Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,922)

Search Parameters:
Keywords = new co-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 993 KiB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Viewed by 226
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

15 pages, 1363 KiB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 - 1 Aug 2025
Viewed by 159
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

20 pages, 10909 KiB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 152
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 204
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 245
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

11 pages, 1219 KiB  
Article
The Church and Academia Model: New Paradigm for Spirituality and Mental Health Research
by Marta Illueca, Samantha M. Meints, Megan M. Miller, Dikachi Osaji and Benjamin R. Doolittle
Religions 2025, 16(8), 998; https://doi.org/10.3390/rel16080998 (registering DOI) - 31 Jul 2025
Viewed by 208
Abstract
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially [...] Read more.
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially pertinent to inquiries around the role of spirituality in mental health, with special attention to chronic pain conditions. The latter have become an open channel for novel avenues to explore the field of spirituality-based interventions within the arena of psychological inquiry. To address this, the authors developed and implemented the Church and Academia Model, a prototype for an innovative collaborative research project, with the aim of exploring the role of devotional practices, and their potential to be used as therapeutic co-adjuvants or tools to enhance the coping skills of patients with chronic pain. Keeping in mind that the church presents a rich landscape for clinical inquiry with broad relevance for clinicians and society at large, we created a unique hybrid research model. This is a new paradigm that focuses on distinct and well-defined studies where the funding, protocol writing, study design, and implementation are shared by experts from both the pastoral and clinical spaces. A team of theologians, researchers, and healthcare providers, including clinical pain psychologists, built a coalition leveraging their respective skill sets. Each expert is housed in their own environs, creating a functional network that has proven academically productive and pastorally effective. Key outputs include the creation and validation of a new psychometric measure, the Pain-related PRAYER Scale (PPRAYERS), an associated bedside prayer tool and a full-scale dissemination strategy through journal publications and specialty society conferences. This collaborative prototype is also an ideal fit for integrated knowledge translation platforms, and it is a promising paradigm for future collaborative projects focused on spirituality and mental health. Full article
Show Figures

Figure 1

28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Viewed by 151
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Graphical abstract

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 225
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

33 pages, 1777 KiB  
Review
Immunomodulatory Natural Products in Cancer Organoid-Immune Co-Cultures: Bridging the Research Gap for Precision Immunotherapy
by Chang-Eui Hong and Su-Yun Lyu
Int. J. Mol. Sci. 2025, 26(15), 7247; https://doi.org/10.3390/ijms26157247 - 26 Jul 2025
Viewed by 597
Abstract
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We [...] Read more.
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We conducted a comprehensive literature analysis examining natural products tested in cancer organoids, immunomodulatory mechanisms from traditional models, technical advances in organoid-immune co-cultures, and standardization requirements for clinical translation. Our analysis reveals a critical research gap: no published studies have investigated natural product-mediated immunomodulation using organoid-immune co-culture systems. Even though compounds like curcumin, resveratrol, and medicinal mushroom polysaccharides show extensive immunomodulatory effects in two-dimensional (2D) cultures, and organoid technology achieves high clinical correlation for drug response prediction, all existing organoid studies focus exclusively on direct cytotoxicity. Technical challenges include compound stability, limited matrix penetration requiring substantially higher concentrations than 2D cultures, and maintaining functional immune populations in three-dimensional (3D) systems. The convergence of validated organoid-immune co-culture platforms, Food and Drug Administration (FDA) regulatory support through the Modernization Act 2.0, and extensive natural product knowledge creates unprecedented opportunities. Priority research directions include systematic screening of immunomodulatory natural products in organoid-immune co-cultures, development of 3D-optimized delivery systems, and clinical validation trials. Success requires moving beyond cytotoxicity-focused studies to investigate immunomodulatory mechanisms in physiologically relevant 3D systems, potentially unlocking new precision cancer immunotherapy approaches. Full article
Show Figures

Figure 1

18 pages, 2753 KiB  
Article
SleepShifters: The Co-Development of a Preventative Sleep Management Programme for Shift Workers and Their Employers
by Amber F. Tout, Nicole K. Y. Tang, Carla T. Toro, Tracey L. Sletten, Shantha M. W. Rajaratnam, Charlotte Kershaw, Caroline Meyer and Talar R. Moukhtarian
Int. J. Environ. Res. Public Health 2025, 22(8), 1178; https://doi.org/10.3390/ijerph22081178 - 25 Jul 2025
Viewed by 373
Abstract
Shift work can have an adverse impact on sleep and wellbeing, as well as negative consequences for workplace safety and productivity. SleepShifters is a co-developed sleep management programme that aims to equip shift workers and employers with the skills needed to manage sleep [...] Read more.
Shift work can have an adverse impact on sleep and wellbeing, as well as negative consequences for workplace safety and productivity. SleepShifters is a co-developed sleep management programme that aims to equip shift workers and employers with the skills needed to manage sleep from the onset of employment, thus preventing sleep problems and their associated consequences from arising. This paper describes the co-development process and resulting programme protocol of SleepShifters, designed in line with the Medical Research Council’s framework for the development and evaluation of complex interventions. Programme components were co-produced in partnership with stakeholders from four organisations across the United Kingdom, following an iterative, four-stage process based on focus groups and interviews. As well as a handbook containing guidance on shift scheduling, workplace lighting, and controlled rest periods, SleepShifters consists of five key components: (1) an annual sleep awareness event; (2) a digital sleep training induction module for new starters; (3) a monthly-themed sleep awareness campaign; (4) a website, hosting a digital Cognitive Behavioural Therapy for insomnia platform and supportive video case studies from shift-working peers; (5) a sleep scheduling app for employees. Future work will implement and assess the effectiveness of delivering SleepShifters in organisational settings. Full article
(This article belongs to the Special Issue Digital Innovations for Health Promotion)
Show Figures

Figure 1

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 185
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
16 pages, 2234 KiB  
Article
Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators
by Hasan Saygin and Asli Baysal
Int. J. Mol. Sci. 2025, 26(15), 7178; https://doi.org/10.3390/ijms26157178 - 25 Jul 2025
Viewed by 157
Abstract
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation [...] Read more.
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation of these substances, comprising other risks to the ecosystem. However, the impacts of the co-occurrence of micro/nanoplastics and endotoxins in seawater remain unknown. We studied the effects of endotoxin at three concentration levels in seawater and its combined impact with micro/nanoplastics at three doses on biophysicochemical processes in seawater through spectroscopic analysis, leaching indicators (turbidity and humidification index), oxidative potential, antioxidant activity, and biofilm production. The results showed that the UV–VIS spectra of seawater changed with their co-occurrence. The co-presence of MNPs and endotoxins increased the turbidity in seawater, indicating the leaching of micro/nanoplastic in the presence of endotoxins. A higher humification index in seawater showed the formation of dissolved organic substances in micro/nanoplastic and endotoxin seawater compared to the results for untreated seawater. Dithioerythritol assay revealed the differences in oxidative potentials of plain seawater and seawater in the co-presence of micro/nanoplastics and endotoxins. An important biochemical reaction in seawater was tested using biofilm formation. The results showed higher biofilm formation in their co-presence. This study provides new insights into the effects of micro/nanoplastics and their composite pollution with endotoxins on biophysiochemical indicators in seawater. Full article
Show Figures

Figure 1

19 pages, 3813 KiB  
Article
Dual Policy–Market Orchestration: New R&D Institutions Bridging Innovation and Entrepreneurship
by Yinhai Fang and Xinping Qiu
Adm. Sci. 2025, 15(8), 289; https://doi.org/10.3390/admsci15080289 - 24 Jul 2025
Viewed by 429
Abstract
This study investigates how new R&D institutions mediate policy–market disjunctures to foster integrated innovation and entrepreneurship ecosystems. Employing a longitudinal case analysis (2013–2023) of the Jiangsu Industrial Technology Research Institute (JITRI), we delineate a three-phase evolutionary process: (1) an initial government-dominated phase, stimulating [...] Read more.
This study investigates how new R&D institutions mediate policy–market disjunctures to foster integrated innovation and entrepreneurship ecosystems. Employing a longitudinal case analysis (2013–2023) of the Jiangsu Industrial Technology Research Institute (JITRI), we delineate a three-phase evolutionary process: (1) an initial government-dominated phase, stimulating foundational capability development through contract R&D; (2) a subsequent marketization phase, enabling systemic resource integration via co-creation centers and global networks; and (3) a culminating synergy phase, where policy–market alignment facilitates ecosystem optimization through crowdsourced R&D and cross-domain collaboration. Three core mechanisms underpin this adaptation: policy–market coupling (providing external momentum), endogenous capability development (absorption to innovation), and dynamic resource orchestration (acquisition to optimization). JITRI’s hybrid governance model demonstrates that stage-contingent interventions—specifically, policy anchoring in early stages followed by market-responsive resource allocation—effectively transmute inherent tensions into productive synergies. These findings yield implementable frameworks for structuring innovative ecosystems and underscore the necessity for comparative studies to establish broader theoretical generalizability. Full article
(This article belongs to the Section International Entrepreneurship)
Show Figures

Figure 1

Back to TopTop