method, with morpholine borane as a reducing agent. It was found that Ni90Fe10, Ni80Fe20, Ni60Fe40, and Ni30Fe70 coatings were deposited on the Cu/PI surface; then, the concentration of Fe2+ in the plating solution was 0.5, 1, 5, and 10 mM, respectively. The morphology, structure, and composition of NixFey/Cu/PI catalysts have been examined using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and inductively coupled plasma–optical emission spectroscopy (ICP-OES), whereas their activity has been investigated for hydrogen evolution (HER) and oxygen evolution (OER) reactions in 1 M KOH using linear sweep voltammetry (LSVs). It was found that the Ni80Fe20/Cu/PI catalyst exhibited the lowest overpotential value of −202.7 mV for the HER, obtaining a current density of 10 mA cm−2 compared to Ni90Fe10/Cu/PI (−211.9 mV), Ni60Fe40/Cu/PI (−276.3 mV), Ni30Fe70/Cu/PI (−278.4 mV), and Ni (−303.4 mV). On the other hand, the lowest OER overpotential (344.7 mV) was observed for the Ni60Fe40/Cu/PI catalyst, obtaining a current density of 10 mA cm−2 compared to the Ni35Fe65 (369.9 mV), Ni80Fe20 (450.2 mV), and Ni90Fe10 (454.2 mV) coatings, and Ni (532.1 mV). The developed Ni60Fe40/Cu/PI catalyst exhibit a cell potential of 1.85 V at 10 mA cm−2. The obtained catalysts seem to be suitable flexible catalysts for HER and OER in alkaline media. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

23 pages, 19204 KiB  
Article
Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment
by Toty Onggar, Leopold Alexander Frankenbach and Chokri Cherif
Coatings 2024, 14(11), 1424; https://doi.org/10.3390/coatings14111424 - 8 Nov 2024
Cited by 1 | Viewed by 969
Abstract
Taking advantage of its high-temperature resistance and elongation properties, conductive-coated polyetheretherketone (PEEK) filament yarn can be used as a textile-based electroconductive functional element, in particular as a strain sensor. This study describes the development of electrical conductivity on an inert PEEK filament surface [...] Read more.
Taking advantage of its high-temperature resistance and elongation properties, conductive-coated polyetheretherketone (PEEK) filament yarn can be used as a textile-based electroconductive functional element, in particular as a strain sensor. This study describes the development of electrical conductivity on an inert PEEK filament surface by the deposition of metallic nickel (Ni) layers via an electroless galvanic plating process. To enhance the adhesion properties of the nickel layer, both PEEK multifilament and monofilament yarn surfaces were metalized by plasma torch pretreatment, followed by nickel plating. Electrical characterizations indicate the potential of nickel-coated PEEK for structural monitoring in textile-reinforced composites. In addition, surface energy measurements before and after plasma torch pretreatment, surface morphology, nickel layer thickness, chemical structure changes, and mechanical properties were analyzed and compared with untreated PEEK. The thickness of the Ni layer was measured and showed an average thickness of 1.25 µm for the multifilament yarn and 3.36 µm for the monofilament yarn. FTIR analysis confirmed the presence of new functional groups on the PEEK surface after plasma torch pretreatment, indicating a successful modification of the surface chemistry. Mechanical testing showed an increase in tensile strength after plasma torch pretreatment but a decrease after nickel plating. In conclusion, this study successfully developed conductive PEEK yarns through plasma torch pretreatment and nickel plating. Full article
Show Figures

Figure 1

13 pages, 6392 KiB  
Article
A New Process of Chemical Plating Ni-P Electromagnetic Induction Heating Activation on the Surface of Aluminium Alloy Base Material
by Jin Gao, Kaifang Cui, Siqi Li, Liang Zhong, Jingxiong Dai, Zhigang Yang and Rongming Qiang
Coatings 2024, 14(9), 1221; https://doi.org/10.3390/coatings14091221 - 22 Sep 2024
Cited by 2 | Viewed by 1859
Abstract
Nowadays, there are many surface treatment methods for aluminium alloys; the most commonly used of these is the chemical dip galvanizing process, which is complicated due to its use of large quantities of corrosive drugs. In order to simplify the process, this paper [...] Read more.
Nowadays, there are many surface treatment methods for aluminium alloys; the most commonly used of these is the chemical dip galvanizing process, which is complicated due to its use of large quantities of corrosive drugs. In order to simplify the process, this paper proposes a new electromagnetic induction heating activation method instead of the zinc dipping process. The method works as follows: The substrate is first degreased and then activated. The activation process starts by soaking the degreased substrate in an activation solution, taking it out after ten minutes, and placing it into an induction heating unit. The activation solution is sprayed onto the surface of the substrate while heating, using the energy generated by high temperatures to complete the activation reaction. The surface of the activated substrate forms a nanoscale film of nickel, which is finally utilised as a catalytic centre for ENP (an advanced surface treatment process that deposits a very uniform layer). The optimisation of important parameters of the non-destructive activation process was determined using the L9 Taguchi method. The main parameters ranged from 0.15 L/min to 0.25 L/min for spray rate, 200 °C to 400 °C for heat treatment temperature, and 1:4, 1:5, and 1:6 for Ni2+ and H2PO4 ion concentration ratios. The above data were derived from a single variable and were analysed using Minitab 20 software. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy spectrometry (EDS), and ultrasonic experiments were used to characterize and analyse the surface morphology, composition, and bond strength of the coatings. The results show that the nanoscale nickel particles can completely cover the surface of the substrate, forming a layer of nano-film. After activation and ultrasonic cleaning for 30 s at an ultrasonic frequency of 40 KHz and a power of 80 W, the surface nano-film was not destroyed, which proves that it had a high bonding strength. After the application of the plating, the plated surface had a compact microstructure, and the continuity was good. Therefore, compared with the currently commonly used zinc dipping process, this process has the advantages of being a low-cost, simple operation, and non-destructive and environmentally friendly activation process for the substrate. Full article
Show Figures

Figure 1

17 pages, 8396 KiB  
Article
A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research
by Kaifang Cui, Jin Gao, Siqi Li, Xue Leng, Liang Zhong and Rongming Qiang
Coatings 2024, 14(9), 1203; https://doi.org/10.3390/coatings14091203 - 19 Sep 2024
Viewed by 1379
Abstract
A new high efficient and non-destructive mental activation process of electroless composite plating was proposed. The process utilized electromagnetic induction equipment to heat the titanium alloy substrate and used its energy to complete the activation process, which could successfully attach the nickel nanoparticles [...] Read more.
A new high efficient and non-destructive mental activation process of electroless composite plating was proposed. The process utilized electromagnetic induction equipment to heat the titanium alloy substrate and used its energy to complete the activation process, which could successfully attach the nickel nanoparticles firmly to the surface of the titanium alloy; at the same time, the process pre-activated Al2O3 nanoparticles and added the activated nanoparticles to the plating solution. In the process of plating, the activated titanium substrate was used as the catalytic center of electroless nickel plating (ENP) for electroless composite plating. The new activation process avoided complicated traditional processes such as acid etching and zinc dipping. Such traditional processes require huge doses of chemicals, including various strong acids, so improper waste liquid treatment will cause harm to the environment. The important parameters of the process were optimized by orthogonal experiments. A scanning electron microscope (SEM), an X-ray photoelectron spectroscopy (XPS), an energy dispersive spectrometer (EDS), thermal shock experiments and friction and wear experiments were used to characterize and analyze the surface morphology, composition, binding force and friction coefficient of the coating, and analyze the coating quality by measuring the plating rate and the thickness of the coating. The results showed that the rate of electroless composite plating increased with the increase in Al2O3 nanoparticle concentration. When the concentration of Al2O3 nanoparticles reached 1.5 g/L, the ENP rate decreased with the increase in Al2O3 nanoparticle concentration. The adhesion of the sample was evaluated by the scratch test, which showed that the binding grade of the sample was 0, and the Vickers hardness was 688.5 HV. Results showed that the coating produced by this new process has excellent performance. Therefore, the process is an environmentally friendly and fast activation composite plating process. Full article
Show Figures

Figure 1

17 pages, 10684 KiB  
Article
Alternatives to Reduce Hot Cracking Susceptibility of IN718 Casting Alloy Laser Beam Welds with a Mushroom Shape
by Leire García-Sesma, Pedro Álvarez, Eider Gorostegui-Colinas, I. Huarte and Fernando Santos
Metals 2024, 14(9), 1067; https://doi.org/10.3390/met14091067 - 18 Sep 2024
Viewed by 1597
Abstract
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the [...] Read more.
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the coarse microstructure formed during solidification, and secondly, the activation of hot cracking mechanisms, which is particularly critical in mushroom-shaped welding morphologies. In this study, different nickel-based superalloys welded using laser beam welding (LBW), more specifically bead on plate welding (BoP), specimens are compared. The cracking susceptibility of both wrought and two investment casting 718 alloys with tailored chemical compositions is examined through the application of both continuous and pulsed LBW. Additionally, various pre-weld treatments, including with and without Pre-HIP (hot isostatic pressing), are analyzed. The influences of chemical composition, LBW parameters and pre- and post-welding treatments on both internal and external cracks determined by conventional and advanced non-destructive tests are studied. A clear reduction of hot cracking susceptibility and overall welding quality improvement was observed in a tailored 718 alloy with relatively high Ni (55.6% wt) and Co (1.11% wt) contents. Full article
Show Figures

Figure 1

19 pages, 10843 KiB  
Article
Research on the Mechanism of Oxygen-Induced Embrittlement Fracturing in Industrial Electrolytic Nickel
by Han Zhang, Chen Sang, Chengpeng Miao, Yangtao Xu, Jisen Qiao and Tiandong Xia
Materials 2024, 17(17), 4428; https://doi.org/10.3390/ma17174428 - 9 Sep 2024
Cited by 1 | Viewed by 1193
Abstract
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron [...] Read more.
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and electron probe micro-analysis. The comparative microstructural analysis took place between specimens heat treated in atmospheric and vacuum environments. The characterization and analysis of the hot-rolled plates considered the crack microstructure and fracture morphology. It was shown that holes appeared along the large angular grain boundaries after annealing at 1100 °C for 8 h. Possible reason: In a high-temperature environment, the decomposition of residual additives in the electrolytic nickel releases oxidizing gases, which oxidizes the grain boundaries. The reaction with carbon diffused into the grain boundaries and produced carbon monoxide gas, which induced holes and severely reduced the grain boundary plasticity. The heat treatment time did not need to be very long for severe grain boundary degradation to occur. After severe cavitation, the electrolytic nickel was severely cracked at grain boundaries cracks due to a shear force, and brittle fractures occurred along grains with very low plasticity. Full article
Show Figures

Figure 1

19 pages, 10547 KiB  
Article
Bimetallic Ni–Mn Electrocatalysts for Stable Oxygen Evolution Reaction in Simulated/Alkaline Seawater and Overall Performance in the Splitting of Alkaline Seawater
by Sukomol Barua, Aldona Balčiūnaitė, Daina Upskuvienė, Jūrate Vaičiūnienė, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Coatings 2024, 14(8), 1074; https://doi.org/10.3390/coatings14081074 - 22 Aug 2024
Cited by 4 | Viewed by 2618
Abstract
The perfect strategy for the generation of green and renewable hydrogen (H2) fuels is the direct electrocatalytic splitting of plentiful seawater rather than scarce freshwater. One of the half-reactions taking place during the electrocatalytic splitting of seawater is oxygen evolution (OER). [...] Read more.
The perfect strategy for the generation of green and renewable hydrogen (H2) fuels is the direct electrocatalytic splitting of plentiful seawater rather than scarce freshwater. One of the half-reactions taking place during the electrocatalytic splitting of seawater is oxygen evolution (OER). However, the OER is affected by slow four-electron transfer kinetics as well as competitive chlorine evolution reactions (CERs) in seawater. To overcome the kinematic and competitive barriers of seawater splitting and achieve an excellent overall performance of seawater splitting, we herein report a facile, low-cost, one-step fabrication procedure of 3D structured nickel–manganese (NiMn) coatings using a dynamic hydrogen bubble template (DHBT) technique. The electrocatalytic activities of the thus synthesized catalytic materials for OER in simulated seawater (0.5 M NaCl + 1 M KOH, denoted as SSW) and alkaline natural seawater (natural seawater + 1 M KOH, denoted as ASW) were investigated using linear sweep voltammetry (LSV) at varying temperatures from 25 to 75 °C. Scanning electron microscopy (SEM) and inductively coupled plasma–optical emission spectroscopy (ICP–OES) were used to examine the surface morphology and composition of the prepared catalysts. It was found that the prepared NiMn/Ti-1 catalyst in a plating bath containing a molar ratio of 1:1 Ni2+:Mn2+ and having the lowest Mn loading of 13.43 µg cm−2 exhibited quite reasonable activity for OER in Cl ion rich SSW and ASW. To achieve the benchmark current density of 10 mA cm−2 in SSW and ASW, the NiMn/Ti-1 electrocatalyst requires overpotentials of 386 and 388 mV, respectively. In addition, this optimal bimetallic electrocatalyst also demonstrated superior long-run stability at 1.81 V (vs. RHE) and 10 mA cm−2 for 24 h in both working electrolytes. Impressively, the two-electrode electrolyzer—NiMn/Ti-5(−)||NiMn/Ti-1(+)—needs only 1.619 V to deliver 10 mA cm−2 current density for overall alkaline seawater electrolysis, which is even 0.075 V lower than the noble metal-based electrolyzer (Pt(−)||NiMn/Ti-1(+)). Full article
(This article belongs to the Special Issue New Advance in Nanoparticles, Fiber, and Coatings)
Show Figures

Figure 1

12 pages, 4369 KiB  
Article
Catalytic Activity Evaluation of the Molten Salt-Modified Novel Ni Electrodes for Urea Electrooxidation in Alkaline Solutions
by Dawid Kutyła, Michihisa Fukumoto, Hiroki Takahashi, Marek Wojnicki and Piotr Żabiński
Metals 2024, 14(8), 904; https://doi.org/10.3390/met14080904 - 9 Aug 2024
Cited by 1 | Viewed by 1703
Abstract
The presented paper characterized the molten salt-modified Ni electrode with excellent catalytic activity towards alkaline urea electrooxidation reaction. The electrodes were modified by electrodeposition of Al from molten salt electrolytes containing NaCl-KCl-AlF3 at a temperature of 750 °C and applied potential of [...] Read more.
The presented paper characterized the molten salt-modified Ni electrode with excellent catalytic activity towards alkaline urea electrooxidation reaction. The electrodes were modified by electrodeposition of Al from molten salt electrolytes containing NaCl-KCl-AlF3 at a temperature of 750 °C and applied potential of −1.9 V. The porous surface was obtained by anodic polarization with a potential of −0.4 V until the anodic current was equal to 0 mAcm−2. The prepared deposits’ structure, surface morphology, and composition were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Anodic polarization was applied to assess the electrocatalytic activity and elucidate the urea electrooxidation mechanism in 1 M KOH + 0.33 M urea solution. The nanocrystalline structure, fine grain size, and microcracks on the surface of the studied electrodes contributed to their notably high electrochemically active surface area (ECSA). The cyclic voltammetry in the non-Faradaic regions of the samples shows that molten salt modification can increase the double layer capacitance of bare Ni plates by around ten times, from 0.29 mFcm−2 to 2.16 mFcm−2. Polarization of the electrodes in urea-containing KOH solution with potential of +1.52 V shows a significant difference in catalytic performance. For the bare nickel sample, the registered current density from the urea electrooxidation reaction was around +1 mAcm−2, and for the molten salt-modified one, it was +38 mAcm−2, which indicates the fact that the molten salt surface treatment can be a promising tool in tailoring the electrochemical properties of materials. Full article
Show Figures

Figure 1

17 pages, 15715 KiB  
Article
The Formation of a Low-Carbon Steel/Ni-Cr-W Alloy Bimetallic Material via Liquid–Solid Compound Casting with a Laser Assisted Solid Surface
by Serhii Salii, Leonid Golovko, Oleksii Kaglyak, Oleksandr Kapustynskyi and Nikolaj Višniakov
Machines 2024, 12(8), 522; https://doi.org/10.3390/machines12080522 - 31 Jul 2024
Cited by 1 | Viewed by 1418
Abstract
The aim of this study was to develop a new manufacturing process for bimetallic materials by combining laser treatment with traditional casting methods. This process involves laser-treating nickel alloy-grade UNS 6230 plates to create a regular macro-relief on their surface. These treated plates [...] Read more.
The aim of this study was to develop a new manufacturing process for bimetallic materials by combining laser treatment with traditional casting methods. This process involves laser-treating nickel alloy-grade UNS 6230 plates to create a regular macro-relief on their surface. These treated plates are then placed in a sand mold, and molten non-alloy steel (S235JRG2) is poured into the mold to create bimetallic layered castings. The experimental procedure focuses on optimizing the melt-to-solid phase ratios and pouring temperatures to achieve a uniform microstructure and strong mechanical properties in the bimetals. The produced bimetallic castings are suitable for applications in the oil refining and chemical industries and heavy machinery sector. The quantitative results indicate that the optimized process parameters lead to a high-quality transition zone with minimal defects, characterized by the diffusion of alloying elements from the nickel alloy to the steel. The microstructure, chemical, and phase compositions were evaluated using XRD and SEM with EDS, confirming the formation of a robust metallurgical bond. Key findings include a significant improvement in the hardness and strength of the transition layer, with the optimal pouring temperature being 1600 °C. The resulting bimetallic materials demonstrate an improved performance in demanding industrial environments. Full article
Show Figures

Figure 1

16 pages, 5362 KiB  
Article
A Study on the Surface Oxidation Pretreatment and Nickel Plating Mechanism of Carbon Fiber
by Qinghui Wang, Xuesong Li and Dongdong Zhu
Materials 2024, 17(15), 3650; https://doi.org/10.3390/ma17153650 - 24 Jul 2024
Cited by 3 | Viewed by 1718
Abstract
This study explores the effects of various temperatures on the surface modification of carbon fibers, as well as the effect of differing voltages and currents on the morphology, deposition rate, and thickness of the Ni plating layers. Post-treatment characterization of the samples was [...] Read more.
This study explores the effects of various temperatures on the surface modification of carbon fibers, as well as the effect of differing voltages and currents on the morphology, deposition rate, and thickness of the Ni plating layers. Post-treatment characterization of the samples was conducted utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods, thus facilitating a discussion on the mechanism of Ni plating. The findings demonstrate that at a temperature of 500 °C, the carbon fiber surface exhibits the highest concentration of functional groups, including hydroxyl (-OH), carboxyl (-COOH), and carbonyl (-C=O), resulting in the most efficacious modification. Specifically, exceeding 500 °C leads to significant carbon fiber mass loss, compromising the reinforcement effect. Under a stable voltage of 7.5 V, the Ni-plated layer on the carbon fibers appear smooth, fine, uniform, and complete. Conversely, at a voltage of 15 V, the instantaneous high voltage induces the continuous growth of Ni2+ ions along a singular deposition point, forming a spherical Ni-plated layer. In addition, a current of 0.6 A yields a comparatively uniform and dense carbon fiber coating. Nickel-plated layers on a carbon fiber surface with different morphologies have certain innovative significance for the structural design of composite reinforcements. Full article
Show Figures

Figure 1

Back to TopTop