Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = new bioactive films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1654 KiB  
Review
Bioactive Plant-Derived Compounds as Novel Perspectives in Oral Cancer Alternative Therapy
by Gabriela Mitea, Verginica Schröder and Irina Mihaela Iancu
Pharmaceuticals 2025, 18(8), 1098; https://doi.org/10.3390/ph18081098 - 24 Jul 2025
Viewed by 433
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate [...] Read more.
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate approach of anticancer therapy. Furthermore, new treatment strategies for OSCC are needed to improve existing therapeutic options. Bioactive compounds found in medicinal plants could be used to support these strategies. It is already known that they have an increased potential for action and a safety profile; therefore, they could improve the therapeutic effect of classical chemotherapeutic agents in combination therapies. Methodology: This research was based on an extensive review of recently published studies in scientific databases (PubMed, Scopus, and Web of Science). The selection criteria were based on experimental protocols investigating molecular mechanisms, synergistic actions with conventional anticancer agents, and novel formulation possibilities (e.g., nanoemulsions and mucoadhesive films) for the targeted delivery of bioactive compounds in OSCC. Particular attention was given to in vitro, in vivo, translational, and clinical studies that have proven therapeutic relevance. Results: Recent discoveries regarding the effect of bioactive compounds in the treatment of oral cancer were analyzed, with a view to integrating them into oncological practice for increasing therapeutic efficacy and reducing the occurrence of adverse reactions and treatment resistance. Conclusions: Significant progress has been achieved in this review, allowing us to appreciate that the valorization of these bioactive compounds is emerging. Full article
Show Figures

Graphical abstract

18 pages, 6158 KiB  
Article
Poly(butylene succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging
by Szymon Macieja, Magdalena Zdanowicz, Małgorzata Mizielińska, Wojciech Jankowski and Artur Bartkowiak
Polymers 2025, 17(13), 1784; https://doi.org/10.3390/polym17131784 - 27 Jun 2025
Viewed by 372
Abstract
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose [...] Read more.
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose (HPMC) modified with CO2 extract from sea buckthorn (ES) or its ethosomes (ET) at amounts of 1 or 5 pph per HPMC. In addition, the developed films were exposed to accelerated aging (UV radiation and elevated temperature) to determine its effect on the films’ properties. Based on SEM, it can be concluded that accelerated aging results in the uncovering of the extract and ethosomes from the coating’s bulk. GPC showed a decrease in the molecular weight of PBS after treatment, additionally amplified by the presence of HPMC. However, the addition of ES or ET in low concentrations reduced the level of polyester degradation. The presence of the modified coating and its treatment increased the oxygen barrier (a decrease from 324 cm3/m2 × 24 h for neat PBS to 208 cm3/m2 × 24 h for the coated and modified PBS ET5). Despite the presence of colored extract or ethosomes in the coating, the color differences compared with neat PBS were imperceptible (ΔE < 1). The addition of 5 pph of sea buckthorn extract or its ethosomes in combination with accelerated aging resulted in the complete inhibition of the growth of E. coli and S. aureus, which was not observed in non-aged samples. The results obtained demonstrate an improvement in bioactive properties and protection against the negative effects of UV radiation on the film due to the presence of ET or ES in the coating. The developed systems could be used in the food industry as active packaging. Full article
Show Figures

Graphical abstract

20 pages, 7772 KiB  
Review
Recent Advances, Challenges, and Functional Applications of Natural Phenolic Compounds in the Meat Products Industry
by Ting Bai, Xiulian Wang, Wenqing Du, Jie Cheng, Jiamin Zhang, Yin Zhang, Roungdao Klinjapo, Suvaluk Asavasanti and Patchanee Yasurin
Antioxidants 2025, 14(2), 138; https://doi.org/10.3390/antiox14020138 - 24 Jan 2025
Cited by 1 | Viewed by 1576
Abstract
Natural phenolic compounds (NPCs) have been proven to effectively extend the storage time of meat products in recent years. To promote the discovery of more NPCs and their applications, this review examines recent progress in the classification, antioxidant, and antibacterial mechanisms of NPCs [...] Read more.
Natural phenolic compounds (NPCs) have been proven to effectively extend the storage time of meat products in recent years. To promote the discovery of more NPCs and their applications, this review examines recent progress in the classification, antioxidant, and antibacterial mechanisms of NPCs used in meat products. These compounds are found in both edible and inedible parts of plants, including fruits, vegetables, and trees. The recycling of agricultural by-products aligns with green agricultural trends and serves as a guideline for developing new sources of natural additives. Studies on the application of NPCs in various livestock and poultry products, either directly mixed into the matrix or indirectly contacted by preparation into bioactive films and packaging materials, has highlighted the great potential of NPCs. The pro-oxidative effects of NPCs on proteins and their interactions with biological macromolecules, such as proteins, provide new ideas for in-depth research on antioxidant and antibacterial mechanisms. Full article
Show Figures

Figure 1

13 pages, 918 KiB  
Article
Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils
by Jolanta Kowalonek, Bogna Łukomska and Aleksandra Szydłowska-Czerniak
Molecules 2025, 30(2), 245; https://doi.org/10.3390/molecules30020245 - 9 Jan 2025
Cited by 1 | Viewed by 1112
Abstract
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and [...] Read more.
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures. The color of alginate films before and after the addition of oils from both fruit seeds was evaluated by measuring color coordinates in the CIELab color space: L* (lightness), a* (red-green), and b* (yellow-blue). The lightness values ranged between 94.21 and 95.08, and the redness values varied from −2.20 to −2.65, slightly decreasing for the films enriched with oils. In contrast, yellowness values ranged between 2.93 and 5.80 for the obtained active materials, significantly increasing compared to the control alginate film (L* = 95.48, a* = −1.92, and b* = −0.14). Changes in the structure and morphology of the alginate films after incorporating bioactive-rich oils were observed using scanning electron microscopy (SEM). Films with RSO and oil mixtures had more developed surfaces than films with BCSO. Moreover, the cross-sections of the films with RSO showed holes evenly distributed inside the films, indicating traces of volatile compounds. Thermal decomposition of the alginate films loaded with oils showed five separate stages (to 125 °C, 125–300 °C, 310–410 °C, 410–510 °C, and 750–1000 °C, respectively) related to the oil and surfactant decomposition. The shape of the thermogravimetric curves did not depend on the oil type. The added oils reduced the efficiency of alginate decomposition in the first stage. The obtained results showed that new functional and thermally stable food packaging films based on sodium alginate with a visual appearance acceptable to consumers could be produced by utilizing oils from fruit seed residues. Full article
Show Figures

Figure 1

24 pages, 3944 KiB  
Article
Biocomposite Active Whey Protein Films with Thyme Reinforced by Electrospun Polylactic Acid Fiber Mat
by Andreea (Lanciu) Dorofte, Iulia Bleoanca, Florentina Ionela Bucur, Gabriel Mustatea, Daniela Borda, Felicia Stan and Catalin Fetecau
Foods 2025, 14(1), 119; https://doi.org/10.3390/foods14010119 - 3 Jan 2025
Cited by 1 | Viewed by 1385
Abstract
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) [...] Read more.
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning. While TEO bioactivity is mainly related to its antimicrobial and antioxidant properties, the PLA fiber mat uplifted the composite mechanical and barrier properties of films. The bi-layer films obtained were characterized by SEM, showing the distribution of the electrospun fiber mat and an increased thickness of the PLA layer from WF/G1 to WF/G4, while FTIR spectra showed the structural vibrations of the functional groups. The experimental results show that WF/G4 have a FTIR fingerprint resembling PLA, retained ~50% of the volatile compounds present in the uncovered film (WF/TEO), while it only had 1.41 ± 0.14 (%) of the permeability to octanol of the WF/G1 film. WF/G4 exhibited 33.73% of the WVP of WF/G1 and displayed the highest tensile strength, about 2.70 times higher than WF/TEO. All films studied revealed similar antimicrobial effect against Bacillus cereus, Geotrichum candidum, and Rhodotorula glutinis and good antiradical activity, thus demonstrating good prospects to be applied as food packaging materials. WF/G composite materials are good candidates to be used as bioactive flavoring primary packaging in hard cheese making. Full article
(This article belongs to the Special Issue Advances in the Development of Sustainable Food Packaging)
Show Figures

Figure 1

26 pages, 2710 KiB  
Article
UV-C-Activated Riboflavin Crosslinked Gelatin Film with Bioactive Nanoemulsion for Enhanced Preservation of Fresh Beef in Modified Atmosphere Packaging
by Jumana Mahmud, Peter Muranyi, Stephane Salmieri, Shiv Shankar and Monique Lacroix
Foods 2024, 13(21), 3504; https://doi.org/10.3390/foods13213504 - 31 Oct 2024
Cited by 1 | Viewed by 2493
Abstract
This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (w/w) for crosslinking gelatin under UV-C exposure for 4 to 22 [...] Read more.
This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (w/w) for crosslinking gelatin under UV-C exposure for 4 to 22 min. Physicochemical analyses revealed enhanced tensile strength, reduced water vapor permeability, and lower water solubility in films crosslinked for up to 13 min. FTIR analysis demonstrated significant molecular changes, confirming the formation of crosslinking connections in gelatin–riboflavin films. Antimicrobial nanoemulsion (NE) (0.5, 0.75, 1% v/v) was incorporated into crosslinked films and applied to fresh beef. The 1% NE film exhibited the strongest antimicrobial effect, extending shelf-life by 20 days. In vitro release study confirmed Fickian diffusion behavior in the 1% NE film. This study also investigated the synergy between 1% NE film and three different types of modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of beef for 26 days. The best results were achieved with 1% NE film under MAP1 and MAP2, which preserved meat redness and prevented lipid oxidation, extending the shelf-life up to 26 days. Therefore, UV-C irradiation-induced crosslinked bioactive film combined with high-oxygen MAP offers a promising solution for prolonging the shelf-life of beef. Full article
(This article belongs to the Special Issue Active Packaging in Food Storage: From Development to Utilization)
Show Figures

Graphical abstract

21 pages, 3495 KiB  
Article
Green Packaging Films with Antioxidant Activity Based on Pectin and Camellia sinensis Leaf Extract
by Renata Dobrucka, Mikołaj Pawlik and Marcin Szymański
Molecules 2024, 29(19), 4699; https://doi.org/10.3390/molecules29194699 - 4 Oct 2024
Cited by 7 | Viewed by 2195
Abstract
In the packaging materials sector, increasing globalization has created the need for increased efforts to develop consumer protection measures. Consequently, new packaging materials are being sought to replace petroleum-based materials in the future. For this reason, global awareness of the environmental problems associated [...] Read more.
In the packaging materials sector, increasing globalization has created the need for increased efforts to develop consumer protection measures. Consequently, new packaging materials are being sought to replace petroleum-based materials in the future. For this reason, global awareness of the environmental problems associated with the use of synthetic and non-degradable packaging has increased the attention paid to bio-packaging based on natural and biodegradable polymers. The bio-packaging sector is developing innovations to address the sustainability issues facing the food packaging industry. Our research has shown that green matcha extract can be a promising source of antioxidants for the production of bioactive pectin films. This study further confirmed that green matcha extract can be a promising source of antioxidants for the production of bioactive pectin films. The antioxidant activity test showed high activity of films containing matcha extract. The antioxidant activity of films without matcha addition, P, PJ, PC, PJC, was negligible. The addition of matcha to the polymer matrix did not significantly affect the mechanical properties (TS, EB) of the films obtained. The addition of cellulose had the greatest effect on changing the mechanical properties. It caused a twofold increase in the mechanical properties of the obtained packaging films. The addition of matcha significantly improved the barrier properties (for PM films, the WVTR was 3.40 [g/m2d]; for PJM films the WVTR was 1.70 [g/m2d]). The green packaging films showed no toxic effects on the plants (Phacelia tanacetifolia, Salvia hispanica, Brassica napus) and invertebrates (Daphnia pulex, Chaoborus, Chironomus aprilinus) tested. The half-solubility time of the membranes in a solution mimicking gastric acid was also determined. The longest half-dissolution time of the films was about 2 min. Our research has therefore shown that the biodegradable and environmentally safe green packaging films with antioxidant activity that we have developed can be used as edible functional casings in the future, e.g., for sausages and other food products. Full article
(This article belongs to the Special Issue Chemical Research on Novel Packaging Materials)
Show Figures

Figure 1

20 pages, 5232 KiB  
Article
An Evaluation of the Use of Coffee Silverskin Particles and Extracts as Additives in Wheat Flour/Glucose Mixtures to Produce Bioactive Films for Food Packaging
by Argyri-Ioanna Petaloti, Anastasia Valtopoulou, Christina Gkogkou and Dimitris S. Achilias
Appl. Sci. 2024, 14(17), 7563; https://doi.org/10.3390/app14177563 - 27 Aug 2024
Cited by 3 | Viewed by 1735
Abstract
The scientific community’s interest in finding an alternative to the term “wastes” for coffee by-products is steadily increasing. The substantial presence of polyphenols, caffeine, and tannins in these wastes could result in the contamination of water and soil, as they exhibit harmful effects [...] Read more.
The scientific community’s interest in finding an alternative to the term “wastes” for coffee by-products is steadily increasing. The substantial presence of polyphenols, caffeine, and tannins in these wastes could result in the contamination of water and soil, as they exhibit harmful effects on a range of plants, microorganisms, and aquatic organisms. However, these identical antioxidants can extensively be utilized in food packaging applications. In the context of active packaging, the development of bioactive food packaging films based on natural products and coffee industry wastes is of significant importance according to circular economy principles. In this study, the effect of coffee silverskin particles, i.e., waste of the coffee roasting process, and coffee silverskin aqueous extracts on the properties and antioxidant activity of wheat flour-based films with glucose for food packaging applications were evaluated. In addition, chemical structure identification, optical and morphological analysis, color measurements, and physico-chemical characterization of the films were performed, determining their water absorption, film solubility, and degree of swelling. Furthermore, the oxygen and water vapor transition rate and their antioxidant activity were also measured, and it was found that increasing the addition of coffee silverskin particles and aqueous extracts affected the properties of the films. The biocomposite films of wheat flour and glucose with coffee silverskin particles produced in this work exhibited higher tensile stress at break and Young’s modulus compared with wheat flour film with no additives. However, a decrease in elongation at break was observed with increasing addition of the silverskin due to the transition from a pure elastomeric material to a crosslinked one following the formation of hydrogen bonds between the additive and the matrix, which was also found in the FTIR spectra. This work offers a new use of wheat flour and coffee silverskin as an inexpensive biocomposite material to produce multifunctional active films for food packaging applications. Full article
Show Figures

Figure 1

12 pages, 4463 KiB  
Article
Structural Analyses of Polysaccharides Extracted from Cyanobacterial Extracellular Gels and Oriented Liquid Crystalline Microfiber Processing by Poly(vinyl alcohol)-Assisted Electrospinning
by Chizu Mitani, Maiko Okajima, Tomomi Ohashira, Mohammad Asif Ali, Toshiaki Taniike and Tatsuo Kaneko
Gels 2024, 10(5), 321; https://doi.org/10.3390/gels10050321 - 7 May 2024
Cited by 1 | Viewed by 1833
Abstract
Sacran is a supergiant cyanobacterial polysaccharide that forms mesogenic supercoil rods that exhibit liquid crystalline (LC) gels at deficient concentrations of around 0.5 wt%, and has several bioactive stimuli-responsive functions. Here, we attempted to form oriented microfibers of sacran by electrospinning, following structural [...] Read more.
Sacran is a supergiant cyanobacterial polysaccharide that forms mesogenic supercoil rods that exhibit liquid crystalline (LC) gels at deficient concentrations of around 0.5 wt%, and has several bioactive stimuli-responsive functions. Here, we attempted to form oriented microfibers of sacran by electrospinning, following structural analyses of the sacran rods. A heterogeneous acid-hydrolysis method using a protonated cation-exchange resin was adopted to examine the short-time exposition of concentrated acid to sacran rods. From the supernatant, the oligomeric fraction that was soluble in water and methanol was isolated. The oligomeric fraction had a main sugar ratio of α-Glc:β-Glc:α-Xyl:β-Xyl:α-Rha of 2:5:1.5:1.5:4 (Glc:Xyl:Rha = 7 (=4 + 3):3:4), and it was speculated that the sacran structure includes rhamnoglucan and xyloglucan (4:3), which are generally rigid enough to exhibit LC. To make oriented microfibers of LC sacran, solubility testing was performed on sacran to find good new solvents of polyhydroxy alcohols such as ethylene glycol, 1,2-propanediol, and glycerol. The oriented film was prepared from a sacran aqueous solution where calcium compound particles deposited on the film are different from polyhydroxy alcohol solutions. Although sacran could not form microfibers by itself, polymer composite microfibers of sacran with poly(vinyl alcohol) were prepared by electrospinning. Cross-polarizing microscopy revealed the molecular orientation of the microfibers. Full article
(This article belongs to the Special Issue Stimuli-Responsive Composite Gels)
Show Figures

Figure 1

25 pages, 4114 KiB  
Review
Review of Spider Silk Applications in Biomedical and Tissue Engineering
by Marija Branković, Fatima Zivic, Nenad Grujovic, Ivan Stojadinovic, Strahinja Milenkovic and Nikola Kotorcevic
Biomimetics 2024, 9(3), 169; https://doi.org/10.3390/biomimetics9030169 - 11 Mar 2024
Cited by 15 | Viewed by 11788
Abstract
This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and [...] Read more.
This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials. Full article
(This article belongs to the Special Issue Biomimetic Scaffolds for Hard Tissue Surgery)
Show Figures

Figure 1

18 pages, 4730 KiB  
Article
Hybrid Coatings Based on Polyvinylpyrrolidone/Polyethylene Glycol Enriched with Collagen and Hydroxyapatite: Incubation Studies and Evaluation of Mechanical and Physiochemical Properties
by Dagmara Słota, Josef Jampilek and Agnieszka Sobczak-Kupiec
J. Funct. Biomater. 2024, 15(3), 62; https://doi.org/10.3390/jfb15030062 - 1 Mar 2024
Cited by 3 | Viewed by 2462
Abstract
Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming [...] Read more.
Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming cells to proliferate or release a drug. However, irrespective of the final implantation site of such a coating biomaterial, it is necessary to conduct detailed mechanical and physicochemical in vitro analyses to determine its likely behavior under biological conditions. In this study, polymeric and composite coatings with hydroxyapatite obtained under UV light underwent incubation tests in four different artificial biological fluids: simulated body fluid (SBF), artificial saliva, Ringer’s fluid, and water (as the reference fluid). The potentiometric and conductometric properties, sorption capacity, and degradation rate of the coatings were examined. Furthermore, their hardness, modulus of elasticity, and deformation were determined. It was demonstrated that the coatings remained stable in SBF liquid at a pH value of around 7.4. In artificial saliva, the greatest degradation of the polymer matrix (ranging between 36.19% and 39.79%) and chipping of hydroxyapatite in the composite coatings were observed. Additionally, the effect of ceramics on sorption capacity was determined, with lower capacity noted with higher HA additions. Moreover, the evaluation of surface morphology supported by elemental microanalysis confirmed the appearance of new apatite layers on the surface as a result of incubation in SBF. Ceramics also influenced mechanical aspects, increasing hardness and modulus of elasticity. For the polymer coatings, the value was 11.48 ± 0.61, while for the composite coating with 15% ceramics, it increased more than eightfold to a value of 93.31 ± 11.18 N/mm2. Based on the conducted studies, the effect of ceramics on the physicochemical as well as mechanical properties of the materials was determined, and their behavior in various biological fluids was evaluated. However, further studies, especially cytotoxicity analyses, are required to determine the potential use of the coatings as biomaterials. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

17 pages, 3813 KiB  
Article
Porous and Dense Alginate/Chitosan Composite Films Loaded with Simvastatin for Dressing Applications
by Rubens T. Monteiro, Thamyres F. Da Silva, Luciana de Souza Guedes, Raimundo N. F. Moreira Filho, Ana L. B. Soares, Niédja F. Vasconcelos, Fabia K. Andrade and Rodrigo S. Vieira
Coatings 2024, 14(3), 278; https://doi.org/10.3390/coatings14030278 - 25 Feb 2024
Cited by 3 | Viewed by 2423
Abstract
Alginate is a biocompatible polysaccharide matrix used for bioactive dressings with inherent healing properties. Most alginate dressings are produced as single-layer dressings. This study explores the potential of bilayer membranes to modulate drug release and enhance antimicrobial properties. We used alginate and chitosan [...] Read more.
Alginate is a biocompatible polysaccharide matrix used for bioactive dressings with inherent healing properties. Most alginate dressings are produced as single-layer dressings. This study explores the potential of bilayer membranes to modulate drug release and enhance antimicrobial properties. We used alginate and chitosan loaded with simvastatin, an anti-inflammatory drug. One membrane comprised dense layers of both alginate and chitosan, while the other featured a dense alginate upper layer and a porous chitosan lower layer. The current study introduces a new approach in which a bilayer membrane is modeled instead of creating a polymeric blend between alginate and chitosan. The upper layer of the membrane contains only alginate loaded with simvastatin, while the bottom layer contains only chitosan. Another innovation is the study of the use of a porous lower layer of chitosan. Therefore, the association of these polymers in a bilayer and porous membrane gives advanced therapeutic dressings (with anti-inflammatory and antimicrobial properties intrinsic to the membrane) that are more efficient in the healing of complex wounds. Comprehensive characterization encompassed physicochemical, thermal, morphological, and mechanical properties. Microbiological tests were conducted using chitosan extract, and cytotoxicity evaluations were performed on fibroblast and keratinocyte cells. The results showed interlayer adhesion due to ionic interactions between alginate and chitosan surfaces. The drying process influenced the morphological and physicochemical features of the membranes. Simvastatin release profiles demonstrated sustained release over an extended period (approximately 60%–70% of the drug after 96 h). Storage assessments revealed that after six months, the membranes maintained around 98% of the initial simvastatin content. The antimicrobial activity test underscored the bacteriostatic efficacy of the chitosan porous layer, making it well-suited for infected wounds. Cell viability tests confirmed the non-cytotoxic nature of the films, highlighting their promising characteristics for treating diverse skin lesion types. Full article
Show Figures

Figure 1

19 pages, 8907 KiB  
Article
Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior
by Séverine Alfonsi, Pithursan Karunathasan, Ayann Mamodaly-Samdjee, Keerthana Balathandayutham, Sarah Lefevre, Anamar Miranda, Olivier Gallet, Damien Seyer and Mathilde Hindié
J. Funct. Biomater. 2024, 15(1), 5; https://doi.org/10.3390/jfb15010005 - 21 Dec 2023
Cited by 3 | Viewed by 2540
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization [...] Read more.
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts’ ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants. Full article
Show Figures

Figure 1

15 pages, 3471 KiB  
Article
Polycaprolactone-Based Films Incorporated with Birch Tar—Thermal, Physicochemical, Antibacterial, and Biodegradable Properties
by Agnieszka Richert, Ewa Olewnik-Kruszkowska, Rafał Malinowski, Agnieszka Kalwasińska and Maria Swiontek Brzezinska
Foods 2023, 12(23), 4244; https://doi.org/10.3390/foods12234244 - 24 Nov 2023
Cited by 3 | Viewed by 1729
Abstract
We present new polymer materials consisting of polycaprolactone (PCL), polyethylene glycol (PEG), and birch tar (D). PEG was introduced into the polymer matrix in order to obtain a plasticizing effect, while tar was added to obtain antibacterial properties and to change the physicochemical [...] Read more.
We present new polymer materials consisting of polycaprolactone (PCL), polyethylene glycol (PEG), and birch tar (D). PEG was introduced into the polymer matrix in order to obtain a plasticizing effect, while tar was added to obtain antibacterial properties and to change the physicochemical properties of the film. The materials were obtained by the solvent method and characterized using a variety of methods to test their performance and susceptibility to biodegradation. The obtained data indicate that the introduction of the bioactive substance (D) into PCL improved the thermal stability and significantly lowered the Young’s modulus values of the tested polymers. Moreover, the addition of birch tar improved the barrier and bacteriostatic properties, resulting in a reduction in the growth of pathogenic bacteria on the surface of the film. The films are not mutagenic but are susceptible to biodegradation in various environments. Due to their properties, they have potential for application in agriculture and horticulture and for packaging food, mainly vegetables grown in the field. Full article
(This article belongs to the Special Issue Innovative Applications of Active Compounds in Food Packaging)
Show Figures

Graphical abstract

19 pages, 1008 KiB  
Review
Chemically Modified Starches as Food Additives
by Dorota Gałkowska, Kamila Kapuśniak and Lesław Juszczak
Molecules 2023, 28(22), 7543; https://doi.org/10.3390/molecules28227543 - 11 Nov 2023
Cited by 34 | Viewed by 8800
Abstract
Starch is a renewable and multifunctional polysaccharide biopolymer that is widely used both in the food industry and other areas of the economy. However, due to a number of undesirable properties in technological processes, it is subjected to various modifications. They improve its [...] Read more.
Starch is a renewable and multifunctional polysaccharide biopolymer that is widely used both in the food industry and other areas of the economy. However, due to a number of undesirable properties in technological processes, it is subjected to various modifications. They improve its functional properties and enable the starch to be widely used in various industries. A modified starch is a natural starch that has been treated in a way that changes one or more of its initial physical and/or chemical properties. Chemical modification consists of the introduction of functional groups into starch molecules, which result in specific changes in the physicochemical and functional properties of starch preparations. The bases of chemical modifications of starch are oxidation, esterification or etherification reactions. In terms of functionality, modified preparations include cross-linked and stabilized starches. These starches have the status of allowed food additives, and their use is strictly regulated by relevant laws. Large-scale scientific research is aimed at developing new methods of starch modification, and the use of innovative technological solutions allows for an increasingly wider use of such preparations. This paper characterizes chemically modified starches used as food additives, including the requirements for such preparations and the directions of their practical application. Health-promoting aspects of the use of chemically modified starches concerning resistant starch type RS4, encapsulation of bioactive ingredients, starch fat substitutes, and carriers of microelements are also described. The topic of new trends in the use of chemically modified starches, including the production of biodegradable films, edible coatings, and nanomaterials, is also addressed. Full article
(This article belongs to the Special Issue Food Polysaccharides: Structure, Properties and Application II)
Show Figures

Figure 1

Back to TopTop