Advances in Neoantigen-Based Cancer Vaccines
Simple Summary
Abstract
1. Introduction
2. Neoantigens
3. Neoantigen-Targeted Cancer Vaccines
3.1. Personalized Vaccines
3.2. Shared Neoantigen Vaccines
| Author | Cancer Type | Vaccine Type | Number of Patients | Treatment Setting | Target Antigens | Combination Therapy | Immune Responses | Clinical Outcomes |
|---|---|---|---|---|---|---|---|---|
| Mueller, 2020 [26] | Glioma | Long peptide | 29 | Adjuvant | H3.3K27M | - | Neoantigen-specific T-cell responses in 39% of patients | 12-mo OS 40%; mOS 16.1 vs. 9.8 mo in immune responders vs. non-responders; four grade 3 AEs |
| Platten, 2021 [27] | Glioma | Long peptide | 32 | Adjuvant | IDH1 R132H | Standard therapy | Neoantigen-specific CD4+ T-cell responses in 93.3% patients | 3-yr PFS 63%; 3-yr OS 84%; no vaccine-related grade 3/4 AEs |
| Kloor, 2020 [28] | MSI-H/dMMR cancers | Long peptide | 22 | Adjuvant | TAF1B, HT001, AIM2 | - | Neoantigen-specific T-cell responses in 86.3% patients | One SD > 7-mo no vaccine-related grade 3/4 AEs |
| Rappaport, 2024 [29] | Pan-cancer | Self-amplifying mRNA | 19 | Advanced | KRAS G12C, G12D, G12V, G13D, Q61H TP53 R213L, S127Y | Nivolumab + Ipilimumab | KRAS neoantigen-specific T-cell responses in 88% patients, TP53 neoantigen-specific T-cell responses in 83% patients | ORR 0%; SD 42%; PD 58%; mPFS 1.9 mo and OS 7.9 mo; two grade 3/4 AEs |
| Wainber, 2025 [36] | Pancreatic cancer, colorectal cancer | Long peptide | 25 | Adjuvant | KRAS G12D, G12R | - | Neoantigen-specific T-cell responses in 84% patients | HR for PFS 0.23 in immune responders vs. non-responders |
3.3. Comparative Immunogenicity of Neoantigen Vaccine Types
3.4. Immune Conditions Across Treatment Setting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Tate, T.; Matsumoto, S.; Nemoto, K.; Leisegang, M.; Nagayama, S.; Obama, K.; Nakamura, Y.; Kiyotani, K. Identification of T cell receptors targeting a neoantigen derived from recurrently mutated FGFR3. Cancers 2023, 15, 1031. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Effenberger, C.; Matsumoto, S.; Tanaka, T.; Nakamura, Y.; Kiyotani, K. Identification of shared neoantigens derived from frameshift mutations in the APC gene. Front. Immunol. 2025, 16, 1574955. [Google Scholar] [CrossRef]
- Effenberger, C.; Wu, X.; Zhao, P.; Matsumoto, S.; Nakamura, Y.; Kiyotani, K. Bispecific antibody targeting shared indel-derived neoantigen of APC. Front. Immunol. 2025, 16, 1574958. [Google Scholar] [CrossRef]
- Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348, 803–808. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565, 234–239. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanovic, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020, 183, 347–362. [Google Scholar] [CrossRef]
- Fang, Y.; Mo, F.; Shou, J.; Wang, H.; Luo, K.; Zhang, S.; Han, N.; Li, H.; Ye, S.; Zhou, Z.; et al. A pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors. Clin. Cancer Res. 2020, 26, 4511–4520. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Han, N.; Jiang, J.; Xu, Y.; Ma, D.; Lu, L.; Guo, X.; Qiu, M.; Huang, Q.; et al. A neoantigen-based peptide vaccine for patients with advanced pancreatic cancer refractory to standard treatment. Front. Immunol. 2021, 12, 691605. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, T.; Morisaki, T.; Kubo, M.; Onishi, H.; Hirano, T.; Morisaki, S.; Eto, M.; Monji, K.; Takeuchi, A.; Nakagawa, S.; et al. Efficacy of intranodal neoantigen peptide-pulsed dendritic cell vaccine monotherapy in patients with advanced solid tumors: A retrospective analysis. Anticancer. Res. 2021, 41, 4101–4115. [Google Scholar] [CrossRef]
- Awad, M.M.; Govindan, R.; Balogh, K.N.; Spigel, D.R.; Garon, E.B.; Bushway, M.E.; Poran, A.; Sheen, J.H.; Kohler, V.; Esaulova, E.; et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell 2022, 40, 1010–1026. [Google Scholar] [CrossRef]
- Zelba, H.; McQueeney, A.; Rabsteyn, A.; Bartsch, O.; Kyzirakos, C.; Kayser, S.; Harter, J.; Latze, P.; Hadaschik, D.; Battke, F.; et al. Adjuvant treatment for breast cancer patients using individualized neoantigen peptide vaccination-A retrospective observation. Vaccines 2022, 10, 1182. [Google Scholar] [CrossRef]
- Latzer, P.; Zelba, H.; Battke, F.; Reinhardt, A.; Shao, B.; Bartsch, O.; Rabsteyn, A.; Harter, J.; Schulze, M.; Okech, T.; et al. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nat. Commun. 2024, 15, 6870. [Google Scholar] [CrossRef]
- Morisaki, T.; Kubo, M.; Morisaki, S.; Umebayashi, M.; Tanaka, H.; Koya, N.; Nakagawa, S.; Tsujimura, K.; Yoshimura, S.; Kiyotani, K.; et al. Retrospective analysis of HLA class II-restricted neoantigen peptide-pulsed dendritic cell vaccine for breast cancer. Cancers 2024, 16, 4204. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.A.; Moranzoni, G.; Chea, V.; McGregor, B.A.; Blass, E.; Tu, C.R.; Vanasse, A.P.; Forman, C.; Forman, J.; Afeyan, A.B.; et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 2025, 639, 474–482. [Google Scholar] [CrossRef]
- Oyama, K.; Nakata, K.; Abe, T.; Hirotaka, K.; Fujimori, N.; Kiyotani, K.; Iwamoto, C.; Ikenaga, N.; Morisaki, S.; Umebayashi, M.; et al. Neoantigen peptide-pulsed dendritic cell vaccine therapy after surgical treatment of pancreatic cancer: A retrospective study. Front. Immunol. 2025, 16, 1571182. [Google Scholar] [CrossRef]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Lower, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrors, B.; et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef]
- Weber, J.S.; Carlino, M.S.; Khattak, A.; Meniawy, T.; Ansstas, G.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet 2024, 403, 632–644. [Google Scholar] [CrossRef]
- Ingels, J.; De Cock, L.; Stevens, D.; Mayer, R.L.; Thery, F.; Sanchez, G.S.; Vermijlen, D.; Weening, K.; De Smet, S.; Lootens, N.; et al. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep. Med. 2024, 5, 101516. [Google Scholar] [CrossRef]
- Zhang, X.; Goedegebuure, S.P.; Chen, M.Y.; Mishra, R.; Zhang, F.; Yu, Y.Y.; Singhal, K.; Li, L.; Gao, F.; Myers, N.B.; et al. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med. 2024, 16, 131. [Google Scholar] [CrossRef]
- Yarchoan, M.; Gane, E.J.; Marron, T.U.; Perales-Linares, R.; Yan, J.; Cooch, N.; Shu, D.H.; Fertig, E.J.; Kagohara, L.T.; Bartha, G.; et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: A phase 1/2 trial. Nat. Med. 2024, 30, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Sethna, Z.; Guasp, P.; Reiche, C.; Milighetti, M.; Ceglia, N.; Patterson, E.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 2025, 639, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Taitt, J.M.; Villanueva-Meyer, J.E.; Bonner, E.R.; Nejo, T.; Lulla, R.R.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J. Clin. Investig. 2020, 130, 6325–6337. [Google Scholar] [CrossRef]
- Platten, M.; Bunse, L.; Wick, A.; Bunse, T.; Le Cornet, L.; Harting, I.; Sahm, F.; Sanghvi, K.; Tan, C.L.; Poschke, I.; et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021, 592, 463–468. [Google Scholar] [CrossRef]
- Kloor, M.; Reuschenbach, M.; Pauligk, C.; Karbach, J.; Rafiyan, M.R.; Al-Batran, S.E.; Tariverdian, M.; Jager, E.; von Knebel Doeberitz, M. A frameshift peptide neoantigen-based vaccine for mismatch repair-deficient cancers: A phase I/IIa clinical trial. Clin. Cancer Res. 2020, 26, 4503–4510. [Google Scholar] [CrossRef]
- Rappaport, A.R.; Kyi, C.; Lane, M.; Hart, M.G.; Johnson, M.L.; Henick, B.S.; Liao, C.Y.; Mahipal, A.; Shergill, A.; Spira, A.I.; et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: Phase 1 trial interim results. Nat. Med. 2024, 30, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Tran, E.; Turcotte, S.; Gros, A.; Robbins, P.F.; Lu, Y.C.; Dudley, M.E.; Wunderlich, J.R.; Somerville, R.P.; Hogan, K.; Hinrichs, C.S.; et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014, 344, 641–645. [Google Scholar] [CrossRef]
- Zacharakis, N.; Chinnasamy, H.; Black, M.; Xu, H.; Lu, Y.C.; Zheng, Z.; Pasetto, A.; Langhan, M.; Shelton, T.; Prickett, T.; et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 2018, 24, 724–730. [Google Scholar] [CrossRef]
- Leidner, R.; Sanjuan Silva, N.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [Google Scholar] [CrossRef]
- Kim, S.P.; Vale, N.R.; Zacharakis, N.; Krishna, S.; Yu, Z.; Gasmi, B.; Gartner, J.J.; Sindiri, S.; Malekzadeh, P.; Deniger, D.C.; et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. 2022, 10, 932–946. [Google Scholar] [CrossRef]
- Douglass, J.; Hsiue, E.H.; Mog, B.J.; Hwang, M.S.; DiNapoli, S.R.; Pearlman, A.H.; Miller, M.S.; Wright, K.M.; Azurmendi, P.A.; Wang, Q.; et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 2021, 6, eabd5515. [Google Scholar] [CrossRef]
- Hsiue, E.H.; Wright, K.M.; Douglass, J.; Hwang, M.S.; Mog, B.J.; Pearlman, A.H.; Paul, S.; DiNapoli, S.R.; Konig, M.F.; Wang, Q.; et al. Targeting a neoantigen derived from a common TP53 mutation. Science 2021, 371, eabc8697. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Weekes, C.D.; Furqan, M.; Kasi, P.M.; Devoe, C.E.; Leal, A.D.; Chung, V.; Perry, J.R.; Kheoh, T.; McNeil, L.K.; et al. Lymph node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: Phase 1 AMPLIFY-201 trial final results. Nat. Med. 2025, 31, 3648–3653. [Google Scholar] [CrossRef] [PubMed]
- Grippin, A.J.; Marconi, C.; Copling, S.; Li, N.; Braun, C.; Woody, C.; Young, E.; Gupta, P.; Wang, M.; Wu, A.; et al. SARS-CoV-2 mRNA vaccines sensitize tumours to immune checkpoint blockade. Nature 2025, 647, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Ayala, R.; Ramarathinam, S.H.; Illing, P.T.; Faridi, P.; Song, J.; Purcell, A.W.; Croft, N.P. Immunopeptidomic analysis reveals that deamidated HLA-bound peptides arise predominantly from deglycosylated precursors. Mol. Cell Proteomics 2020, 19, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Nishiki, K.; Hiraki, Y.; Kato, H.; Iwama, M.; Shiraishi, O.; Yasuda, A.; Shinkai, M.; Kimura, Y.; Sukegawa, Y.; et al. Phase II adjuvant cancer-specific vaccine therapy for esophageal cancer patients curatively resected after preoperative therapy with pathologically positive nodes; possible significance of tumor immune microenvironment in its clinical effects. Ann. Surg. 2022, 275, e155–e162. [Google Scholar] [CrossRef]
- Kono, K.; Iinuma, H.; Akutsu, Y.; Tanaka, H.; Hayashi, N.; Uchikado, Y.; Noguchi, T.; Fujii, H.; Okinaka, K.; Fukushima, R.; et al. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J. Transl. Med. 2012, 10, 141. [Google Scholar] [CrossRef]
- Makino, T.; Miyata, H.; Yasuda, T.; Kitagawa, Y.; Muro, K.; Park, J.H.; Hikichi, T.; Hasegawa, T.; Igarashi, K.; Iguchi, M.; et al. A phase 3, randomized, double-blind, multicenter, placebo-controlled study of S-588410, a five-peptide cancer vaccine as an adjuvant therapy after curative resection in patients with esophageal squamous cell carcinoma. Esophagus 2024, 21, 447–455. [Google Scholar] [CrossRef] [PubMed]

| Author | Cancer Type | Vaccine Type | Number of Patients | Treatment Setting | Combination Therapy | Immune Response | Clinical Response | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tested | CD8+/ CD4+ | CD8+ | CD4+ | CR | PR | SD | PD | Other Outcomes | ||||||
| Carreno, 2015 [5] | Melanoma | Short peptides (DCs) | 3 | Adjuvant | - | 21 | ND | 33.3% | ND | 1 | 0 | 2 | 0 | |
| Ott, 2017 [6] | Melanoma | Long peptide | 6 | Adjuvant | - | 97 | ND | 15.5% | 59.8% | - | - | - | 2 | 4/6 relapse-free at 25 mo; 2 had CR after anti-PD-1 |
| Keskin, 2019 [7] | Glioblastoma | Long peptide | 8 | Adjuvant | 37 | 19.0% | 5.4% | 13.5% | 0 | 0 | 0 | 8 | mPFS 7.6 mo; mOS 16.8 mo | |
| Hilf, 2019 [8] | Glioblastoma | Long peptide | 8 | Adjuvant | 13 | 84.6% | 38.5% | 84.6% | 1 | 3 | 1 | 3 | mPFS 14.5 mo; mOS 24.8 mo | |
| Ott, 2020 [9] | Melanoma | Long peptide | 27 | Advanced | Nivolumab | 570 | 52% | 24% | 42% | 1 | 15 | 7 | 4 | mPFS 23.5 mo; 12-mo OS 96% |
| NSCLC | Long peptide | 18 | Advanced | Nivolumab | 47% | 0 | 7 | 9 | 2 | mPFS 8.5 mo; 12-mo OS 83% | ||||
| Bladder cancer | Long peptide | 15 | Advanced | Nivolumab | 52% | 1 | 3 | 9 | 2 | mPFS 5.8 mo; 12-mo OS 67% | ||||
| Fang, 2020 [10] | Pan-cancer | Long peptide | 22 | Advanced | - | 176 | 80.1% | ND | ND | 0 | 0 | 15 | 7 | mPFS 4.6 mo; mOS not reached |
| Chen, 2021 [11] | Pancreatic cancer | Long peptide | 7 | Advanced | - | 70 | 44.3% | ND | ND | 0 | 2 | 4 | 1 | Mean PFS 3.1 mo; mean OS 24.1 mo |
| Morisaki, 2021 [12] | Pan-cancer | Short peptides (DCs) | 17 | Advanced | - | 119 | ND | 23.5% | ND | 1 | 3 | 11 | 2 | |
| Awad, 2022 [13] | NSCLC | Long peptide | 21 | Advanced | Pembrolizumab | 204 | 55% | 31% | 39% | 0 | 11 | 9 | 1 | mPFS 7.2 mo; mOS 20 mo |
| Zelba 2022, [14] | Breast cancer | Short + long peptide | 4 | Adjuvant | - | 37 | 62.2% | 43.2% | 48.6% | - | - | - | - | No recurrence; RFS: 24–60 mo |
| Latzer, 2024 [15] | Glioblastoma | Short + long peptide | 173 | Adjuvant/ Advanced | - | - | - | - | - | - | - | - | mOS 31.9 mo | |
| Morisaki, 2024 [16] | Breast cancer | Short + long peptides (DCs) | 5 | Adjuvant | - | 31 | ND | 12.9% | 32.3% | - | - | - | - | |
| Braun, 2025 [17] | Renal cell carcinoma | Long peptide | 9 | Adjuvant | Ipilimumab | 129 | 47.3% | - | - | - | - | - | - | No recurrence at 40.2 mo |
| Oyama, 2025 [18] | Pancreatic cancer | Short + long peptides (DCs) | 7 | Adjuvant | - | 47 | 36.2% | 35.7% | 40.0% | - | - | - | - | 6/7 recurrence-free at 61 mo |
| 9 | Advanced | - | 78 | 24.4% | 25.4% | 18.8% | - | - | - | - | Better OS in responders vs. in non-responder | |||
| Sahin, 2017 [19] | Melanoma | mRNA | 13 | Adjuvant/ Advanced | - | 125 | 76.0% | 24.8% | 48.0% | 0 | 0 | 0 | 5 | Tumor regressions in advanced patients; no serious AEs |
| Rojas, 2023 [20] | Pancreatic cancer | mRNA | 16 | Adjuvant | Atezolizumab + Chemotherapy | 230 | ND | 10.9% | ND | - | - | - | - | RFS 18 mo; grade ≥3 AEs in 6% patient |
| Weber, 2024 [21] | Melanoma | mRNA | 157 | Adjuvant | Pembrolizumab | - | - | - | - | - | - | - | - | 18-mo RFS 79% (vs. 62% control); grade ≥3 AEs in 12% patients |
| Ingels, 2024 [22] | NSCLC | mRNA (DCs) | Adjuvant | - | 33 | 42.4% | 27.3% | 15.2% | - | - | - | - | 50% (3/6) recurrence within 2 yr | |
| Zhang, 2024 [23] | Breast cancer | DNA | 18 | Adjuvant | - | 45 | 31.1% | 22.2% | 11.1% | - | - | - | - | 36-mo RFS 87.5%; no grade 3 AEs |
| Yarchoan, 2024 [24] | Hepatocellular carcinoma | DNA | 36 | Advanced | Pembrolizumab | 248 | 64.0% | - | - | 3 | 8 | 9 | 14 | No grade 3 AEs |
| Feature | Peptide | Peptide-Pulsed DCs | RNA | DNA |
|---|---|---|---|---|
| Immunogenicity | ++ | +++ | ++ | + |
| Safety (low toxicity) | +++ | +++ | + | ++ |
| Cost | +++ | − | − | ++ |
| Rapid manufacturing | +++ | − (requires cell manufacturing) | + | + |
| Multi-epitope encoding | + (possible, but increase cost) | + (possible, but increase cost) | +++ (but may occur immunodominance) | +++ |
| Post-translational modification compatibility | +++ | +++ | − | − |
| Stability/storage | ++ | ± (frozen/short-term) | ± (frozen storage needed) | ++ |
| Delivery complexity | ++ | − (ex vivo cell manufacturing) | ± (LNP needed) | − |
| Scalability | ++ | − (limited by cell manufacturing) | ++ | ++ |
| Clinical momentum | + | ± | +++ (accelerated by SARS-CoV-2 vaccine) | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, A.-C.; Nakamura, Y.; Kiyotani, K. Advances in Neoantigen-Based Cancer Vaccines. Cancers 2026, 18, 144. https://doi.org/10.3390/cancers18010144
Wu A-C, Nakamura Y, Kiyotani K. Advances in Neoantigen-Based Cancer Vaccines. Cancers. 2026; 18(1):144. https://doi.org/10.3390/cancers18010144
Chicago/Turabian StyleWu, An-Chih, Yusuke Nakamura, and Kazuma Kiyotani. 2026. "Advances in Neoantigen-Based Cancer Vaccines" Cancers 18, no. 1: 144. https://doi.org/10.3390/cancers18010144
APA StyleWu, A.-C., Nakamura, Y., & Kiyotani, K. (2026). Advances in Neoantigen-Based Cancer Vaccines. Cancers, 18(1), 144. https://doi.org/10.3390/cancers18010144

