Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Autoimmune Thyroid Diseases (AITD)
3.1.1. Genetic Mechanisms in AITD
HLA Region
Costimulation and Lymphocyte Signaling (CTLA4, PTPN22, CD40, FOXP3)
3.1.2. Thyroid-Specific Susceptibility Genes
TSHR
TG
TPO
3.2. Epigenetics and AITD
3.3. Environmental Factors and AITD
3.4. Other Nongenetic and Nonnutritional Factors
3.5. Autoimmune Pituitary Disease
3.5.1. Primary Hypophysitis
Genetics and Hypopituitarism
3.5.2. Secondary Hypophysitis
3.5.3. ICI-Induced Hypophysitis
Genetic Factors and ICI-Induced Hypophysitis
3.5.4. Anti-POUF1F1 Hypophysitis
Genetic and Anti-POU1F1 Hypophysitis
3.6. Autoimmune Parathyroid Disorders
3.6.1. Genetic Mechanisms in Autoimmune Parathyroid Disease
- -
- p.R257X in Finland and Eastern/Central Europe;
- -
- p.R139X in Sardinia;
- -
- p.Y85C in Iranian Jews;
- -
- p.R203X in Southern Italy/Sicily;
- -
3.6.2. Epigenetics and Hypoparathyroidism
3.7. Autoimmune Adrenal Disease
3.7.1. Addison’s Disease
Addison’s Disease and Genetic Mechanisms
- Copy-Number Variation (CNV)
Addison’s Disease and Epigenetic Mechanisms
3.7.2. Autoimmune Polyendocrine Syndrome (APS)
3.8. Autoimmune Gonadal Disease
3.8.1. Autoimmune Testicular Disease
Genetic Mechanisms
Epigenetic Mechanisms
3.8.2. Autoimmune Ovarian Disease
Genetic Mechanisms of POI
Epigenetics of POI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AITD | Autoimmune thyroid diseases |
| GD | Graves’ disease |
| HT | Hashimoto’s thyroiditis |
| APS-1 | Autoimmune polyendocrine syndrome type 1 |
| APECED | Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy |
| TRAb | TSH-receptor autoantibodies |
| DZ | Dizygotic |
| MZ | Monozygotic |
| GO | Graves ophthalmopathy |
| ACTH | Corticotroph |
| TSH | Thyrotroph |
| LAH | Lymphocytic adenohypophysitis |
| LINH | Lymphocytic infundibulo-neurohypophysitis |
| LPH | Lymphocytic panhypophysitis |
| HLA | Human leukocyte antigen |
| ICI | Immune checkpoint inhibitors |
| IIH | ICI-induced hypophysitis |
| mAbs | Monoclonal antibodies |
| CTLA-4 | Cytotoxic T-lymphocyte antigen 4 |
| PD-1 | Programmed cell death-1 |
| CNVs | Copy number variations |
| VARs | Small variations |
| GH | Growth hormone |
| PRL | Prolactin |
| CaSR | Calcium-sensing receptor |
| PTH | Parathyroid hormone |
| CMC | Chronic mucocutaneous candidiasis |
| ASAs | Anti-sperm antibodies |
| TGM4 | Transglutaminase-4 |
| SVS2 | Seminal vesicle secretory protein-2 |
| POI | Primary ovarian insufficiency |
References
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
- Bando, H.; Kanie, K.; Takahashi, Y. Paraneoplastic Autoimmune Hypophysitis: An Emerging Concept. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101601. [Google Scholar] [CrossRef]
- Brønstad, I.; Wolff, A.S.; Løvås, K.; Knappskog, P.M.; Husebye, E.S. Genome-Wide Copy Number Variation (CNV) in Patients with Autoimmune Addison’s Disease. BMC Med. Genet. 2011, 12, 111. [Google Scholar] [CrossRef]
- Skrabic, V.; Skrabic, I.; Skrabic, R.; Roje, B.; Simunovic, M. Clinical Characteristics in the Longitudinal Follow-Up of APECED Syndrome in Southern Croatia—Case Series. Genes 2022, 13, 558. [Google Scholar] [CrossRef]
- Fierabracci, A.; Arena, A.; Toto, F.; Gallo, N.; Puel, A.; Migaud, M.; Kumar, M.; Chengappa, K.G.; Gulati, R.; Negi, V.S.; et al. Autoimmune Polyendocrine Syndrome Type 1 (APECED) in the Indian Population: Case Report and Review of a Series of 45 Patients. J. Endocrinol. Investig. 2021, 44, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Fierabracci, A.; Lanzillotta, M.; Vorgučin, I.; Palma, A.; Katanić, D.; Betterle, C. Report of Two Siblings with APECED in Serbia: Is There a Founder Effect of c.769C>T AIRE Genotype? Ital. J. Pediatr. 2021, 47, 126. [Google Scholar] [CrossRef]
- Wolff, A.S.B.; Kucuka, I.; Oftedal, B.E. Autoimmune Primary Adrenal Insufficiency-Current Diagnostic Approaches and Future Perspectives. Front. Endocrinol. 2023, 14, 1285901. [Google Scholar] [CrossRef]
- Røyrvik, E.C.; Husebye, E.S. The Genetics of Autoimmune Addison Disease: Past, Present and Future. Nat. Rev. Endocrinol. 2022, 18, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Bando, H.; Urai, S.; Kanie, K.; Yamamoto, M. Hypopituitarism: Genetic, Developmental, and Acquired Etiologies with a Focus on the Emerging Concept of Autoimmune Hypophysitis. Endocr. J. 2025, 72, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Hasham, A.; Tomer, Y. Genetic and Epigenetic Mechanisms in Thyroid Autoimmunity. Immunol. Res. 2012, 54, 204–213. [Google Scholar] [CrossRef]
- Radziszewski, M.; Kuś, A.; Bednarczuk, T. Genotype-Phenotype Correlations in Graves’ Disease. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101745. [Google Scholar] [CrossRef]
- Brix, T.H.; Hegedüs, L. Twins as a Tool for Evaluating the Influence of Genetic Susceptibility in Thyroid Autoimmunity. Ann. D’endocrinol. 2011, 72, 103–107. [Google Scholar] [CrossRef]
- Wang, B.; Shao, X.; Song, R.; Xu, D.; Zhang, J. The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Front. Immunol. 2017, 8, 396. [Google Scholar] [CrossRef]
- Tomer, Y. Mechanisms of Autoimmune Thyroid Diseases: From Genetics to Epigenetics. Annu. Rev. Pathol. 2014, 9, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Razmara, E.; Salehi, M.; Aslani, S.; Bitaraf, A.; Yousefi, H.; Colón, J.R.; Mahmoudi, M. Graves’ Disease: Introducing New Genetic and Epigenetic Contributors. J. Mol. Endocrinol. 2021, 66, R33–R55. [Google Scholar] [CrossRef] [PubMed]
- Limbach, M.; Saare, M.; Tserel, L.; Kisand, K.; Eglit, T.; Sauer, S.; Axelsson, T.; Syvänen, A.-C.; Metspalu, A.; Milani, L.; et al. Epigenetic Profiling in CD4+ and CD8+ T Cells from Graves’ Disease Patients Reveals Changes in Genes Associated with T Cell Receptor Signaling. J. Autoimmun. 2016, 67, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Wan, S.; Wu, H.; Qu, M.; Chen, Y.; Liu, L.; Jin, M.; Zhou, Z.; Shen, H. Effect of Different Iodine Levels on the DNA Methylation of PRKAA2, ITGA6, THEM4 and PRL Genes in PI3K-AKT Signaling Pathway and Population-Based Validation from Autoimmune Thyroiditis Patients. Eur. J. Nutr. 2022, 61, 3571–3583. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, J.; Fan, Y.; Sun, L.; Shen, N.; Jin, Q.; Zhang, L.; Zhang, J.; Zhang, F.; Chen, H. LSD1 Induces H3 K9 Demethylation to Promote Adipogenesis in Thyroid-Associated Ophthalmopathy. Epigenet. Chromatin 2025, 18, 28. [Google Scholar] [CrossRef]
- Cyna, W.; Wojciechowska, A.; Szybiak-Skora, W.; Lacka, K. The Impact of Environmental Factors on the Development of Autoimmune Thyroiditis—Review. Biomedicines 2024, 12, 1788. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, N.; Wilson, S.G.; Walsh, J.P. DNA Methylation in Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 2023, 108, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Chen, Y.; Liu, J.; Zhou, Z.; He, Y.; Wan, S.; Chen, Y.; Wu, X.; Du, M.; Gao, H.; et al. DNA Methylation of Genes That Mediate Autophagosome Formation Contributes to Iodine-Induced Autoimmune Thyroiditis: A Population-Based Study Conducted at Regions with Different Iodine Levels in China. Int. J. Hyg. Environ. Health 2025, 265, 114537. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Y.; Xu, L.; Liang, H.; Zhou, X.; Lei, H.; Sha, L. Role of Jumonji Domain-Containing Protein D3 and Its Inhibitor GSK-J4 in Hashimoto’s Thyroiditis. Open Med. 2023, 18, 20230659. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Pareja, I.; Ruiz-Limón, P.; Gómez-Pérez, A.M.; Molina-Vega, M.; Moreno-Indias, I.; Tinahones, F.J. Differential Microbial Pattern Description in Subjects with Autoimmune-Based Thyroid Diseases: A Pilot Study. J. Pers. Med. 2020, 10, 192. [Google Scholar] [CrossRef]
- Tywanek, E.; Michalak, A.; Świrska, J.; Zwolak, A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland—The Perspective of Hashimoto’s Thyroiditis and Its Treatment. Int. J. Mol. Sci. 2024, 25, 4703. [Google Scholar] [CrossRef]
- Yamamoto, M.; Iguchi, G.; Bando, H.; Kanie, K.; Hidaka-Takeno, R.; Fukuoka, H.; Takahashi, Y. Autoimmune Pituitary Disease: New Concepts with Clinical Implications. Endocr. Rev. 2020, 41, 261–272. [Google Scholar] [CrossRef]
- Menotti, S.; Giampietro, A.; Raia, S.; Veleno, M.; Angelini, F.; Tartaglione, T.; Gaudino, S.; Doglietto, F.; De Marinis, L.; Pontecorvi, A.; et al. Unveiling the Etiopathogenic Spectrum of Hypophysitis: A Narrative Review. J. Pers. Med. 2023, 13, 1210. [Google Scholar] [CrossRef] [PubMed]
- Betterle, C.; Garelli, S.; Presotto, F. Diagnosis and Classification of Autoimmune Parathyroid Disease. Autoimmun. Rev. 2014, 13, 417–422. [Google Scholar] [CrossRef]
- Mannstadt, M.; Cianferotti, L.; Gafni, R.I.; Giusti, F.; Kemp, E.H.; Koch, C.A.; Roszko, K.L.; Yao, L.; Guyatt, G.H.; Thakker, R.V.; et al. Hypoparathyroidism: Genetics and Diagnosis. J. Bone Miner. Res. 2022, 37, 2615–2629. [Google Scholar] [CrossRef]
- Piranavan, P.; Li, Y.; Brown, E.; Kemp, E.H.; Trivedi, N. Immune Checkpoint Inhibitor-Induced Hypoparathyroidism Associated with Calcium-Sensing Receptor-Activating Autoantibodies. J. Clin. Endocrinol. Metab. 2019, 104, 550–556. [Google Scholar] [CrossRef]
- Bastepe, M.; Gensure, R.C. Hypoparathyroidism and Pseudohypoparathyroidism—Endotext—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279165/ (accessed on 12 September 2025).
- Lupi, I.; Brancatella, A.; Cetani, F.; Latrofa, F.; Kemp, E.H.; Marcocci, C. Activating Antibodies to The Calcium-Sensing Receptor in Immunotherapy-Induced Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2020, 105, 1581–1588. [Google Scholar] [CrossRef]
- Teisseyre, M.; Moranne, O.; Renaud, S. Late Diagnosis of Chronic Hypocalcemia Due to Autoimmune Hypoparathyroidism. BMJ Case Rep. 2021, 14, e243299. [Google Scholar] [CrossRef]
- Ferre, E.M.N.; Rose, S.R.; Rosenzweig, S.D.; Burbelo, P.D.; Romito, K.R.; Niemela, J.E.; Rosen, L.B.; Break, T.J.; Gu, W.; Hunsberger, S.; et al. Redefined Clinical Features and Diagnostic Criteria in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. JCI Insight 2016, 1, e88782. [Google Scholar] [CrossRef]
- Cranston, T.; Boon, H.; Olesen, M.K.; Ryan, F.J.; Shears, D.; London, R.; Rostom, H.; Elajnaf, T.; Thakker, R.V.; Hannan, F.M. Spectrum of Germline AIRE Mutations Causing APS-1 and Familial Hypoparathyroidism. Eur. J. Endocrinol. 2022, 187, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Ferré, E.M.N.; Schmitt, M.M.; Lionakis, M.S. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front. Pediatr. 2021, 9, 723532. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, B.E.; Berger, A.H.; Bruserud, Ø.; Goldfarb, Y.; Sulen, A.; Breivik, L.; Hellesen, A.; Ben-Dor, S.; Haffner-Krausz, R.; Knappskog, P.M.; et al. A Partial Form of AIRE Deficiency Underlies a Mild Form of Autoimmune Polyendocrine Syndrome Type 1. J. Clin. Investig. 2023, 133, e169704. [Google Scholar] [CrossRef]
- Guo, C.-J.; Leung, P.S.C.; Zhang, W.; Ma, X.; Gershwin, M.E. The Immunobiology and Clinical Features of Type 1 Autoimmune Polyglandular Syndrome (APS-1). Autoimmun. Rev. 2018, 17, 78–85. [Google Scholar] [CrossRef]
- Mora, M.; Hanzu, F.A.; Pradas-Juni, M.; Aranda, G.B.; Halperin, I.; Puig-Domingo, M.; Aguiló, S.; Fernández-Rebollo, E. New Splice Site Acceptor Mutation in AIRE Gene in Autoimmune Polyendocrine Syndrome Type 1. PLoS ONE 2014, 9, e101616. [Google Scholar] [CrossRef]
- Li, D.; Streeten, E.A.; Chan, A.; Lwin, W.; Tian, L.; Pellegrino da Silva, R.; Kim, C.E.; Anderson, M.S.; Hakonarson, H.; Levine, M.A. Exome Sequencing Reveals Mutations in AIRE as a Cause of Isolated Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2017, 102, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Dharia, A.; Anastasopoulou, C.; Singh, M. Autoimmune Disease and Gonadal Failure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zou, X.; Zhang, Y.; Wang, X.; Zhang, R.; Yang, W. The Role of AIRE Deficiency in Infertility and Its Potential Pathogenesis. Front. Immunol. 2021, 12, 641164. [Google Scholar] [CrossRef]
- Warren, B.D.; Ahn, S.H.; Brittain, K.S.; Nanjappa, M.K.; Wang, H.; Wang, J.; Blanco, G.; Sanchez, G.; Fan, Y.; Petroff, B.K.; et al. Multiple Lesions Contribute to Infertility in Males Lacking Autoimmune Regulator. Am. J. Pathol. 2021, 191, 1592–1609. [Google Scholar] [CrossRef]
- Ahn, S.H.; Halgren, K.; Grzesiak, G.; MacRenaris, K.W.; Sue, A.; Xie, H.; Demireva, E.; O’Halloran, T.V.; Petroff, M.G. Autoimmune Regulator Deficiency Causes Sterile Epididymitis and Impacts Male Fertility through Disruption of Inorganic Physiology. J. Immunol. 2025, 214, 1504–1516. [Google Scholar] [CrossRef]
- Meng, X.; Peng, L.; Wei, X.; Li, S. FOXO3 is a Potential Biomarker and Therapeutic Target for Premature Ovarian Insufficiency (Review). Mol. Med. Rep. 2022, 27, 34. [Google Scholar] [CrossRef]
- Chon, S.J.; Umair, Z.; Yoon, M.-S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.; Wang, M.; Zhang, H.; Cui, M. A Review of Autoimmunity and Immune Profiles in Patients with Primary Ovarian Insufficiency. Medicine 2022, 101, e32500. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Wang, J.; Liu, Y. Assessment of Bidirectional Relationships Between Autoimmune Diseases and Primary Ovarian Insufficiency: Insights from a Bidirectional Two-Sample Mendelian Randomization Analysis|Archives of Gynecology and Obstetrics. Arch. Gynecol. Obstet. 2024, 309, 2853–2861. [Google Scholar] [CrossRef]
- Yatsenko, S.A.; Wood-Trageser, M.; Chu, T.; Jiang, H.; Rajkovic, A. A High-Resolution X Chromosome Copy-Number Variation Map in Fertile Females and Women with Primary Ovarian Insufficiency. Genet. Med. 2019, 21, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Nouri, N.; Aghebati-Maleki, L.; Soltani-Zangbar, M.S.; Kamrani, A.; Mehdizadeh, A.; Danaii, S.; Heris, J.A.; Chakeri-Khiavi, F.; Yousefi, M. Analysis of Th17 Cell Population and Expression of microRNA and Factors Related to Th17 in Patients with Premature Ovarian Failure. J. Reprod. Immunol. 2024, 165, 104290. [Google Scholar] [CrossRef]
- Wang, R.; Lv, Y.; Dou, T.; Yang, Q.; Yu, C.; Guan, Q. Autoimmune Thyroid Disease and Ovarian Hypofunction: A Review of Literature. J. Ovarian Res. 2024, 17, 125. [Google Scholar] [CrossRef]
- Li, X.; Xie, J.; Wang, Q.; Cai, H.; Xie, C.; Fu, X. miR-21 and Pellino-1 Expression Profiling in Autoimmune Premature Ovarian Insufficiency. J. Immunol. Res. 2020, 2020, 3582648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhuo, A.; Yang, Y.; Wang, Q.; Xie, J.; Ma, W.; Chen, Y.; Gao, M.; Tang, L.; Fu, X. Regulatory T Cells Overexpressing Peli1 Show Better Efficacy in Repairing Ovarian Endocrine Function in Autoimmune Premature Ovarian Insufficiency. Lab. Investig. 2023, 103, 100005. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, L.; Xiao, Y.; Huang, W.; Gao, M.; Xie, J.; Yang, M.; Wu, Y.; Fu, X. miR-21-5p-Loaded Bone Mesenchymal Stem Cell-Derived Exosomes Repair Ovarian Function in Autoimmune Premature Ovarian Insufficiency by Targeting MSX1. Reprod. Biomed. Online 2024, 48, 103815. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, Y.; Zhuo, A.; Gao, M.; Tang, L.; Xiao, Y.; Zhu, H.; Fu, X. Exosomes Derived from Mesenchymal Stem Cells Attenuate NLRP3-Related Pyroptosis in Autoimmune Premature Ovarian Insufficiency via the NF-κB Pathway. Reprod. Biomed. Online 2024, 48, 103814. [Google Scholar] [CrossRef]
- Janyga, S.; Marek, B.; Kajdaniuk, D.; Ogrodowczyk-Bobik, M.; Urbanek, A.; Bułdak, Ł. CD4+ cells in autoimmune thyroid disease. Endokrynol. Pol. 2021, 72, 572–583. [Google Scholar] [CrossRef]
- Jacobo, P.; Guazzone, V.A.; Theas, M.S.; Lustig, L. Testicular Autoimmunity. Autoimmun. Rev. 2011, 10, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Christen, U. Pathogen infection and autoimmune disease. Clin. Exp. Immunol. 2019, 195, 10–14. [Google Scholar] [CrossRef]
- Pastwińska, J.; Karwaciak, I.; Karaś, K.; Sałkowska, A.; Chałaśkiewicz, K.; Strapagiel, D.; Sobalska-Kwapis, M.; Dastych, J.; Ratajewski, M. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Immunohorizons 2024, 8, 606–621. [Google Scholar] [CrossRef]
- Karwaciak, I.; Pastwińska, J.; Sałkowska, A.; Karaś, K.; Sobalska-Kwapis, M.; Dastych, J.; Ratajewski, M. Staphylococcus aureus α-hemolysin induces DNA methylation changes in human Th1 cells. Immunol. Res. 2025, 73, 95. [Google Scholar] [CrossRef]
- Dardalhon, V.; Korn, T.; Kuchroo, V.K.; Anderson, A.C. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun. 2008, 31, 252–256. [Google Scholar] [CrossRef]
- Kohanim, Y.K.; Tendler, A.; Mayo, A.; Friedman, N.; Alon, U. Endocrine Autoimmune Disease as a Fragility of Immune Surveillance against Hypersecreting Mutants. Immunity 2020, 52, 872–884. [Google Scholar] [CrossRef]
- Cutolo, M.; Straub, R.H. Insights into endocrine-immunological disturbances in autoimmunity and their impact on treatment. Arthritis Res Ther. 2009, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, B.E.; Wolff, A.S.B. New era of therapy for endocrine autoimmune disorders. Scand. J. Immunol. 2020, 92, e12961. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, N.; Shore, C.J.; Campbell, P.J.; Mullin, B.H.; Brown, S.J.; Panicker, V.; Dudbridge, F.; Brix, T.H.; Hegedüs, L.; Wilson, S.G.; et al. Epigenome-Wide Association Study Shows Differential DNA Methylation of MDC1, KLF9, and CUTA in Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 2024, 109, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef]




| Locus (Lead Gene/Region) | Brief Function | Reported Disease Association(s) |
|---|---|---|
| HLA region (HLA-DRB1) | Antigen presentation (MHC class II) | GD, HT, AD (major genetic determinant across endocrine autoimmunity) |
| HLA-DQA1 | MHC class II peptide binding | AITD (GD/HT) |
| HLA-DQB1 | MHC class II peptide binding | AITD |
| PTPN22 (LYP) | Tyrosine phosphatase regulating T-cell signaling | GD, HT, AD |
| CTLA4 (CD125) | Immune checkpoint—negative regulator of T-cells | GD, HT, AD |
| IL2RA (CD25) | IL-2 receptor α chain—Treg biology | AITD |
| SH2B3 (LNK) | Regulator of cytokine signaling/lymphocyte activation | several autoimmune diseases |
| BACH2 | Transcription factor important for B/T-cell differentiation and tolerance | AITD (and other autoimmune diseases) |
| CLEC16A | Endosomal/autoantigen processing; immune regulation | AITD |
| UBASH3A | Negative regulator of T-cell receptor signaling | AITD |
| CD226 (DNAM1) | Costimulatory receptor on T/NK-cells | GD |
| RGS1 | Regulator of G-protein signaling; lymphocyte migration | AITD |
| TNFAIP3 (A20) | NF-κB negative regulator; inflammation control | GD, HT, other autoimmune diseases |
| STAT4 | Transcription factor downstream of IL-12/IFN signaling; Th1 responses | GD, HT |
| AIRE | Central tolerance (thymic expression of tissue antigens) | AD, APS (monogenic APS1); variant associations in AD GWAS |
| FOXP3 | Master regulator of regulatory T-cells (Tregs) | APS/monogenic immune dysregulation; candidate associations in AITD |
| TSHR | Thyroid autoantigen/receptor | GD (major thyroid-specific locus) |
| TPO | Thyroid autoantigen (TPO) | HT/AITD |
| TG | Thyroid autoantigen (TG) | AITD (HT/GD) |
| CD40 | B-cell costimulation; antigen presentation | GD, AITD |
| VDR | Immune modulation and endocrine signaling | Reported associations in GD/HT |
| FCRL3 | B-cell Fc receptor-like protein; immune regulation | GD, AITD |
| RNASET2 | Endonuclease; implicated by GD GWAS region (6q27) | GD (reported locus) |
| IL2–IL21 locus (4q27) | Cytokines; T-cell growth (IL-2) and B-cell help (IL-21) | AITD |
| IL10 | Anti-inflammatory cytokine (regulates immune tolerance) | AITD |
| IL7R | Lymphocyte survival and homeostasis | Autoimmunity (including T1D in some studies) |
| RASGRP1 | T-cell receptor signaling cascade | AITD (reported) |
| SPATA13 | Guanine nucleotide exchange factor; implicated in AITD transcriptome studies | AITD (putative association) |
| CD247 (CD3ζ) | TCR complex signaling subunit | AITD (TWAS/expression) |
| NKX2-3 | Homeobox TF; tissue/immune effects | AITD (reported in transcriptome studies) |
| PDE8B | cAMP metabolism; thyroid function regulation | AITD (expression/GWAS links to thyroid traits) |
| CIP2A | Cell growth regulator; implicated in AITD TWAS | AITD (reported) |
| KIAA1109 4q27 | Immune-regulatory region near IL2/IL21 | AITD, other autoimmune diseases |
| DNASE1L3 | DNA nuclease linked to autoantigen clearance | Autoimmunity signals across disorders (reported) |
| CD28/CTLA4 | Costimulation and checkpoint region | AITD |
| PRDM1 (BLIMP1) | B-cell differentiation regulator; immune tolerance | Autoimmune disease associations |
| IRF5 | Interferon regulatory TF; innate immunity | Broad autoimmunity (reported in composite studies) |
| IRF8 | Myeloid/lymphoid TF; immune regulation | Autoimmunity cross-loci (reported) |
| PTPRC (CD45) | Phosphatase on leukocytes; T/B signaling | Autoimmune associations in multiple studies |
| CCR6 | Chemokine receptor; lymphocyte trafficking | Reported in several autoimmune disease scans |
| CCR5 | Chemokine receptor; immune cell migration | Reported candidate associations in endocrine autoimmunity |
| CD40LG | T-cell help to B-cells; class switching | AITD/GD (functional candidate region) |
| TNFSF4 (OX40L) | Costimulatory ligand; T-cell survival | Reported autoimmune associations |
| PADI4 | Citrullination enzyme (stronger RA signal)—occasional cross-disease hits | Reported in autoimmune cross-analyses |
| ESRRA | Nuclear receptor TF implicated by enrichment analysis in T1D | Identified by integrative analyses |
| GSDMB | Gasdermin family (inflammation/cell death)—locus sometimes implicated in autoimmune scans | Reported in multi-disease analyses |
| SIRPG | Receptor modulating T-cell–APC interactions | Reported in GWAS of autoimmune traits |
| ZPBP2/ORMDL3 | Immune regulatory region; multiple autoimmune associations | Cross-disease signals |
| CTLA4-CD28 | Modulates CTLA4/CD28 expression and T-cell activation | AITD |
| GPR183 (EBI2) | B/T-cell positioning in lymphoid tissue | Reported in autoimmunity scans |
| SLC22A4/5 | Reported in older linkage/GWAS work for autoimmunity | Various autoimmune associations (population dependent) |
| ZFP36L1 | RNA-binding protein regulating cytokine mRNA stability | Implicated in immune regulation and reported in some analyses |
| C1QTNF6 | Complement-related/immune signaling candidate | Reported in thyroid autoimmunity transcriptome/GWAS overlaps |
| HLA-DR/DQ, etc. | MHC antigen presentation | Autoimmune hypophysitis (primary) |
| AIRE | Central immune tolerance (thymic expression of self-antigens) | Gonadal autoimmune failure (ovary/testis) in APS1 |
| CYP21A2/CYP17A1 | Steroid biosynthesis in adrenal/ovary/testis | Autoimmune oophoritis/gonadal autoimmunity |
| CTLA4/CD28 | T-cell costimulation/negative regulation | Hypophysitis (incl. immune-checkpoint-inhibitor induced) |
| FOXP3 | Regulatory T-cell master regulator | Gonadal autoimmunity (conceptually) |
| Gene/Locus | Physiological Function | Genetic Mechanisms/Variants | Epigenetic/Regulatory Aspects | Associated Phenotype/Subtype | References |
|---|---|---|---|---|---|
| HLA-DR3 | presenting antigens to T-cells | HLA-DR (e.g., DRB1*03) shows the strongest and most reproducible association with GD; HLA signals for HT exist but are less uniform across cohorts | HLA-DRβ-Arg74 increases binding of modified TG peptides (e.g., under excess iodine). | GD (strong), HT (reported but less consistent), GD with ophthalmopathy; HLA patterns also relate to treatment response. | [2,6,10,14,15,17] |
| PTPN22 | negatively regulates T-cell and B-cell signaling | Missense R620W (rs2476601; 1858C>T) is a replicated non-HLA risk allele that perturbs lymphocyte signaling thresholds and confers autoimmune risk | Promoter methylation changes in PTPN22 linked to HT have been reported. | GD and HT (ancestry-dependent: stronger in Europeans; variable in some Asian groups). | [1,10,14,20] |
| CD40 | activating immune cells like B-cells and macrophages | Promoter variants (e.g., rs1883832 and linked 5′UTR polymorphisms) increase CD40 expression | Affects B-cell activation and antigen presentation. | Primarily GD: HT associations are inconsistent across studies. | [1,10,14] |
| FOXP3 | development and function of regulatory T-cells | Promoter/intron SNPs (e.g., rs3761548/rs3761549) reported to alter FOXP3 expression/function in some cohorts | Variants and altered DNA methylation/acetylation at FOXP3 regulatory elements impair Treg stability and suppressive function. | GD, HT, and correlations with antibody titers/clinical course reported in some studies. | [1,13,15] |
| CTLA4 | immune checkpoint for T-cells | Common SNPs (e.g., +49 A/G rs231775 and nearby markers) associate repeatedly with GD and broader AITD and are thought to impair CTLA-4 inhibitory function on T-cells | Alters T-cell costimulation. | GD, HT, AITD overall; linked to antibody levels and relapse risk in some cohorts. | [1,10,14] |
| TG | precursor for thyroid hormones (T4 and T3) | Multiple coding and non-coding SNPs and haplotypes (exons 10–12 cluster, exon 33, intron/intragenic SNPs) associate with AITD and TgAb positivity | Promoter SNP (−1623, rs180195) modifies an IRF-1 binding site and, together with IFNα, produces enhancer marks (H3K4me1) that up-regulate TG expression. | GD and HT; TgAb positivity and possible interaction with HLA-DRβ1-Arg74 to markedly increase risk. | [1,10,14,15,17] |
| TPO | catalyzes key steps in the production of thyroid hormones (T3 and T4) | SNPs (e.g., rs2071400, rs2071403, rs732609) have been associated with TPOAb levels, HT risk, and disease course | Limited data (promoter methylation, histone modifications). | HT and TPOAb positivity; influences on disease course reported. | [1,10,14] |
| TSHR | receptor on thyroid follicular cells that binds to thyroid-stimulating hormone (TSH) | Intronic-1 SNP cluster (e.g., rs179247, rs12101255/rs12101261) reproducibly associates with GD in multiple cohorts | Hypermethylation and altered histone marks reduce thymic expression; splicing changes generate immunogenic soluble isoforms. | GD (strong); some intron-1 alleles also linked to ophthalmopathy risk in specific studies. | [1,10,14,15,16,20] |
| Epigenetic mechanism | - | - | Global leukocyte hypomethylation (GD); H3K4me1 at TSHR/TG regulatory sites (IFNα-driven); altered histone demethylases (JMJD3: HT; LSD1: GO) in GO studies. | Distinct epigenetic signatures in GD vs. HT; potential prognostic utility. Thyroid hormone levels, treatment, and cell composition are important confounders to control for in methylation studies. | [9,13,16,18,20,21,22] |
| Subtype/Entity | HLA Associations | Other Genetic/Molecular Findings | References |
|---|---|---|---|
| Lymphocytic hypophysitis | HLA-DR4, DR5, DQ8, DR53; celiac haplotypes (DQ8) | Pituitary autoantigens (GH1/GH2, ENO1, PGSF1a/PGSF2, SCG2, lactotroph autoantibodies) | [9,25,26] |
| ICI-induced hypophysitis | CTLA4–related: HLA-Cw12, HLA-DR15. PDCD1–related: HLA-DQB106:01, HLA-DPB109:01, HLA-DRB5*01:02. Others: HLA-DQ7, HLA-DPw9 | Immune checkpoint gene polymorphisms (CTLA4, PDCD1). CNVs/VARs reported in TERT, SMAD3, JAK2, PRDM1, FAN1, CD274, UNG | [26] |
| Anti-PIT-1 hypophysitis | HLA class I presentation of POU1F1 epitopes implicated | Genetic regulation of B-cell autoantibody production; tumor-associated epigenetic dysregulation in thymoma | [2,9] |
| Gene/Locus | Genetic Mechanisms/Variants | Epigenetic/Regulatory Aspects | Associated Phenotype/Subtype | References |
|---|---|---|---|---|
| AIRE | Classical recessive APS-1: >120 mutations; founder variants (p.R257X, p.R139X, p.Y85C, p.R203X, 13 bp exon 8 deletion). | Chromatin-dependent function via H3K4me0 binding; penetrance modified by sex, microbiota, and intrafamilial variability. | APS-1 (APECED) with hypoparathyroidism. | [4,4,5,27,33,34,35] |
| Dominant non-classical APS-1: heterozygous PHD1 missense variants → milder, later-onset, incomplete penetrance. | Non-classical APS-1 with variable hypoparathyroidism. | [36,37] | ||
| HLA | Class I: HLA-A26:01; Class II: HLA-DRB101, HLA-DRB1*09. | - | Idiopathic/non-APS autoimmune hypoparathyroidism. | [27,30] |
| Other regulators | miR-220b represses AIRE (post-transcriptional). | microRNA and chromatin-based tolerance pathways. | Modifies both APS-1 and non-APS forms. | [37] |
| FEZF2 enables AIRE-independent TSA expression. |
| Mechanism/Pathway | Genes/Loci | Diseases | Associations/Implications | References |
|---|---|---|---|---|
| Antigen presentation | HLA-DR3–DQ2, HLA-DR4–DQ8 | AAD, APS-2 | Strongest associations; linked to autoreactive T-cell activation. Epigenetic: global CD4+ hypomethylation. | [7,8,37,40] |
| Immune regulation/checkpoints | CTLA4, PTPN22, CIITA, CLEC16A, CD274 (PD-L1), NLRP1, MICA/MICB | AAD, APS-2 | Associated with dysregulated T-cell signaling and immune checkpoint pathways. | [7,8] |
| Transcriptional/signaling regulators | BACH2, SH2B3, UBASH3A, LPP, SIGLEC5 | AAD | GWAS associations; influence lymphocyte development and activation. | [7,8] |
| Central tolerance | AIRE (biallelic founder variants, hypomorphic/dominant-negative alleles) | APS-1, AAD (polygenic contribution), APS-2 | Causal in APS-1; common variants associated with broader autoimmunity. | [30,33,35,36,37] |
| Rare/syndromic variants | RAG1, TNFAIP3 (A20), LAT, IKZF2 (HELIOS) | Adrenal autoimmunity | Reported in case series; suggest contribution to immune dysregulation. | [8] |
| Copy-number variation (CNV) | UGT2B28 (low copy number more frequent in AAD); ADAM3A (high copy number associated with AAD) | AAD | UGT2B28: reduced steroid inactivation; ADAM3A: enhanced immune signaling | [3] |
| Entity | Genetic Mechanism | Epigenetic/Regulatory Aspects | References |
|---|---|---|---|
| Autoimmune orchitis | AIRE mutations: impaired thymic expression of testis antigens; HLA alleles. | AIRE requires H3K4me0 binding for testis antigen display; failure → autoreactive T-cell escape. | [3,7,41,42,43] |
| Autoimmune oophoritis | AIRE mutations: loss-of-function variants are linked to ovarian autoimmunity; X chromosome CNVs (meiosis/DNA repair genes); HLA-DR3 haplotype: associated with increased risk of POF; FOXP3: reduced FOXP3+ Tregs and Th17 skewing in autoimmune POI. | miR-21–Peli1 ↓ → reduced ovarian reserve, ↑ autoantibody burden miR-21–MSX1–Notch axis → ↓ granulosa apoptosis, ↑ steroidogenesis NF-κB–NLRP3 activation → granulosa pyroptosis; mesenchymal exosomes suppress pathway, improving ovarian function. | [40,41,44,45,46,47,48,49,50,51,52,53,54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuli, G.; Munarin, J.; Davalos Flores, K.S.; De Sanctis, L. Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review. Genes 2025, 16, 1506. https://doi.org/10.3390/genes16121506
Tuli G, Munarin J, Davalos Flores KS, De Sanctis L. Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review. Genes. 2025; 16(12):1506. https://doi.org/10.3390/genes16121506
Chicago/Turabian StyleTuli, Gerdi, Jessica Munarin, Katherine Stephanie Davalos Flores, and Luisa De Sanctis. 2025. "Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review" Genes 16, no. 12: 1506. https://doi.org/10.3390/genes16121506
APA StyleTuli, G., Munarin, J., Davalos Flores, K. S., & De Sanctis, L. (2025). Insights into the Genetic and Epigenetic Landscape of Endocrine Autoimmunity: A Systematic Review. Genes, 16(12), 1506. https://doi.org/10.3390/genes16121506

