Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (798)

Search Parameters:
Keywords = nickel complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6197 KB  
Article
Experimental Comparison of Different Techniques for Estimating Li-Ion Open-Circuit Voltage
by Mehrshad Pakjoo and Luigi Piegari
Batteries 2026, 12(1), 32; https://doi.org/10.3390/batteries12010032 (registering DOI) - 17 Jan 2026
Abstract
Electrochemical energy storage systems are increasingly utilized across a wide range of applications, from small-scale consumer electronics to large-scale utility systems providing grid services. Among these, lithium-ion batteries have emerged as a preferred solution because of their high efficiency and power density. However, [...] Read more.
Electrochemical energy storage systems are increasingly utilized across a wide range of applications, from small-scale consumer electronics to large-scale utility systems providing grid services. Among these, lithium-ion batteries have emerged as a preferred solution because of their high efficiency and power density. However, accurately modeling the behavior of Li-ion cells remains a critical and complex task. It is particularly important to determine the open-circuit voltage (OCV), which is an essential component of most battery models. This paper presents the results of an experimental comparison of three common methods for measuring and estimating the OCV of lithium-ion cells with nickel–manganese–cobalt cathodes. Each method is described in detail, with particular attention given to the testing procedures and influence of the experimental parameters on the accuracy of the resulting OCV curves. The outcomes are then analyzed and compared to highlight the strengths, limitations, and practical considerations associated with each approach. The findings of this work will assist researchers and practitioners in selecting the most appropriate OCV measurement techniques for various applications, especially where time constraints or experimental limitations must be considered. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Research on State of Health Assessment of Lithium-Ion Batteries Using Actual Measurement Data Based on Hybrid LSTM–Transformer Model
by Hanyu Zhang and Jifei Wang
Symmetry 2026, 18(1), 169; https://doi.org/10.3390/sym18010169 - 16 Jan 2026
Viewed by 35
Abstract
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily [...] Read more.
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily on manual feature engineering, and single models lack the ability to capture both local and global degradation patterns. To address these issues, this paper proposes a novel hybrid LSTM–Transformer model for LIB SOH estimation using actual measurement data. The model integrates Long Short-Term Memory (LSTM) networks to capture local temporal dependencies with the Trans-former architecture to model global degradation trends through self-attention mechanisms. Experimental validation was conducted using eight 18650 Nickel Cobalt Manganese (NCM) LIBs subjected to 750 charge–discharge cycles under room temperature conditions. Sixteen statistical features were extracted from voltage and current data during constant current–constant voltage (CC-CV) phases, with feature selection based on the Pearson correlation coefficient and maximum information coefficient analysis. The proposed LSTM–Transformer model demonstrated superior performance compared to the standalone LSTM and Transformer models, achieving a mean absolute error (MAE) as low as 0.001775, root mean square error (RMSE) of 0.002147, and mean absolute percentage error (MAPE) of 0.196% for individual batteries. Core features including cumulative charge (CC Q), charging time, and voltage slope during the constant current phase showed a strong correlation with the SOH (absolute PCC > 0.8). The hybrid model exhibited excellent generalization across different battery cells with consistent error distributions and nearly overlapping prediction curves with actual SOH trajectories. The symmetrical LSTM–Transformer hybrid architecture provides an accurate, robust, and generalizable solution for LIB SOH assessment, effectively overcoming the limitations of traditional methods while offering potential for real-time battery management system applications. This approach enables health feature learning without manual feature engineering, representing an advancement in data-driven battery health monitoring. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 5669 KB  
Article
The Characterization of Curved Grain Boundary in Nickel-Based Superalloy Formed During Heat Treatment
by Yu Zhang, Jianguo Wang, Dong Liu, Junwei Huang, Minqing Wang, Haodong Rao, Jungang Nan and Yaqi Lai
Metals 2026, 16(1), 68; https://doi.org/10.3390/met16010068 - 7 Jan 2026
Viewed by 125
Abstract
This study proposes a novel framework for quantifying curved grain boundaries that overcomes key limitations of existing methods. Unlike Fourier-based approaches that require labor-intensive sequential analysis of individual boundaries and selectively represent only high-amplitude regions, or spline-based methods that demand complex parameter selection [...] Read more.
This study proposes a novel framework for quantifying curved grain boundaries that overcomes key limitations of existing methods. Unlike Fourier-based approaches that require labor-intensive sequential analysis of individual boundaries and selectively represent only high-amplitude regions, or spline-based methods that demand complex parameter selection for interpolation points, the proposed framework integrates curvature variance filtering with U-chord curvature calculation to enable automated, comprehensive, and noise-resistant characterization of grain boundary morphology. The curvature variance filtering adaptively determines smoothing parameters based on local curve properties, while the U-chord curvature method ensures rotational invariance and robustness against digitization errors. Four heat treatment processes were applied to GH4169 alloy, producing distinct grain boundary morphologies with mean curvature (MC) values ranging from 0.0625 to 0.1252. Controlled cooling alone (Process A) yielded predominantly straight boundaries (91.06% straight, 0.12% serrated), while re-dissolution treatment (Process D) produced the highest serration degree (58.81% straight, 3.53% serrated). The quantitative analysis reveals that dispersed δ-phase precipitation creates discrete pinning points, forming serrated boundaries with sharp curvature peaks, whereas dense, parallel δ-phase arrays at specific angles produce coordinated wavy undulations. This framework provides a reliable quantitative tool for optimizing heat treatment protocols to achieve target grain boundary configurations in nickel-based superalloys. Full article
Show Figures

Figure 1

22 pages, 56350 KB  
Article
Finite Element Simulation and Experimental Validation of Nickel Coating Thickness Distribution in Electroplated FCCZ Lattice Structures
by Marco Noack, Robert Maier and Eckhard Kirchner
J. Compos. Sci. 2026, 10(1), 24; https://doi.org/10.3390/jcs10010024 - 6 Jan 2026
Viewed by 212
Abstract
Metal electrodeposition on additively manufactured lattice structures enables the creation of functionally graded hybrid components with enhanced mechanical properties. However, predicting coating thickness distribution remains challenging due to complex current density fields in intricate geometries. This study develops and validates a finite element [...] Read more.
Metal electrodeposition on additively manufactured lattice structures enables the creation of functionally graded hybrid components with enhanced mechanical properties. However, predicting coating thickness distribution remains challenging due to complex current density fields in intricate geometries. This study develops and validates a finite element electrochemical simulation model for predicting coating thickness distribution in lattice structures using COMSOL Multiphysics 6.1. The model incorporates Butler–Volmer electrode kinetics, mass transport limitations, and the Laplace equation for current distribution. Experimental validation was performed using FCCZ lattice structures electrochemically coated with nickel for 24 h at 200 A/m2. CT scanning analysis revealed mean absolute errors of 5.25% between simulation and experiment after model calibration. The validated model successfully captures the exponential coating gradient from exposed edges to internal regions and provides a robust predictive tool for coating thickness distribution, which is essential for the effective design and optimization of electrochemically metallized lattice structures. Full article
(This article belongs to the Special Issue Lattice Structures)
Show Figures

Figure 1

15 pages, 2531 KB  
Article
Amorphous Anodized Porous Titania as IrO2 Substrate for the Electrochemical Oxygen Evolution Reaction
by Effrosyni Mitrousi, Triantafyllia Kokkinou, Maria Zografaki, Maria Nikopoulou, Angeliki Banti, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Sustain. Chem. 2026, 7(1), 2; https://doi.org/10.3390/suschem7010002 - 6 Jan 2026
Viewed by 188
Abstract
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to [...] Read more.
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to act both as a conductive and sacrificial layer for the galvanic deposition of iridium from an Ir(IV) chloro-complex solution. Electrochemical anodization resulted in a uniform IrOx layer on the a-TiO2 substrate, featuring Ir aggregates ~250 nm in size and an Ir:Ni atomic ratio of ca. 7, as determined by EDS analysis. The quantity of Ni determined by ICP-MS bulk analysis indicated that Ni resided also within the porous matrix. Varying the Ni deposition charge density (qNi) revealed that an intermediate loading (1463 mC cm−2) provided the best balance between Ir accessibility during the galvanic replacement step and electronic continuity. The optimized IrOx/Ir-Ni/a-TiO2 electrode achieved excellent OER performance (η = 344 mV @ 10 mA cm−2; 1.68 mA μgIr−1 @ η = 300 mV) at an ultra-low Ir loading of 2.15 μgIr cm−2 and demonstrated good short-term stability, with only a 20 mV potential increase over 4 h of continuous operation at 5.5 mA cm−2. Overall, this strategy offers a scalable pathway for producing efficient OER electrodes with minimal noble metal loading. Full article
Show Figures

Figure 1

20 pages, 4698 KB  
Article
Numerical Analysis of Curvilinear Fatigue Crack Growth and Plastic Zone Evolution in Haynes 230 Superalloy Under Variable Stress Ratios
by Yahya Ali Fageehi and Abdulnaser M. Alshoaibi
Crystals 2026, 16(1), 39; https://doi.org/10.3390/cryst16010039 - 1 Jan 2026
Viewed by 298
Abstract
This paper presents a high-fidelity numerical simulation of curvilinear fatigue crack growth (FCG) through a modified Compact Tension (CT) specimen made of Haynes 230 nickel-based superalloy. The specimen’s design, featuring three extra holes, was intentionally chosen to induce mixed-mode loading and complex, non-linear [...] Read more.
This paper presents a high-fidelity numerical simulation of curvilinear fatigue crack growth (FCG) through a modified Compact Tension (CT) specimen made of Haynes 230 nickel-based superalloy. The specimen’s design, featuring three extra holes, was intentionally chosen to induce mixed-mode loading and complex, non-linear crack paths. Crucially, this configuration allows for a thorough examination of how the specimen’s geometry, restraints, or minor manufacturing discrepancies affect the localized stress state. Experimental data corresponding to three different initial crack patterns were utilized to validate the numerical model implemented within the ANSYS simulation environment. The comparison demonstrated that the present simulated crack trajectory was significantly closer to the experimental results than those obtained from earlier numerical simulations using ZFEM-TERF and FRANC3D. Furthermore, the current study critically examined the validity of Linear Elastic Fracture Mechanics (LEFM) by analyzing the evolution of the Cyclic Plastic Zone (CPZ) size for two distinct stress ratio values: R = 0.5 and R = −1. The findings confirm the full satisfaction of the Small-Scale Yielding (SSY) criterion throughout the crack growth history for the positive stress ratio (R = 0.5). Conversely, the negative stress ratio (R = −1) caused a significant violation of the SSY assumption in the later stages of propagation. This highlights how the applicability of LEFM is largely dependent on the loading regime and underscores the necessity of employing Elastic–Plastic Fracture Mechanics (EPFM) for fully reversed cycles. This research establishes a well-founded and valuable protocol for predicting Fatigue Crack Growth (FCG) in complex superalloy components. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

15 pages, 3511 KB  
Article
Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides
by Mingyu Liu, Bowen Pei, Hongyu Ba, Wei Ni, Huaheng Zhao, Shuang Chen, Jiamin Zhao and Jinsheng Zhao
Molecules 2026, 31(1), 96; https://doi.org/10.3390/molecules31010096 - 25 Dec 2025
Viewed by 426
Abstract
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ [...] Read more.
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ construct an iron-rich layered sulfate precursor (Fe0.42Co0.58-SO4/NF) on nickel foam, which underwent deep self-reconstruction in alkaline electrolyte to form nanoflower-like Fe0.42Co0.58OOH/NF. The optimized catalyst maintained its iron-rich composition and hierarchical structure, delivering outstanding OER performance with an overpotential of 220 mV at 10 mA·cm−2, a Tafel slope of 31.9 mV·dec−1, and stability exceeding 12 h at 600 mA·cm−2. Synchrotron analyses revealed dynamic transitions between mono-μ-O and di-μ-O Fe–M (M = Fe, Co) oxygen bridges during reconstruction, which enhanced both structural robustness and active-site density. The Fe-rich environment promoted the formation of Fe3+–O–Fe3+ units that synergized with Co4+ species to activate the lattice oxygen mechanism (LOM), thereby accelerating OER kinetics. This work elucidates the key role of oxygen-bridge geometry in optimizing catalytic activity and durability, providing valuable insights into the rational design of Fe–Co-based non-noble-metal catalysts with high iron content for efficient water oxidation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrocatalysis)
Show Figures

Graphical abstract

39 pages, 4489 KB  
Article
High-Resolution 1H NMR Investigation of the Speciation Status of Nickel(II) and Copper(II) Ions in a Cell Culture Medium: Relevance to Their Toxicological Actions
by Deepinder K. Kalra, Kayleigh Hunwin, Katie Hewitt, Olivia Steel and Martin Grootveld
Molecules 2026, 31(1), 85; https://doi.org/10.3390/molecules31010085 - 24 Dec 2025
Viewed by 396
Abstract
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation [...] Read more.
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation of these in cell culture media can establish novel chemical interactions, with their speciation status markedly influencing characteristics, including cell maturation, and cellular uptake mechanisms. Thus, the primary objective of this study was to investigate and determine the speciation status (i.e., complexation) of nickel(II) and copper(II) ions by biomolecules present in RPMI 1640 mammalian cell culture medium using virtually non-invasive high-resolution proton NMR analysis, an investigation of much relevance to now routine studies of their toxicological actions towards cultured cells. Samples of the above aqueous culture medium were 1H NMR-titrated with increasing added concentrations of 71–670 µmol/L Ni(II)(aq.), and 0.71–6.7, 7.1–67 and 71–670 µmol/L Cu(II)(aq.), in duplicate or triplicate. 1H NMR spectra were acquired on a JEOL ECZ-600 spectrometer at 298 K. Results demonstrated that addition of increasing concentrations of Ni(II) and Cu(II) ions to the culture medium led to the selective broadening of a series of biomolecule resonances, results demonstrating their complexation by these agents. The most important complexants for Ni(II) were histidine > glutamine > acetate ≈ methionine ≈ lysine ≈ threonine ≈ branched-chain amino acids (BCAAs) > asparagine ≈ aspartate > tyrosine ≈ tryptophan, whereas for Cu(II) they were found to be histidine > glutamine > phenylalanine ≈ tyrosine ≈ nearly all remaining aliphatic metabolites (particularly the wealth of amino acids detectable) > 4-hydroxyphenylacetate (trace culture medium contaminant), in these orders. However, Cu(II) had the ability to influence the linewidths of these signals at much lower added levels (≤7 µmol/L) than that of Ni(II), the broadening effects of the latter occurring at concentrations which were approximately 10-fold greater. Virtually all of these added metal ion-induced resonance modifications were, as expected, reversible on addition of equivalent or excess levels of the chelator EDTA. From this study, changes in the co-ordination sphere of metal ions in physiological environments can give rise to marked modifications in their physicochemical properties (e.g., redox potentials, electronic charges, the potential catalytic generation of reactive oxygen species (ROS), and cell membrane passages). Moreover, given that the above metabolites may also function as potent hydroxyl radical (OH) scavengers, these findings suggest that generation of this aggressively reactive oxidant directly from Cu(II) and Ni(II) ions in physiologically-relevant complexes may be scavenged in a ‘site-dependent’ manner. This study is of further relevance to trace metal ion research in general since it enhances our understanding of the nature of their interactions with culture medium biomolecules, and therefore provides valuable information regarding their overall chemical and biological activities, and toxicities. Full article
Show Figures

Figure 1

23 pages, 7325 KB  
Article
3D Multilayered DDM-Modified Nickel Foam Electrode for Advanced Alkaline Water Electrolysis
by Elitsa Petkucheva, Galin Borisov, Jordan Iliev, Elefteria Lefterova and Evelina Slavcheva
Molecules 2026, 31(1), 69; https://doi.org/10.3390/molecules31010069 - 24 Dec 2025
Viewed by 455
Abstract
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam [...] Read more.
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam with a Ni–FeOOH/PTFE microporous catalytic layer and evaluate its electrochemical performance in 1 M KOH and in a laboratory zero-gap cell with a Zirfon® Perl 500 UTP diaphragm, through circulating 25 wt.% KOH. The FeSO4-assisted DDM treatment generates mixed Ni–Fe oxyhydroxide surface species, while PTFE imparts control hydrophobicity, enhancing both catalytic activity and gas-release behavior. Annealing the electrode (DDM-NF-CAT-A) results in a cell voltage of 2.45 V at 1 A·cm−2 and 80 °C, demonstrating moderate performance comparable to other Ni-based electrodes prepared via low-complexity methods, though below that of optimized state-of-the-art zero-gap systems. Short-term durability tests (80 h at 0.5 A·cm−2) indicate stable operation, but long-term industrial performance was not assessed. These findings illustrate the potential of the DDM approach as a simple, low-cost route to structured nickel foam electrodes and provide a foundation for further optimization of catalyst loading, microstructure, and long-term stability for practical AWE applications. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Electrochemistry)
Show Figures

Figure 1

37 pages, 3302 KB  
Review
Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges
by Jasmina Mušović, Ana Jocić and Aleksandra Dimitrijević
Processes 2025, 13(12), 4015; https://doi.org/10.3390/pr13124015 - 12 Dec 2025
Viewed by 1164
Abstract
The escalating production and use of lithium-ion batteries (LIBs) have led to a pressing need for efficient and sustainable methods for recycling valuable metals such as cobalt, nickel, manganese, and lithium from spent cathode materials. Traditional hydrometallurgical leaching approaches, based on mineral acids, [...] Read more.
The escalating production and use of lithium-ion batteries (LIBs) have led to a pressing need for efficient and sustainable methods for recycling valuable metals such as cobalt, nickel, manganese, and lithium from spent cathode materials. Traditional hydrometallurgical leaching approaches, based on mineral acids, face significant limitations, including high reagent consumption, secondary pollution, and poor selectivity. In recent years, deep eutectic solvents (DESs) and ionic liquids (ILs) have emerged as innovative, environmentally benign alternatives, offering tunable physicochemical properties, enhanced metal selectivity, and potential for reagent recycling. This review provides a comprehensive analysis of the current state and prospects of leaching LIB cathode materials using DES and ILs. We summarize the structural diversity and composition of common LIB cathodes, highlighting their implications for leaching strategies. The mechanisms, efficiency, and selectivity of metal dissolution in various DES- and IL-based systems are critically discussed, drawing on recent advances in both laboratory and real-sample studies. Special attention is given to the unique extraction mechanisms facilitated by complexation, acid–base, and redox interactions in DES and ILs, as well as to the effects of key operational parameters. A comparative analysis of DES- and IL-based leaching is presented, with discussion of their advantages, challenges, and industrial potential. While DES offers low toxicity, biodegradability, and cost-effectiveness, it may suffer from limited solubility or viscosity issues. Conversely, ILs provide remarkable tunability and metal selectivity but are often hampered by higher costs, viscosity, and environmental concerns. Finally, the review identifies critical bottlenecks in upscaling DES and IL leaching technologies, including long-term solvent stability, metal recovery purity, and economic viability. We also highlight research priorities that emphasize applying circular hydrometallurgy and life-cycle assessment to improve the sustainability of battery recycling. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Figure 1

14 pages, 14223 KB  
Communication
Alkali-Activated Binders from Copper–Nickel Slag and Fly Ash: A Synergistic Effect
by Alexander M. Kalinkin, Elena V. Kalinkina, Ekaterina A. Kruglyak and Alla G. Ivanova
Minerals 2025, 15(12), 1297; https://doi.org/10.3390/min15121297 - 11 Dec 2025
Viewed by 327
Abstract
The cement industry’s significant carbon footprint has driven research into sustainable alternatives like alkali-activated materials (AAMs). This study investigates the synergistic effect of blending copper–nickel slag (CNS) with fly ash (FA) to produce high-performance AAMs. Mechanically activated mixtures of CNS and FA, with [...] Read more.
The cement industry’s significant carbon footprint has driven research into sustainable alternatives like alkali-activated materials (AAMs). This study investigates the synergistic effect of blending copper–nickel slag (CNS) with fly ash (FA) to produce high-performance AAMs. Mechanically activated mixtures of CNS and FA, with FA content varying from 0 to 100%, were alkali-activated with sodium silicate. A distinct synergy was observed, with the blend of 80% CNS and 20% FA (AACNS–80) achieving the highest compressive strength (99.9 MPa at 28 days), significantly outperforming the single-precursor systems. Analytical techniques including thermogravimetry, FTIR spectroscopy, and SEM–EDS were used to elucidate the mechanisms behind this enhancement. The results indicate that the AACNS–80 formulation promotes a greater extent of reaction and forms a denser, more homogeneous microstructure. The synergy is attributed to an optimal particle packing density and the co-dissolution of precursors, leading to the formation of a complex gel that incorporates magnesium and iron from the slag. This work demonstrates the potential for valorizing copper–nickel slag in the production of high-strength, sustainable binders. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

22 pages, 4293 KB  
Article
Immobilized Sinirhodobacter sp. 1C5-22 for Multi-Metal Bioremediation: Molecular Resistance Mechanisms and Operational Validation in Industrial Wastewater Systems
by Yue Qiao, Xiaojun Huang, Si Chen, Zuye Zhang, Ying Xu, Xiaorui Zhang, Runmei Jia, Song Zhang, Wenting Lin, Xian Jiao, Huirong Chen, Zhipeng Guo, Xiao Ye, Zefeng Wu and Zhongmei Lin
Water 2025, 17(24), 3450; https://doi.org/10.3390/w17243450 - 5 Dec 2025
Viewed by 564
Abstract
A novel heavy metal-resistant bacterium with significant bioremediation capabilities, Sinirhodobacter sp. 1C5-22 was isolated from moderately polluted Shenzhen Futian mangrove rhizosphere sediments. This strain showed exceptional tolerance (MIC ≥ 600 mg/L for Cu/Zn; > 500 mg/L for Ni). Analyses revealed distinct metal-specific distribution [...] Read more.
A novel heavy metal-resistant bacterium with significant bioremediation capabilities, Sinirhodobacter sp. 1C5-22 was isolated from moderately polluted Shenzhen Futian mangrove rhizosphere sediments. This strain showed exceptional tolerance (MIC ≥ 600 mg/L for Cu/Zn; > 500 mg/L for Ni). Analyses revealed distinct metal-specific distribution strategies: Cd and Ni were predominantly bound extracellularly (>80%); Cu was bound intracellularly (~60%); and Zn exhibited balanced partitioning. Integrated omics analysis identified a molecular defense mechanism coordinated by the CreB transcriptional regulator. This Adsorption–Sequestration–Efflux (ASE) system integrates extracellular polymer binding, periplasmic sequestration via stable metal-binding proteins, and efflux pump activity, resolving the apparent adsorption-tolerance paradox at elevated concentrations. For bioremediation applications, we developed a polyvinyl alcohol–sodium alginate immobilized consortium (PVA-SA 1C5-22). The engineered agent displayed significantly enhanced biosorption capacity compared to free cells and effectively mitigated heavy metal-induced oxidative damage, evidenced by stabilized malondialdehyde levels. It demonstrated robust reusability, maintaining high metal enrichment across five adsorption–desorption cycles in multi-metal wastewater with efficient HCl-driven desorption (55–70%). Critically, it achieved stable nickel removal performance (~20% adsorption, >50% desorption) from authentic electroplating wastewater (1850 mg/L Ni2+) through successive multiple cycles. Our integrated approach bridges microbial ecology and environmental biotechnology, establishing this immobilized system as a highly sustainable strategy for complex industrial effluent remediation. Full article
Show Figures

Figure 1

10 pages, 1081 KB  
Article
Nickel Phosphine Complexes: Synthesis, Characterization, and Behavior in the Polymerization of 1,3-Butadiene
by Massimo Guelfi, Giulio Bresciani, Guido Pampaloni, Anna Sommazzi, Francesco Masi, Benedetta Palucci, Simona Losio and Giovanni Ricci
Molecules 2025, 30(23), 4655; https://doi.org/10.3390/molecules30234655 - 4 Dec 2025
Viewed by 374
Abstract
Several nickel dichloride phosphine complexes have been synthesized, their crystalline structure determined, and their behavior, in combination with methylaluminoxane, in the polymerization of butadiene has been examined. High-cis polybutadienes were consistently obtained, regardless of the nature of the phosphine coordinated to the [...] Read more.
Several nickel dichloride phosphine complexes have been synthesized, their crystalline structure determined, and their behavior, in combination with methylaluminoxane, in the polymerization of butadiene has been examined. High-cis polybutadienes were consistently obtained, regardless of the nature of the phosphine coordinated to the metal and the methylaluminoxane/Ni molar ratio used, contrary to what was previously observed in the polymerization of butadiene with analogous cobalt phosphine complexes, in which catalytic selectivity was found to be strongly influenced by these two factors. An interpretation for such different behavior is provided. Full article
Show Figures

Figure 1

21 pages, 24003 KB  
Article
On the Heterogeneity of Deformation and Fracture in Bimetallic Specimens of the C11000-Inconel 625 System
by Kseniya Osipovich, Vyacheslav Semenchuk, Andrey Chumaevskii, Alexander M. Korsunsky, Yuri Kushnarev, Evgeny Moskvichev, Alihan Amirov, Denis Gurianov, Sergei Tarasov and Evgeny Kolubaev
Materials 2025, 18(23), 5450; https://doi.org/10.3390/ma18235450 - 3 Dec 2025
Viewed by 381
Abstract
In this work, bimetallic specimens of the copper C11000-Inconel 625 system were fabricated using multi-wire electron beam additive technology. Three different sequences of component deposition were employed to produce the bimetallic specimens for investigation: Type A—nickel and pure copper were deposited side by [...] Read more.
In this work, bimetallic specimens of the copper C11000-Inconel 625 system were fabricated using multi-wire electron beam additive technology. Three different sequences of component deposition were employed to produce the bimetallic specimens for investigation: Type A—nickel and pure copper were deposited side by side in parallel; Type B—layers of nickel-based superalloy were printed first, followed by the deposition of copper on top; Type C—copper layers were printed first, with nickel-based superalloy subsequently deposited on top. The influence of additive manufacturing conditions and sequence on the microstructure, static and fatigue strength, and impact toughness of the test pieces was studied. The results indicate the formation of a complex anisotropic structure in bimetals of various types during printing, driven by directional heat dissipation toward the substrate. The microstructure comprising large primary grains or dendrites elongated along the heat flow direction leads to significant differences in material properties along the printing (scanning) direction, the build (growth) direction, and at intermediate angles. Studies of the copper C11000-Inconel 625 bimetallic samples have shown that the interface between components does not exhibit inherent weakness compared to the base materials: pure copper or nickel superalloy. Tensile testing consistently reveals that fracture occurs by the adhesive mechanism in the weaker constituent, rather than at the interface. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 3065 KB  
Article
Simultaneous Solvent Extraction of Co and Ni from Copper Raffinate Waste Solution
by Hanieh Rezaei, Mohammad Reza Aboutalebi, Seyed Hossein Seyedein, Hossein Aghajani and Marek Wojnicki
Metals 2025, 15(12), 1312; https://doi.org/10.3390/met15121312 - 28 Nov 2025
Viewed by 417
Abstract
The extraction and stripping of Co, Ni, Mn, and Mg ions from raffinate solution of the Sarcheshmeh copper complex containing Cu (0.14 g/L), Ni (0.15 g/L), Co (0.06 g/L), Fe (10.72 g/L), Zn (2.4 g/L), Mn (4.83 g/L), and Mg (8 g/L) was [...] Read more.
The extraction and stripping of Co, Ni, Mn, and Mg ions from raffinate solution of the Sarcheshmeh copper complex containing Cu (0.14 g/L), Ni (0.15 g/L), Co (0.06 g/L), Fe (10.72 g/L), Zn (2.4 g/L), Mn (4.83 g/L), and Mg (8 g/L) was comprehensively studied using D2EHPA and LIX 984 extractants. To design the solvent extraction experiments, the response surface method (RSM) was employed. The optimal and most efficient conditions and extraction rates of nickel and cobalt were considered for the application of a central composite design (CCD). The design of experiments (DOE) was carried out using three operating variables: the equilibrium pH of the solution (4–6), extractant concentration (10–20%), and aqueous-to-organic phase ratio (1–3). The results indicated that the highest extraction of Co and Ni occurred within 5 min at a mixing speed of 500 r/min and 40 °C. The results showed that the equilibrium pH of the aqueous solution had a greater influence on nickel and cobalt extraction than the other parameters. According to the research results, 99% of cobalt and 94% of nickel were extracted simultaneously under optimum conditions of pH = 6, [LIX984N] = 10%, and A/O = 3. In the stripping stage, 95% of nickel ions were recovered in one step using 1 M sulfuric acid, and 80% of cobalt ions were recovered in three steps using 5 M hydrochloric acid. Finally, 98% of Zn, 99% of Co, and 94% of Ni were extracted in two stages with D2EHPA and LIX984N extractants. Full article
(This article belongs to the Special Issue Hydrometallurgical Processes for the Recovery of Critical Metals)
Show Figures

Figure 1

Back to TopTop