Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frommeyer, G.; Drewes, E.J.; Engl, B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Met. Paris. 2000, 97, 1245–1253. [Google Scholar] [CrossRef]
- Chu, C.M.; Huang, H.; Kao, P.W.; Gan, D. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys. Scr. Metall. Mater. 1994, 30, 505–508. [Google Scholar] [CrossRef]
- Lehnhoff, G.R.; Findley, K.O.; De Cooman, B.C. The influence of Si and Al alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr. Mater. 2014, 92, 19–22. [Google Scholar] [CrossRef]
- Bohnenkamp, U.; Sandström, R. Evaluation of the density of steels. Steel Res. 2000, 71, 88–93. [Google Scholar] [CrossRef]
- Chen, S.; Rana, R.; Haldar, A.; Ray, R.K. Current State of Fe-Mn-Al-C Low Density Steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Park, K.T.; Jin, K.G.; Han, S.H.; Hwang, S.W.; Choi, K.; Lee, C.S. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition. Mater. Sci. Eng. A 2010, 527, 3651–3661. [Google Scholar] [CrossRef]
- Yoo, J.D.; Park, K.T. Microband-induced plasticity in a high Mn–Al–C light steel. Mater. Sci. Eng. 2008, 496, 417–424. [Google Scholar] [CrossRef]
- Yoo, J.D.; Hwang, S.W.; Park, K.T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel. Metall. Mater. Trans. A 2009, 40, 1520–1523. [Google Scholar] [CrossRef]
- Park, K.T. Tensile deformation of low-density Fe–Mn–Al–C austenitic steels at ambient temperature. Scr. Mater. 2013, 68, 375–379. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.T.; Kim, N.J. Effect of aging on the microstructure and deformation behaviour of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr. Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Chang, K.M.; Chao, C.G.; Liu, T.F. Excellent combination of strength and ductility in a Fe–9Al–28Mn–1.8C alloy. Scr. Mater. 2010, 63, 162–165. [Google Scholar] [CrossRef]
- Lin, C.L.; Chao, C.G.; Bor, H.Y.; Liu, T.F. Relationship between microstructures and tensile properties of a Fe-30Mn-8.5Al-2.0C alloy. Mater. Trans. 2010, 51, 1084–1088. [Google Scholar] [CrossRef]
- Lin, C.L.; Chao, C.G.; Juang, J.Y.; Yang, J.M.; Liu, T.F. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy. J. Alloys Compd. 2014, 586, 616–620. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight reduced Fe–Mn–Al–C steel. Acta Mater. 2012, 60, 5791–5802. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Mater. Sci. Technol. 2014, 30, 1099–1104. [Google Scholar] [CrossRef]
- Springer, H.; Raabe, D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 2012, 60, 4950–4959. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011, 59, 6449–6462. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Influence of Al content and precipitation state on the mechanical behaviour of austenitic high-Mn low-density steels. Scr. Mater. 2013, 68, 343–347. [Google Scholar] [CrossRef]
- Welsch, E.; Ponge, D.; Haghighat, S.H.; Sandlöbes, S.; Choi, P.; Herbig, M.; Zaefferer, S.; Raabe, D. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel. Acta Mater. 2016, 116, 188–199. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U.; Neumann, P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003, 43, 438–446. [Google Scholar] [CrossRef]
- Herrmann, J.; Inden, G.; Sauthoff, G. Deformation behaviour of iron-rich iron-aluminium alloys at low temperatures. Acta Mater. 2003, 51, 2847–2857. [Google Scholar] [CrossRef]
- Morris, D.G.; Munoz-Morris, M.G.; Requejo, L.M. Work hardening in Fe–Al alloys. Mater. Sci. Eng. A 2007, 460–461, 163–173. [Google Scholar] [CrossRef]
- Falat, L.; Schneider, A.; Sauthoff, G.; Frommeyer, G. Constitution and microstructures of Fe–Al–M–C (M = Ti, V, Nb, Ta) alloys with carbides and Laves phase. Intermetallics 2005, 13, 1256–1262. [Google Scholar] [CrossRef]
- Castan, C.; Montheillet, F.; Perlade, A. Dynamic recrystallization mechanisms of an Fe–8% Al low density steel under hot rolling conditions. Scr. Mater. 2013, 68, 360–364. [Google Scholar] [CrossRef]
- Rana, R.; Liu, C.; Ray, R.K. Low-density low-carbon Fe–Al ferritic steels. Scr. Mater. 2013, 68, 354–359. [Google Scholar] [CrossRef]
- Brüx, U.; Frommeyer, G.; Jimenez, J. Light-weight steels based on iron-aluminium: Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties. Steel Res. Int. 2012, 73, 543–548. [Google Scholar] [CrossRef]
- Zargaran, A.; Kim, H.; Kwak, J.H.; Kim, N.J. Effects of Nb and C additions on the microstructure and tensile properties of lightweight ferritic Fe–8Al–5Mn alloy. Scr. Mater. 2014, 89, 37–40. [Google Scholar] [CrossRef]
- Grässel, O.; Frommeyer, G.; Derder, C.; Hofmann, H. Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels. J. Phys. IV Fr. 1997, 7, C5-383–C5-388. [Google Scholar]
- Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe–Mn–Al Alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Study of Deformation Twinning and Planar Slip in a TWIP Steel by Electron Channeling Contrast Imaging in a SEM. Mater. Sci. Forum 2011, 702–703, 523–529. [Google Scholar] [CrossRef]
- Kim, H.; Suh, D.W.; Kim, N.J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 2013, 14, 014205. [Google Scholar] [CrossRef]
- Gerold, V.; Karnthaler, H.P. On the origin of planar slip in F.C.C. alloys. Acta Metall. 1989, 37, 2177–2183. [Google Scholar] [CrossRef]
- Zambrano, O.A. Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions. J. Eng. Mater. Technol. 2016, 138, 041010. [Google Scholar] [CrossRef]
- Chen, F.C.; Chou, C.P.; Li, P.; Chu, S.L. Effect of Aluminium on TRIP Fe-Mn-Al Alloy Steels at Room Temperature. Mater. Sci. Eng. A 1993, 160, 261–270. [Google Scholar] [CrossRef]
- Yang, W.S.; Wan, C.M. The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system. J. Mater. Sci. 1990, 25, 1821–1823. [Google Scholar] [CrossRef]
- Limmer, K.R.; Medvedeva, J.E.; Van Aken, D.C.; Medvedeva, N.I. Ab initio simulation of alloying effect on stacking fault energy in fcc Fe. Comput. Mater. Sci. 2015, 99, 253–255. [Google Scholar] [CrossRef]
- Li, M.C.; Chang, H.; Kao, P.W.; Gan, D. The effect of Mn and Al contents on the solvus of j phase in austenitic Fe-Mn-Al-C alloys. Mater. Chem. Phys. 1999, 59, 96–99. [Google Scholar] [CrossRef]
- Song, W.; Zhang, W.; von Appen, J.; Dronskowski, R.; Bleck, W. κ-Phase Formation in Fe-Mn-Al-C Austenitic Steels. Steel Res. Int. 2015, 86, 1161–1169. [Google Scholar] [CrossRef]
- Hirth, J.P. Crack nucleation in glide plane decohesion and shear band separation. Scr. Metall. Mater. 1993, 28, 703–707. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, H.; Kim, N.J. Brittle Intermetallic Compound Makes Ultrastrong Low-Density Steel with Large Ductility. Nature 2015, 518, 77–79. [Google Scholar] [CrossRef]
- Zargaran, A.; Trang, T.; Park, G.; Kim, N.J. κ-Carbide Assisted Nucleation of B2: A Novel Pathway to Develop High Specific Strength Steels. Acta Mater. 2021, 220, 117349. [Google Scholar] [CrossRef]
- Piston, M.; Bartlett, L.; Limmer, K.R.; Field, D.M. Microstructural Influence on Mechanical Properties of a Lightweight Ultrahigh Strength Fe-18Mn-10Al-0.9C-5Ni (wt%) Steel. Metals 2020, 10, 1305. [Google Scholar] [CrossRef]
- Doege, E.; Hallfeld, T.; Khalfalla, Y.; Benyounis, K.Y. Metal Working: Stretching of Sheets. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128035818. [Google Scholar] [CrossRef]
- Kim, M.S.; Kang, Y.B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad 2015, 51, 89–103. [Google Scholar] [CrossRef]
- Jiang, S.; Want, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultra-strong steel via minimal lattice misfit and high density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef]
- Balluffi, R.W. On measurements of self-diffusion rates along dislocations in FCC Metals. Phys. Status Solidi (B) 1970, 41, 11–21. [Google Scholar] [CrossRef]
- Rahnama, A.; Kotadia, H.; Sridhar, S. Effect of Ni Alloying on the Microstructural Evolution and Mechanical Properties of Two Duplex Light-Weight Steels during Different Annealing Temperatures: Experiment and Phase-Field Simulation. Acta Mater. 2017, 132, 627–643. [Google Scholar] [CrossRef]
- Qu, Z.Q.; Ding, H.; Li, H.; Huang, M.; Cao, F. microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel. Mater. Sci. Eng. A 2013, 584, 150–155. [Google Scholar]
- Kim, H. Strain hardening of novel high Al low density steel consisting of austenite matrix and B2-ordered intermetallic second phase in perspective of non-cell forming face centered cubic alloy with high stacking fault energy. Scr. Mater. 2019, 160, 29–32. [Google Scholar] [CrossRef]
- Kalashnikov, I.; Shalkevich, A.; Acselrad, O.; Pereira, L.C. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system. J. Mater. Eng. Perform. 2000, 9, 597–602. [Google Scholar] [CrossRef]
- Yang, M.X.; Yuan, E.P.; Xie, Q.G.; Wang, Y.D.; Ma, E.; Wu, X.L. Strain hardening in Fe-16Mn-10Al-0.86C-5%Ni high specific strength steel. Acta Mater. 2016, 109, 213–222. [Google Scholar] [CrossRef]
- Raabe, D.; Tasan, C.C.; Springer, H.; Bausch, M. From high entropy alloys to high entropy steels. Steel Res. Int. 2015, 86, 1127–1138. [Google Scholar] [CrossRef]
- Kang, S.; Jung, Y.S.; Jun, J.H.; Lee, Y.K. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6-1.5Al TWIP steel. Mater. Sci. Eng. A 2010, 527, 745–751. [Google Scholar] [CrossRef]
- Frommeyer, G.; Bruex, U. Microstructures and mechanical properties of high strength Fe-Mn-Al-C lightweight TRIPLEX steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar]
- Sohn, S.S.; Song, H.; Suh, B.C.; Kwak, J.H.; Lee, B.J.; Kim, N.J.; Lee, S. Novel ultrahigh strength ferrite + austenite duplex lightweight steels achieved by fine dislocation substructures, grain refinement, and partial recrystallization. Acta Mater. 2015, 96, 301–310. [Google Scholar]
- Yoo, J.D.; Hwang, S.W.; Park, K.T. Factors influencing the tensile behavior of a Fe28Mn-9Al0.8C steel having the reduced specific weight. Mater. Sci. Eng. A 2009, 528, 234–240. [Google Scholar] [CrossRef]
- Hwang, S.W.; Lee, J.H.J.E.G.; Park, K.T. Tensile deformation of a duplex Fe-20Mn9Al-0.6C steel having the reduced specific weight. Mater. Sci. Eng. A 2011, 528, 5196–5203. [Google Scholar]
- Wu, Z.Q.; Ding, H.; An, X.H.; Han, D.; Liao, X.Z. Influence of Al content on the strain hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content. Mater. Sci. Eng. A 2015, 639, 187–191. [Google Scholar] [CrossRef]
- Acselrad, O.; Pereira, L.; Amaral, M. The Processing, Properties and Applications of Metallic and Ceramic Materials; Loretto, M.H., Beevers, C.J., Eds.; MCE Publications: Birmingham, UK, 1992; pp. 829–834. [Google Scholar]
- Bartlett, L.; Van Aken, D. High Manganese and Aluminum Steels for the Military and Transportation Industry. JOM 2014, 66, 1770–1784. [Google Scholar] [CrossRef]
- Bartlett, L.; Schulte, A.M.; Van Aken, D.C.; Peaslee, K.D.; Howell, R.A. A review of the physical and mechanical properties of a cast high strength and lightweight Fe-Mn-Al-C steel. In Proceedings of the Materials Science and Technology Conference and Exhibition, Houston, TX, USA, 17–21 October 2010; TMS: Warrendale, PA, USA, 2010; pp. 1941–1953. [Google Scholar]
- Tomota, Y.; Xia, Y.; Inoue, K. Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 1998, 46, 1577–1587. [Google Scholar] [CrossRef]
- Tomota, Y.; Endo, S. Cleavage-like fracture at low temperatures in an 18Mn-18Cr-0.5 N austenitic steel. ISIJ Int. 1990, 30, 656–662. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations; John Wiley & Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Kuhlmann-Wilsdorf, D. Q: Dislocations structures—How far from equilibrium? A: Very close indeed. Mater. Sci. Eng. A 2001, 315, 211–216. [Google Scholar] [CrossRef]
- Hale, G.; Barker, A. Carbide precipitation in Austenitic Fe-Mn-Al-C alloys. In Alternative Alloying for Environmental Resistance, Proceedings of the Symposium, New Orleans, LA, USA, 2–6 March 1986; Metallurgical Society, Inc.: Warrendale, PA, USA, 1987. [Google Scholar]
- Ley, N.A.; Young, M.L.; Hornbuckle, B.C.; Field, D.M.; Limmer, K.R. Toughness enhancing mechanisms in age hardened Fe–Mn–Al–C steels. Mater. Sci. Eng. A 2021, 820, 141518. [Google Scholar] [CrossRef]
Chemistry (wt%) | Fe | Mn | Al | C * | Ni | Si | S * |
---|---|---|---|---|---|---|---|
Bal. | 21.4 | 8.9 | 1.03 | 7.7 | 0.05 | 0.0038 |
Specimen ID | Length (nm) | Width (nm) | Aspect Ratio | PFZ Width (µm) |
---|---|---|---|---|
P1 | 559 ± 240 | 252 ± 100 | 2.2 | N/A |
P2 | 124 ± 56 | * 7.8 ± 3 | 15.9 | 0.69 ± 0.13 |
Steel & Processing | Hardness [HRC] | B2-NiAl a Morphology | YS [MPa] | UTS [MPa] | % Total Elong. | −40 °C Impact Toughness L-T [J] | −40 °C Impact Toughness T-L [J] | T-L/L-T Ratio |
---|---|---|---|---|---|---|---|---|
P1 | 32.6 ± 1 | Types 2 and 3 | 780 ± 32 | 1100 ± 15 | 22.1 ± 5.1 | 37.2 ± 2.3 | 23.7 ± 0.5 | 0.64 |
P2 | 40.5 ± 1 | Types 2 and 3 | 940 ± 7 | 1320 ± 5 | 26.6 ± 3.8 | 11.8 ± 1.0 | N/A b | N/A |
5Ni [42] | 32.7 ± 1 | Types 1, 2, and 3 | 810 ± 42 | 1120 ± 128 | 26.4 ± 15 | 28.5 ± 2.7 c (38.0 ± 3.6) | 7.3 ± 0.2 c (9.7 ± 0.3) | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piston, M.; Bartlett, L.; Limmer, K.R.; Field, D.M.; Hornbuckle, B.C. Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel. Metals 2024, 14, 1342. https://doi.org/10.3390/met14121342
Piston M, Bartlett L, Limmer KR, Field DM, Hornbuckle BC. Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel. Metals. 2024; 14(12):1342. https://doi.org/10.3390/met14121342
Chicago/Turabian StylePiston, Michael, Laura Bartlett, Krista R. Limmer, Daniel M. Field, and Billy C. Hornbuckle. 2024. "Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel" Metals 14, no. 12: 1342. https://doi.org/10.3390/met14121342
APA StylePiston, M., Bartlett, L., Limmer, K. R., Field, D. M., & Hornbuckle, B. C. (2024). Formation of Heterogeneous Nucleation of B2-NiAl in Hot Rolled Fe-Mn-Al-C Plate: A Novel Composition and Processing Route for Lightweight High Strength Steel Containing Nickel. Metals, 14(12), 1342. https://doi.org/10.3390/met14121342