Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = next-generation immunotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4726 KB  
Article
Analytical Validation and Clinical Sensitivity of the Belay Summit™ 2.0 Cerebrospinal Fluid Liquid Biopsy Test—An Expanded Comprehensive Genomic Profiling Platform for Central Nervous System Malignancies
by Sakshi Khurana, Viriya Keo, Alexandra Larson, Vindhya Udhane, Jennifer N. Adams, Anthony Acevedo, Tarin Peltier, Daniel Sanchez, Brett A. Domagala, Samantha A. Vo, Kathleen Mitchell, Dean Ellis, Baymuhammet Muhammedov, Samer I. Al-Saffar, Kyle M. Hernandez, Chetan Bettegowda, Christopher Douville, Kala F. Schilter, Qian Nie and Honey V. Reddi
Cancers 2026, 18(2), 256; https://doi.org/10.3390/cancers18020256 - 14 Jan 2026
Abstract
Background/Objectives: The latest National Comprehensive Cancer Network (NCCN) Central Nervous System (CNS) Guidelines recommend utilizing next-generation sequencing (NGS) to enable comprehensive genomic profiling (CGP) as the preferred approach for molecular characterization of central nervous system (CNS) malignancies. CNS malignancies present distinct challenges due [...] Read more.
Background/Objectives: The latest National Comprehensive Cancer Network (NCCN) Central Nervous System (CNS) Guidelines recommend utilizing next-generation sequencing (NGS) to enable comprehensive genomic profiling (CGP) as the preferred approach for molecular characterization of central nervous system (CNS) malignancies. CNS malignancies present distinct challenges due to the infeasibility of tissue-based testing for many patients and the restrictive nature of the blood–brain barrier (BBB) making plasma-based liquid biopsy an ineffective alternative. Recent advances in liquid biopsy have extended molecular testing beyond plasma to include cerebrospinal fluid (CSF), which serves as a valuable source for tumor-derived nucleic acids. Methods: The Belay Summit™ 2.0 is a high-throughput CGP assay capable of detecting multiple variant types, including single nucleotide variants (SNVs) and small insertion and deletions (Indels), copy number variations (CNVs), gene fusions, splice variants, and immunotherapy biomarkers such as microsatellite instability (MSI) and tumor mutational burden (TMB). This study details the analytical and clinical validation of Summit™ 2.0 to assess its technical performance and clinical sensitivity. Analytical validation was conducted using 68 specimens, demonstrating robust and reproducible detection of all variant types with 15 ng of CSF-derived total nucleic acid (tNA). Results: The analytical sensitivity of the Belay Summit™ 2.0 assay for SNVs and Indels was determined to be 96.7% with a 100% limit of detection (LoD) at a variant allele frequency of 0.3%. Clinical validity was evaluated across a cohort of 118 CSF specimens, including both primary and metastatic CNS tumors, demonstrating 96% sensitivity and 98% specificity. Conclusions: These findings support the use of the Belay Summit™ 2.0 assay for accurate and reproducible genomic profiling of CNS tumors using tumor-derived nucleic acids from CSF in patients for whom tissue-based testing is considered infeasible, unsafe, or not deemed by the prescribing physician to be clinically appropriate. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 1307 KB  
Article
Malignant Melanoma: Landscape of Molecular Markers
by Melanie Winter, Silvana Ebner, Viola Baum, Kati Kiil, Marc-Alexander Rauschendorf and Peter J. Wild
Biomedicines 2026, 14(1), 157; https://doi.org/10.3390/biomedicines14010157 - 12 Jan 2026
Viewed by 37
Abstract
Background: In melanoma diagnostics key molecular markers, such as BRAF, NRAS, and KIT mutations also paved the way for targeted therapies. Immunotherapies, including immune checkpoint inhibitors like anti-CTLA-4 and anti-PD-1/PD-L1, have revolutionized treatment, improving survival outcomes for advanced-stage melanoma patients. Despite [...] Read more.
Background: In melanoma diagnostics key molecular markers, such as BRAF, NRAS, and KIT mutations also paved the way for targeted therapies. Immunotherapies, including immune checkpoint inhibitors like anti-CTLA-4 and anti-PD-1/PD-L1, have revolutionized treatment, improving survival outcomes for advanced-stage melanoma patients. Despite these advances, challenges such as resistance to targeted therapies and variability in patient responses to immunotherapy remain critical issues. The purpose of the project is to characterize the molecular landscape of a set of 28 malignant melanomas using next-generation sequencing, identify the prevalence and nature of class 3–5 variants (e.g., NRAS, BRAF, KIT, TP53), assess the genetic complexity and molecular patterns, and use these insights to inform personalized therapies and optimize patient stratification for potential combination strategies (targeted therapy followed by immunotherapy). Methods: We analyzed a set of malignant melanoma of the skin of 17 women (61%) and 11 men (39%) at the age of 23 to 85 years (median: 63 years) by tumor-only next generation sequencing. Results: 22/28 cases (79%) present a pathogenic or likely pathogenic variant with an allelic frequency of ≥5%. In total 42 distinct somatic pathogenic or likely pathogenic variants with an allelic frequency of ≥5% could be detected. The most frequent pathogenic molecular alteration in these melanomas were found in NRAS (25%) and BRAF (25%). The most frequent molecular alteration of unknown significance was found in FANDC2 (46%), NOTCH3 (39%), ARID1A (32%), PMS2 (32%), POLE (29%), NOTCH1 (29%), TSC2 (25%), SMARCA4 (25%), ATR (25%) and TERT (21%). Conclusions: While NRAS and BRAF were the most frequent actionable alterations (each 25%), a broad spectrum of variants of unknown significance (e.g., FANDC2, NOTCH3, ARID1A, PMS2, POLE, NOTCH1, TSC2, SMARCA4, ATR and TERT) also predominates, underscoring the genetic complexity of melanoma. These variants complicate clinical decision-making because their contribution to tumorigenesis, therapeutic response, and prognosis remains uncertain. Nevertheless, these variants also offer a valuable resource for future research, as they may uncover novel pathogenic mechanisms or therapeutic targets once their significance is elucidated. Integrating comprehensive genetic profiling with immunologic markers can enhance patient stratification and support rational, potentially synergistic strategies, such as combining targeted therapies with immunotherapy, to optimize clinical outcomes. This study is limited due to a small cohort and limited available clinical data. Larger cohort studies and prospective clinical trials are necessary to validate and explore the interplay between molecular and immune biomarkers as well as general biological mechanism in paving therapeutic way in melanoma. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 169
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

17 pages, 783 KB  
Review
Updates on Antibody Drug Conjugates and Bispecific T-Cell Engagers in SCLC
by Kinsley Wang, Kyle Taing and Robert Hsu
Antibodies 2026, 15(1), 4; https://doi.org/10.3390/antib15010004 - 4 Jan 2026
Viewed by 411
Abstract
Background/Objectives: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy characterized by rapid proliferation, early metastasis, and near-universal relapse after initial therapy. While chemo-immunotherapy modestly improves first-line outcomes, survival after progression remains poor and highlights the urgent need for biomarker-directed strategies. Methods [...] Read more.
Background/Objectives: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy characterized by rapid proliferation, early metastasis, and near-universal relapse after initial therapy. While chemo-immunotherapy modestly improves first-line outcomes, survival after progression remains poor and highlights the urgent need for biomarker-directed strategies. Methods: A comprehensive literature search was conducted using major medical databases looking at key relevant studies on SCLC antibody studies. All authors reviewed the literature, assessed study quality, and interpreted the results from each study. Results: Recent advances in antibody–drug conjugates (ADCs) and T-cell engagers (TCEs) have transformed therapeutic development by targeting antigens selectively expressed on SCLC cells, enabling more precise and potentially durable tumor control. DLL3 has emerged as the most clinically relevant target to date, with the bispecific TCE tarlatamab demonstrating meaningful and durable response, manageable cytokine-release toxicity, and ultimately achieving accelerated FDA approval for previously treated extensive-stage SCLC. Concurrently, DLL3-directed ADCs have shown variable efficacy, underscoring the importance of payload selection, linker chemistry, and antigen density. Beyond DLL3, next-generation ADCs targeting TROP2, B7-H3, and SEZ6 have reported encouraging early-phase activity, including response rates exceeding those of existing second-line cytotoxic options, though myelosuppression, interstitial lung disease, and hepatic toxicity remain key considerations. Conclusions: Collectively, these emerging immunotherapies illustrate a shift toward antigen-specific targeting in a disease historically defined by limited therapeutic innovation. Continued optimization of antigen selection, payload and linker engineering, and biomarker-driven trial design will be critical for translating early promise into durable clinical benefit and reshaping the treatment landscape for SCLC. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

24 pages, 2244 KB  
Review
Overcoming Therapeutic Resistance in Triple-Negative Breast Cancer: Targeting the Undrugged Kinome
by Chang Hoon Lee, Tuan Minh Nguyen, Yongook Lee, Seoung Gyu Choi, Phuong Ngan Nguyen, Jung Ho Park and Mi Kyung Park
Int. J. Mol. Sci. 2026, 27(1), 450; https://doi.org/10.3390/ijms27010450 - 31 Dec 2025
Viewed by 263
Abstract
Triple-Negative Breast Cancer (TNBC) remains the most aggressive breast cancer subtype, characterized by profound heterogeneity and a lack of effective targeted therapies. Although cytotoxic chemotherapy is the standard of care, the rapid emergence of resistance driven by cancer stem cells (CSCs), metabolic plasticity, [...] Read more.
Triple-Negative Breast Cancer (TNBC) remains the most aggressive breast cancer subtype, characterized by profound heterogeneity and a lack of effective targeted therapies. Although cytotoxic chemotherapy is the standard of care, the rapid emergence of resistance driven by cancer stem cells (CSCs), metabolic plasticity, and the tumor microenvironment limits long-term survival. This review highlights the paradigm shift in TNBC treatment from 2021 to 2025, moving beyond broad cytotoxicity to precision medicine. We first examine the limitations of earlier targeted therapies, such as PI3K/AKT/mTOR inhibitors, which failed due to compensatory feedback loops and toxicity. We then discuss emerging synthetic lethality strategies targeting the G2/M checkpoint (WEE1, ATR) and mitotic kinases (PLK1, TTK) to exploit genomic instability in TP53-mutant tumors. Furthermore, we explore how novel modalities like PROTACs and Antibody–Drug Conjugates (ADCs) are unlocking the “undrugged kinome,” including targets like TNIK, PTK7, and PAK4, which were previously inaccessible. Finally, we propose that future success lies in combinatorial strategies integrating these next-generation kinase inhibitors with ADCs and immunotherapies to dismantle therapeutic resistance. Full article
Show Figures

Figure 1

15 pages, 462 KB  
Review
Advances in Neoantigen-Based Cancer Vaccines
by An-Chih Wu, Yusuke Nakamura and Kazuma Kiyotani
Cancers 2026, 18(1), 144; https://doi.org/10.3390/cancers18010144 - 31 Dec 2025
Viewed by 547
Abstract
Neoantigen-based immunotherapies harness somatic mutations as tumor-specific targets and represent a major advance in personalized cancer treatment. Since neoantigens are presented exclusively on cancer cells, they enable highly selective T-cell recognition with minimal off-tumor toxicity. Neoantigen vaccines are rapidly emerging as a versatile [...] Read more.
Neoantigen-based immunotherapies harness somatic mutations as tumor-specific targets and represent a major advance in personalized cancer treatment. Since neoantigens are presented exclusively on cancer cells, they enable highly selective T-cell recognition with minimal off-tumor toxicity. Neoantigen vaccines are rapidly emerging as a versatile class of personalized cancer immunotherapies designed to prime tumor-specific T cells by targeting somatic mutations unique to each patient’s tumor. Multiple types of neoantigen vaccines, using peptide, mRNA, and DNA, have shown feasibility, safety, and immunogenicity across diverse solid tumors. Emerging comparative data indicate that the vaccines using peptide-pulsed dendritic cells (DCs) elicit higher per-epitope CD8+ T cell responses than mRNA-based vaccines, likely due to more efficient class I presentation of synthetic peptides and ex vivo-loaded DCs. In contrast, mRNAs, despite their capacity of targeting multiple neoantigen peptides simultaneously, often induce CD4+-dominant responses due to immunodominance patterns during antigen processing. Recent clinical trials in melanoma, glioblastoma, pancreatic cancer, and other types of cancer have demonstrated not only robust immune activation but also encouraging relapse-free outcomes when administered in adjuvant settings. Treatment timing strongly influenced immune responsiveness; patients with early-stage disease or those vaccinated after surgical resection generally exhibit more preserved systemic immunity and greater vaccine-induced T cell expansion compared to those with advanced disease. Future progress will rely on improved neoantigen prediction, including incorporation of post-translationally modified antigenic targets and acceleration of manufacturing pipelines to ensure timely, personalized vaccine delivery. Collectively, neoantigen vaccines offer substantial promise for integration into next-generation cancer treatment strategies. Full article
(This article belongs to the Special Issue Neoantigen Vaccines for Cancer Therapy)
Show Figures

Figure 1

25 pages, 905 KB  
Review
Advances in Near-Infrared BODIPY Photosensitizers: Design Strategies and Applications in Photodynamic and Photothermal Therapy
by Dorota Bartusik-Aebisher, Kacper Rogóż, Gabriela Henrykowska and David Aebisher
Pharmaceuticals 2026, 19(1), 53; https://doi.org/10.3390/ph19010053 - 26 Dec 2025
Viewed by 365
Abstract
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. [...] Read more.
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. To overcome this, intense research has focused on developing near-infrared (NIR)-absorbing BODIPY photosensitizers (PS). This review aims to systematically summarize the hierarchical design strategies, from molecular engineering to advanced nanoplatform construction, that underpin the recent progress of NIR-BODIPY PS in therapeutic applications. Methods: We conducted a comprehensive literature review using PubMed, Scopus, and Web of Science databases. The search focused on keywords such as “BODIPY”, “aza-BODIPY”, “near-infrared”, “photodynamic therapy”, “photothermal therapy”, “nanocarriers”, “hypoxia”, “immuno-phototherapy”, and “antibacterial.” This review analyzes key studies describing molecular design, chemical modification strategies (e.g., heavy-atom effect, π-extension), nanoplatform formulation, and therapeutic applications in vitro and in vivo. Results: Our analysis reveals a clear progression in design complexity. At the molecular level, we summarize strategies to enhance selectivity, including active targeting, designing “smart” PS responsive to the tumor microenvironment (TME) (e.g., hypoxia or low pH), and precise subcellular localization (e.g., mitochondria, lysosomes). We then detail the core chemical strategies for achieving NIR absorption and high singlet oxygen yield, including π-extension, the internal heavy-atom effect, and heavy-atom-free mechanisms (e.g., dimerization). The main body of the review categorizes the evolution of advanced theranostic nanoplatforms, including targeted systems, stimuli-responsive ‘smart’ systems, photo-immunotherapy (PIT) platforms inducing immunogenic cell death (ICD), hypoxia-overcoming systems, and synergistic chemo-phototherapy carriers. Finally, we highlight emerging applications beyond oncology, focusing on the use of NIR-BODIPY PS for antibacterial therapy and biofilm eradication. Conclusions: NIR-BODIPY photosensitizers are a highly versatile and powerful class of theranostic agents. The field is rapidly moving from simple molecules to sophisticated, multifunctional nanoplatforms designed to overcome key clinical hurdles like hypoxia, poor selectivity, and drug resistance. While challenges in scalability and clinical translation remain, the rational design strategies and expanding applications, including in infectious diseases, confirm that NIR-BODIPY derivatives will be foundational to the next generation of precision photomedicine. Full article
Show Figures

Figure 1

18 pages, 1024 KB  
Review
Glioblastoma—A Contemporary Overview of Epidemiology, Classification, Pathogenesis, Diagnosis, and Treatment: A Review Article
by Kinga Królikowska, Katarzyna Błaszczak, Sławomir Ławicki, Monika Zajkowska and Monika Gudowska-Sawczuk
Int. J. Mol. Sci. 2025, 26(24), 12162; https://doi.org/10.3390/ijms262412162 - 18 Dec 2025
Viewed by 1089
Abstract
Glioblastoma (GBM) is one of the most common and aggressive primary malignant tumors of the central nervous system, accounting for about half of all gliomas in adults. Despite intensive research and advances in molecular biology, genomics, and modern neuroimaging techniques, the prognosis for [...] Read more.
Glioblastoma (GBM) is one of the most common and aggressive primary malignant tumors of the central nervous system, accounting for about half of all gliomas in adults. Despite intensive research and advances in molecular biology, genomics, and modern neuroimaging techniques, the prognosis for patients with GBM remains extremely poor. Despite the implementation of multimodal treatment involving surgery, radiotherapy, and chemotherapy with temozolomide, the average survival time of patients is only about 15 months. This is primarily due to the complex biology of this cancer, which involves numerous genetic and epigenetic abnormalities, as well as a highly heterogeneous tumor structure and the presence of glioblastoma stem cells with self renewal capacity. Mutations and abnormalities in genes such as IDH-wt, EGFR, PTEN, TP53, TERT, and CDKN2A/B are crucial in the pathogenesis of GBM. In particular, IDH-wt status (wild-type isocitrate dehydrogenase) is one of the most important identification markers distinguishing GBM from other, more favorable gliomas with IDH mutations. Frequent EGFR amplifications and TERT gene promoter mutations lead to the deregulation of tumor cell proliferation and increased aggressiveness. In turn, the loss of function of suppressor genes such as PTEN or CDKN2A/B promotes uncontrolled cell growth and tumor progression. The immunosuppressive tumor microenvironment also plays an important role, promoting immune escape and weakening the effectiveness of systemic therapies, including immunotherapy. The aim of this review is to summarize the current state of knowledge on the epidemiology, classification, pathogenesis, diagnosis, and treatment of glioblastoma multiforme, as well as to discuss the impact of recent advances in molecular and imaging diagnostics on clinical decision-making. A comprehensive review of recent literature (2018–2025) was conducted, focusing on WHO CNS5 classification updates, novel biomarkers (IDH, TERT, MGMT, EGFR), and modern diagnostic techniques such as liquid biopsy, radiogenomics, and next-generation sequencing (NGS). The results of the review indicate that the introduction of integrated histo-molecular diagnostics in the WHO 2021 classification has significantly increased diagnostic precision, enabling better prognostic and therapeutic stratification of patients. Modern imaging techniques, such as advanced magnetic resonance imaging (MRI), positron emission tomography (PET), and radiomics and radiogenomics tools, allow for more precise assessment of tumor characteristics, prediction of response to therapy, and monitoring of disease progression. Contemporary molecular techniques, including DNA methylation profiling and NGS, enable in-depth genomic and epigenetic analysis, which translates into a more personalized approach to treatment. Despite the use of multimodal therapy, which is based on maximum safe tumor resection followed by radiotherapy and temozolomide chemotherapy, recurrence is almost inevitable. GBM shows a high degree of resistance to treatment, which results from the presence of stem cell subpopulations, dynamic clonal evolution, and the ability to adapt to unfavorable microenvironmental conditions. Promising preclinical and early clinical results show new therapeutic strategies, including immunotherapy (cancer vaccines, checkpoint inhibitors, CAR-T therapies), oncolytic virotherapy, and Tumor Treating Fields (TTF) technology. Although these methods show potential for prolonging survival, their clinical efficacy still needs to be confirmed in large studies. The role of artificial intelligence in the analysis of imaging and molecular data is also increasingly being emphasized, which may contribute to the development of more accurate predictive models and therapeutic decisions. Despite these advancements, GBM remains a major therapeutic challenge due to its high heterogeneity and treatment resistance. The integration of molecular diagnostics, artificial intelligence, and personalized therapeutic strategies that may enhance survival and quality of life for GBM patients. Full article
(This article belongs to the Special Issue Recent Advances in Brain Cancers: Second Edition)
Show Figures

Figure 1

38 pages, 1669 KB  
Review
Determinants of Response to Immune Checkpoint Blockade in Pleural Mesothelioma: Molecular, Immunological, and Clinical Perspectives
by Martina Delsignore, Gaia Cassinari, Simona Revello, Luigi Cerbone, Federica Grosso, Marcello Arsura and Chiara Porta
Cancers 2025, 17(24), 4020; https://doi.org/10.3390/cancers17244020 - 17 Dec 2025
Viewed by 599
Abstract
Diffuse pleural mesothelioma (PM) is a rare thoracic malignancy with historically limited treatment options and poor outcomes. Despite the recent breakthrough of dual immune checkpoint blockade (ICB)—notably the combination of anti-PD-1 and anti-CTLA-4 therapies—clinical responses remain variable and overall survival gains modest. Consequently, [...] Read more.
Diffuse pleural mesothelioma (PM) is a rare thoracic malignancy with historically limited treatment options and poor outcomes. Despite the recent breakthrough of dual immune checkpoint blockade (ICB)—notably the combination of anti-PD-1 and anti-CTLA-4 therapies—clinical responses remain variable and overall survival gains modest. Consequently, there is an urgent need for multidimensional biomarkers and adaptive trial designs to unravel the complexity of PM immune biology. This review provides a comprehensive overview of current evidence on how histological subtypes (epithelioid vs. non-epithelioid) influence ICB efficacy, highlighting distinct genetic landscapes (e.g., BAP1, CDKN2A, NF2 mutations) and tumor microenvironment (TME) features, including immune infiltration patterns and PD-L1 or VISTA expression, that underlie differential responses. We further examine intrinsic tumor factors—such as mutational burden and checkpoint ligand expression—and extrinsic determinants, including immune cell composition, stromal architecture, patient immune status, and microbiota, as modulators of immunotherapy outcomes. We also discuss the rationale behind emerging strategies designed to enhance ICB efficacy, currently under clinical evaluation. These include combination regimens with chemotherapy, radiotherapy, surgery, epigenetic modulators, anti-angiogenic agents, and novel immunotherapies such as next-generation checkpoint inhibitors (LAG-3, VISTA), immune-suppressive cell–targeting agents, vaccines, cell-based therapies, and oncolytic viruses. Collectively, these advancements underscore the importance of integrating histological classification with molecular and microenvironmental profiling to refine patient selection and guide the development of combination strategies aimed at transforming “cold” mesotheliomas into “hot,” immune-responsive tumors, thereby enhancing the efficacy of ICB. Full article
(This article belongs to the Special Issue Biomarkers and Targeted Therapy in Malignant Pleural Mesothelioma)
Show Figures

Figure 1

27 pages, 1424 KB  
Systematic Review
Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review
by Gerdi Tuli, Jessica Munarin, Katherine Stephanie Davalos Flores and Luisa De Sanctis
Genes 2025, 16(12), 1506; https://doi.org/10.3390/genes16121506 - 16 Dec 2025
Viewed by 698
Abstract
Background/Objectives: Endocrine autoimmune diseases, including autoimmune thyroid, pituitary, parathyroid, adrenal, and gonadal diseases, result from complex interactions between genetic susceptibility and environmental triggers. Advances in genomics and epigenomics have provided novel insights into the molecular pathways leading to immune dysregulation and endocrine tissue [...] Read more.
Background/Objectives: Endocrine autoimmune diseases, including autoimmune thyroid, pituitary, parathyroid, adrenal, and gonadal diseases, result from complex interactions between genetic susceptibility and environmental triggers. Advances in genomics and epigenomics have provided novel insights into the molecular pathways leading to immune dysregulation and endocrine tissue destruction. This review summarizes recent progress in understanding the genetic and epigenetic bases, emphasizing shared and disease-specific mechanisms that contribute to autoimmunity and endocrine dysfunction. Methods: A comprehensive literature search was performed in PubMed, Scopus, and Web of Science up to August 2025, focusing on genome-wide association studies (GWAS), next-generation sequencing, and epigenetic profiling (DNA methylation, histone modification, and non-coding RNA regulation). Results: More than 60 susceptibility loci have been identified across endocrine autoimmune diseases (EADs), including key genes in immune tolerance (HLA, CTLA4, PTPN22) and endocrine-specific pathways. Epigenetic studies reveal that altered DNA methylation and histone acetylation patterns in immune and endocrine cells modulate gene expression without changing the DNA sequence, linking environmental exposures to disease onset. Dysregulated microRNAs further influence immune signaling and cytokine networks. Conclusions: Genetic and epigenetic discoveries highlight the multifactorial nature of EADs and reveal potential biomarkers for early detection and targets for precision immunotherapy. Future research integrating multi-omics and longitudinal analyses will be crucial to unravel causal mechanisms and develop personalized preventive strategies. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Factors for Autoimmune Diseases)
Show Figures

Figure 1

10 pages, 494 KB  
Article
BRCA1 and 2 Mutations and Efficacy of Pembrolizumab-Based Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer: A Real-World Multicenter Analysis
by Palma Fedele, Alessandro Rizzo, Matteo Landriscina, Stefania Luigia Stucci, Maria Morritti, Francesco Giuliani, Lucia Moraca, Giuseppe Cairo, Raffaele Ardito, Marianna Giampaglia, Domenico Bilancia, Assunta Melaccio, Antonella Terenzio, Antonio Gnoni, Antonella Licchetta, Federica Fumai, Laura Lanotte and Gennaro Gadaleta-Caldarola
J. Clin. Med. 2025, 14(24), 8854; https://doi.org/10.3390/jcm14248854 - 14 Dec 2025
Viewed by 643
Abstract
Background: Pembrolizumab has reshaped the neoadjuvant treatment landscape for triple-negative breast cancer (TNBC). However, the influence of BRCA1/2 mutational status on the efficacy of chemo-immunotherapy remains unclear, particularly in real-world settings. Since BRCA-mutated tumors exhibit homologous recombination deficiency (HRD) and high genomic instability, [...] Read more.
Background: Pembrolizumab has reshaped the neoadjuvant treatment landscape for triple-negative breast cancer (TNBC). However, the influence of BRCA1/2 mutational status on the efficacy of chemo-immunotherapy remains unclear, particularly in real-world settings. Since BRCA-mutated tumors exhibit homologous recombination deficiency (HRD) and high genomic instability, they may be more immunogenic and responsive to immune checkpoint inhibitors. This multicenter study investigated the association between BRCA1/2 mutations and pathologic complete response (pCR) in TNBC patients treated with pembrolizumab-based neoadjuvant chemotherapy (NACT). Methods: We retrospectively analyzed 184 patients with stage II–III TNBC treated between 2021 and 2024 across eleven Italian oncology centers. All received pembrolizumab combined with platinum- and taxane-based NACT followed by anthracyclines, according to the KEYNOTE-522 regimen. Germline BRCA1/2 status was determined by next-generation sequencing. The primary endpoint was pCR, defined as ypT0/is ypN0. Fisher’s exact test and logistic regression models were used to assess associations between clinical–pathological variables and pCR. Results: Among 184 patients, 25 (13.6%) harbored BRCA1 mutations, 12 (6.5%) BRCA2 mutations, and 147 (79.9%) were wild-type. pCR was achieved in 80.0% of BRCA1-mutated, 75.0% of BRCA2-mutated, and 61.1% of wild-type tumors. When pooled, BRCA1/2-mutated cases showed a higher likelihood of achieving pCR (78.4% vs. 61.1%; odds ratio [OR] = 2.17; 95% CI 1.01–4.97; p = 0.056). High tumor-infiltrating lymphocytes (≥30%) were also associated with increased pCR rates. The frequency of BRCA mutations (20.1%) was consistent with that reported in major TNBC series. No comparative analysis of toxicity or survival outcomes was performed due to the retrospective design and limited follow-up. Conclusions: In this multicenter real-world cohort, TNBC patients carrying BRCA1/2 mutations exhibited a trend toward higher pCR rates with pembrolizumab-based NACT compared with wild-type tumors. These findings suggest enhanced chemosensitivity and immune responsiveness in BRCA-deficient disease, warranting further validation in larger prospective studies with survival endpoints. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

24 pages, 1966 KB  
Review
The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies
by Mahsa Rafieiyan, Marco Pio La Manna, Francesco Dieli, Nadia Caccamo and Giusto Davide Badami
Cells 2025, 14(24), 1983; https://doi.org/10.3390/cells14241983 - 14 Dec 2025
Viewed by 485
Abstract
Human leukocyte antigen (HLA)-E, a non-classical class I molecule with limited polymorphism, bridges innate and adaptive immunity. Traditionally, the role of HLA-E had been associated with regulating natural killer (NK) cell activity via CD94/NKG2 receptors, by presenting self-peptides derived from the leader sequence [...] Read more.
Human leukocyte antigen (HLA)-E, a non-classical class I molecule with limited polymorphism, bridges innate and adaptive immunity. Traditionally, the role of HLA-E had been associated with regulating natural killer (NK) cell activity via CD94/NKG2 receptors, by presenting self-peptides derived from the leader sequence of HLA-I. Recent findings reveal its ability to present pathogen-derived peptides to CD8+ T cells, eliciting unconventional cytotoxic responses. This review examines the expanding role of HLA-E-restricted T cells in viral and bacterial infections and their capacity to recognize diverse microbial peptides and enhance immune response when classical HLA pathways are impaired. We also highlight key advances in immunotherapy and vaccine development, including CMV-vectored platforms, donor-unrestricted TCR-based strategies, and peptide prediction algorithms. The minimal polymorphism of HLA-E, its resistance to viral immune evasion, and its ability to present conserved pathogen peptides position it as a promising target for universal vaccines and next-generation immunotherapies. Understanding these unconventional roles may pave the way for broadly applicable immunotherapies and vaccines against infectious diseases. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 1890 KB  
Review
Cell-Mediated and Peptide-Based Delivery Systems: Emerging Frontiers in Targeted Therapeutics
by Eszter Erdei, Ruth Deme, Balázs Balogh and István M. Mándity
Pharmaceutics 2025, 17(12), 1597; https://doi.org/10.3390/pharmaceutics17121597 - 11 Dec 2025
Viewed by 763
Abstract
Background/Objectives: Cell-mediated and peptide-assisted delivery systems have emerged as powerful platforms at the intersection of chemistry, nanotechnology, and molecular medicine. By leveraging the intrinsic targeting, transport, and signaling capacities of living cells and bioinspired peptides, these systems facilitate the delivery of therapeutic agents [...] Read more.
Background/Objectives: Cell-mediated and peptide-assisted delivery systems have emerged as powerful platforms at the intersection of chemistry, nanotechnology, and molecular medicine. By leveraging the intrinsic targeting, transport, and signaling capacities of living cells and bioinspired peptides, these systems facilitate the delivery of therapeutic agents across otherwise restrictive biological barriers such as the blood–brain barrier (BBB) and the tumor microenvironment. This review aims to summarize recent advances in engineered cell carriers, peptide vectors, and hybrid nanostructures designed for enhanced intracellular and tissue-specific delivery. Methods: We surveyed recent literature covering molecular design principles, mechanistic studies, and in vitro/in vivo evaluations of cell-mediated and peptide-enabled delivery platforms. Emphasis was placed on neuro-oncology, immunotherapy, and regenerative medicine, with particular focus on uptake pathways, endosomal escape mechanisms, and structure–function relationships. Results: Analysis of current strategies reveals significant progress in optimizing cell-based transport systems, peptide conjugates, and multifunctional nanostructures for the targeted delivery of drugs, nucleic acids, and immunomodulatory agents. Key innovations include improved BBB penetration, enhanced tumor homing, and more efficient cytosolic delivery enabled by advanced peptide designs and engineered cellular carriers. Several platforms have progressed toward clinical translation, underscoring their therapeutic potential. Conclusions: Cell-mediated and peptide-assisted delivery technologies represent a rapidly evolving frontier with broad relevance to next-generation therapeutics. Despite notable advances, challenges remain in scalability, manufacturing, safety, and regulatory approval. Continued integration of chemical design, molecular engineering, and translational research will be essential to fully realize the clinical impact of these delivery systems. Full article
(This article belongs to the Special Issue Biomimetic Nanoparticles for Disease Treatment and Diagnosis)
Show Figures

Figure 1

42 pages, 2995 KB  
Review
Plasma Cell Myeloma: Biochemical Insights into Diagnosis, Treatment, and Smart Nanocarrier-Based Therapeutic Development
by Lizeth Geraldine Muñoz, Sixta Palencia Luna and Andrés Felipe Chamorro
Pharmaceutics 2025, 17(12), 1570; https://doi.org/10.3390/pharmaceutics17121570 - 5 Dec 2025
Viewed by 612
Abstract
Plasma cell myeloma (PCM) is classified as a blood cancer and is characterized by the abnormal proliferation of plasma cells in the bone marrow and the excessive production of monoclonal immunoglobulins, which lead to permanent damage to vital organs. Although treatment strategies have [...] Read more.
Plasma cell myeloma (PCM) is classified as a blood cancer and is characterized by the abnormal proliferation of plasma cells in the bone marrow and the excessive production of monoclonal immunoglobulins, which lead to permanent damage to vital organs. Although treatment strategies have improved with the development of proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and monoclonal antibodies (mAbs), PCM remains an incurable disease due to its molecular heterogeneity and the development of drug resistance. In this review, we discuss the biochemical and molecular foundations underlying the diagnosis and treatment of PCM, emphasizing both traditional and advanced approaches. Classical methods such as serum protein electrophoresis (SPEP), immunofixation electrophoresis (IFE), and serum free light chain (sFLC) determination are highlighted alongside their integration with highly sensitive techniques like mass spectrometry (MS) and next-generation sequencing (NGS). Special attention is given to nanotechnology-based systems, including liposomes, polymeric nanoparticles (NPs), dendrimers, and hybrid nanocapsules, which enable controlled drug release, targeted delivery, and the minimization of systemic toxicity. Increasingly, nanomaterials are being shown to greatly enhance the biodistribution and pharmacokinetics of anticancer drugs, leading to improved therapeutic effects and escaping resistance mechanisms by employing multifunctional strategies that include dual drug co-encapsulation, pH-sensitive release and theranostic applications. Furthermore, the integration of nanotechnology with immunotherapy platforms represents a paradigm shift toward precision and personalized medicine for the treatment of PCM. Overall, this review views nanotechnology as an enabling technology to improve therapeutic effectiveness, minimize toxicity and open new avenues toward next-generation smart and personalized therapeutics for the treatment of PCM. Full article
(This article belongs to the Special Issue Nanomedicine and Nanotechnology: Recent Advances and Applications)
Show Figures

Figure 1

20 pages, 1001 KB  
Review
TCR-Based Antigen-Specific Therapy for Type 1 Diabetes Mellitus: From Editing Autoreactive Clones to Tolerance Induction
by Marina Fisher, Julia Philippova, Vasily Kurilin and Sergey Sennikov
Int. J. Mol. Sci. 2025, 26(23), 11563; https://doi.org/10.3390/ijms262311563 - 28 Nov 2025
Viewed by 890
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of insulin-producing pancreatic β-cells by autoreactive T cells. Current treatments, including insulin replacement therapy and various immunotherapies, often modulate but fail to permanently halt the underlying autoimmune process or restore [...] Read more.
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of insulin-producing pancreatic β-cells by autoreactive T cells. Current treatments, including insulin replacement therapy and various immunotherapies, often modulate but fail to permanently halt the underlying autoimmune process or restore β-cell function. In this review, we examine T cell receptor (TCR)-based treatment strategies for T1DM. We focus on two main approaches: selective elimination of pathogenic autoreactive T cell clones and induction of immune tolerance using TCR-modified regulatory T cells (TCR-Tregs). We describe key islet autoantigens, including post-translationally modified neoantigens such as fusion insulin peptides, which are crucial for identifying pathogenic TCRs. Next, we will review methodologies for TCR detection and TCR-Treg generation, highlighting their mechanisms of action and impact on various immune cells, including dendritic cells, B cells, and macrophages. We will also examine the potential of CD8+T cell regulatory cells (CD8+Tregs). Finally, we will discuss the future of TCR-based therapy, emphasizing the need to optimize TCR affinity, ensure Tregs’ stability, and develop combination therapies. TCR-based therapy represents a revolutionary approach to restoring immune tolerance in T1DM, providing high specificity and reducing the risk of systemic immuno-suppression compared to traditional treatments. Full article
Show Figures

Figure 1

Back to TopTop