Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = neutral comet assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6860 KiB  
Article
Cosmetic Potential of Haberlea rhodopensis Extracts and Extracellular Vesicles in Human Fibroblast Cells
by Milena Georgieva, Bela Vasileva, Penyo Ivanov, Kamelia Hristova-Panusheva, Tsvetelina Paunova-Krasteva, Ivan Lesov, Zlatina Gospodinova, Natalia Krasteva, George Miloshev and Vasil Georgiev
Cosmetics 2025, 12(3), 90; https://doi.org/10.3390/cosmetics12030090 - 1 May 2025
Viewed by 2271
Abstract
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological [...] Read more.
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological and functional changes. This study investigates the impact of Haberlea rhodopensis in vitro culture extracts, native and enriched with EVs, on key cellular processes, including morphology, mitochondrial dynamics, lysosomal activity, gene expression, and genotoxicity in human dermal fibroblasts. The extracellular vesicles were identified in terms of shape, size, and morphology using dynamic light scattering, negative staining and observation under a transmission electron microscope. A comprehensive in vitro analysis was conducted utilizing light microscopy to assess cellular morphology and lysosomal mass, fluorescence microscopy for actin cytoskeletal organization, mitochondrial integrity, and nuclear morphology, and gene expression profiling for markers associated with collagen synthesis (COL1A1, COL3A1), senescence (CDKN1A), and oxidative stress response (NFE2L2). Additionally, cell cycle progression was evaluated, and genotoxicity was assessed using the neutral comet assay. Haberlea rhodopensis in vitro culture extracts and EVs were found to preserve fibroblast morphology, enhance mitochondrial mass, and upregulate collagen-related gene expression. These effects were concentration-dependent. The extracts exhibited biocompatibility with minimal genotoxic effects, indicating their potential as safe bioactive agents for skin rejuvenation. The findings suggest that Haberlea rhodopensis in vitro culture extracts and their enrichment with extracellular vesicles hold promise for cosmetic and dermatological applications, particularly in enhancing collagen production, preserving cellular integrity, and mitigating age-related alterations in skin fibroblasts. Further studies are warranted to elucidate the underlying molecular mechanisms and optimize formulation strategies for clinical translation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 1584 KiB  
Article
Rapid and Accurate Genotoxicity Assessment Using the Neutral Comet Assay in Cyprinus carpio Cells
by Byeonghyeon So, Ji Ho Park, Minseon Kim, Hojun Lee, Jee Hee Yoon, Yoo Jin Lee, Duyeol Kim, Hyung Wook Kwon, Jihae Park, Taejun Han, Yun Haeng Lee and Joon Tae Park
Life 2025, 15(4), 603; https://doi.org/10.3390/life15040603 - 4 Apr 2025
Viewed by 580
Abstract
Genotoxins cause significant damage to the genetic material of aquatic organisms, requiring rapid and accurate assessment. Fish-derived cells sensitive to genotoxins have proven to be a useful tool for measuring genotoxicity, but the long treatment times required for measurement limit their application in [...] Read more.
Genotoxins cause significant damage to the genetic material of aquatic organisms, requiring rapid and accurate assessment. Fish-derived cells sensitive to genotoxins have proven to be a useful tool for measuring genotoxicity, but the long treatment times required for measurement limit their application in situations requiring rapid testing. Previous studies have shown that fish cells can be kept unstarved for up to 6 h using media containing 1% FBS. In this study, the 1% FBS/6 h parameter was used for genotoxicity assessment. Therefore, genotoxicity assessment was performed after only 6 h of genotoxin treatment in a medium containing 1% FBS. The new genotoxicity assessment method provided faster and more accurate genotoxicity data for climbazole and metolachlor than the existing assessment system using the 15% FBS/96 h parameter. Furthermore, these advantages of the new platform enabled the determination of the genotoxicity of various genotoxins, such as dibenz[a,h]anthracene and ethoprophos. In summary, we have developed a genotoxicity assessment that can generate genotoxicity data rapidly and accurately. This new platform will serve as a foundation for rapid genotoxicity assessment of many genotoxins. Full article
Show Figures

Figure 1

14 pages, 5269 KiB  
Article
HDAC Inhibitors Can Enhance Radiosensitivity of Head and Neck Cancer Cells Through Suppressing DNA Repair
by Jennifer Antrobus, Bethany Mackinnon, Emma Melia, Jonathan R. Hughes and Jason L. Parsons
Cancers 2024, 16(23), 4108; https://doi.org/10.3390/cancers16234108 - 7 Dec 2024
Cited by 1 | Viewed by 1754
Abstract
Background/Objectives: The incidence of head and neck squamous cell carcinoma (HNSCC), currently ~800,000 cases per year worldwide, is rising. Radiotherapy remains a mainstay for the treatment of HNSCC, although inherent radioresistance, particularly in human papillomavirus (HPV)-negative disease subtypes, remains a significant barrier to [...] Read more.
Background/Objectives: The incidence of head and neck squamous cell carcinoma (HNSCC), currently ~800,000 cases per year worldwide, is rising. Radiotherapy remains a mainstay for the treatment of HNSCC, although inherent radioresistance, particularly in human papillomavirus (HPV)-negative disease subtypes, remains a significant barrier to effective treatment. Therefore, combinatorial strategies using drugs or inhibitors against specific cellular targets are necessary to enhance HNSCC radiosensitivity to lead to an improvement in patient outcomes. Given that radiotherapy acts through targeting and damaging DNA, a common strategy is to focus on enzymes within DNA-dependent cellular pathways, such as DNA damage repair. Methods: Here, we have employed a 3D spheroid model of HNSCC (FaDu) in combination with a targeted drug screen to identify novel radiosensitisers that suppress tumour growth. Results: We identified that histone deacetylases (HDACs) were prominent candidates, and subsequently identified that the HDAC inhibitors mocetinostat and pracinostat, as well as the combined HDAC–epidermal growth factor receptor inhibitor CUDC-101, were effective at radiosensitising cell models of HNSCC (FaDu, A253, UMSCC11b) through their impact on both spheroid growth and clonogenic survival assays. We also demonstrated that this combinatorial strategy leads to inhibition of the repair of DNA double-strand breaks through the neutral comet assay and γH2AX foci analysis using immunofluorescence microscopy, providing a mechanism of action through which HDAC inhibition functions in HNSCC radiosensitisation. Conclusions: We believe that this approach should be further investigated in preclinical models, in order to realise the full therapeutic potential of HDAC inhibition for the radiosensitisation of HNSCC, eventually leading to improved patient treatment efficacy and outcomes. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 4660 KiB  
Article
Exploring the Biosafety Potential of Haberlea rhodopensis Friv. In Vitro Culture Total Ethanol Extract: A Comprehensive Assessment of Genotoxicity, Mitotoxicity, and Cytotoxicity for Therapeutic Applications
by Bela Vasileva, Natalia Krasteva, Kamelia Hristova-Panusheva, Penyo Ivanov, George Miloshev, Atanas Pavlov, Vasil Georgiev and Milena Georgieva
Cells 2024, 13(13), 1118; https://doi.org/10.3390/cells13131118 - 28 Jun 2024
Cited by 2 | Viewed by 2275
Abstract
The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading [...] Read more.
The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading into different branches. One of these is the use of nutraceuticals as anti-ageing drugs. This field is gaining massive popularity nowadays, as people are shifting towards a more natural approach to life and seeking to use natural products as a source of medicine. The present article focuses on the cellular effect of Haberlea rhodopensis Friv. in vitro culture total ethanol extract (HRT), produced by a sustainable biotechnological approach. The extract showed a similar phytochemical profile to plant leaf extract and was rich in primary bioactive ingredients—caffeoyl phenylethanoid glycosides, myconoside, and paucifloside. This study examined the biosafety potential, cytotoxicity, genotoxicity, and mitochondrial activity of the extract using in vitro cultures. The results showed high cell survival rates and minimal cytotoxic effects on Lep3 cells, with no induction of reactive oxygen species nor genotoxicity. Additionally, the extract positively influenced mitochondrial activity, indicating potential benefits for cellular health. The results are promising and show the beneficial effect of HRT without the observation of any adverse effects, which sets the foundation for its further testing and potential therapeutic applications. Full article
(This article belongs to the Special Issue Antiageing Developments: Past, Present and Future)
Show Figures

Figure 1

25 pages, 1633 KiB  
Review
Comet Assay: Multifaceted Options for Studies of Plant Stress Response
by Elena V. Tyutereva, Aleksei D. Strizhenok, Elizaveta I. Kiseleva and Olga V. Voitsekhovskaja
Horticulturae 2024, 10(2), 174; https://doi.org/10.3390/horticulturae10020174 - 15 Feb 2024
Cited by 7 | Viewed by 4202
Abstract
Contrarily to chronic stresses, acute (i.e., fast and dramatic) changes in environmental factors like temperature, radiation, concentration of toxic substances, or pathogen attack often lead to DNA damage. Some of the stress factors are genotoxic, i.e., they damage the DNA via physical interactions [...] Read more.
Contrarily to chronic stresses, acute (i.e., fast and dramatic) changes in environmental factors like temperature, radiation, concentration of toxic substances, or pathogen attack often lead to DNA damage. Some of the stress factors are genotoxic, i.e., they damage the DNA via physical interactions or via interference with DNA replication/repair machinery. However, cytotoxic factors, i.e., those that do not directly damage the DNA, can lead to secondary genotoxic effects either via the induction of the production of reactive oxygen, carbon, or nitrogen species, or via the activation of programmed cell death and related endonucleases. The extent of this damage, as well as the ability of the cell to repair it, represent a significant part of plant stress responses. Information about DNA damage is important for physiological studies as it helps to understand the complex adaptive responses of plants and even to predict the outcome of the plant’s exposure to acute stress. Single cell gel electrophoresis (Comet assay) provides a convenient and relatively inexpensive tool to evaluate DNA strand breaks in the different organs of higher plants, as well as in unicellular algae. Comet assays are widely used in ecotoxicology and biomonitoring applications; however, they are still relatively rarely used in physiological studies. In this review, we provide an overview of the basic principles and of useful variations of the protocols of Comet assays, as well as of their use in plant studies, in order to encourage plant physiologists to include this tool in the analysis of plant stress responses. Full article
Show Figures

Figure 1

13 pages, 3436 KiB  
Article
Biogenic Synthesis of Cu-Mn Bimetallic Nanoparticles Using Pumpkin Seeds Extract and Their Characterization and Anticancer Efficacy
by Nouf Omar Alafaleq, Torki A. Zughaibi, Nasimudeen R. Jabir, Azhar U. Khan, Mohd Shahnawaz Khan and Shams Tabrez
Nanomaterials 2023, 13(7), 1201; https://doi.org/10.3390/nano13071201 - 28 Mar 2023
Cited by 39 | Viewed by 3143
Abstract
Background: Cancer is a chronic, heterogeneous illness that progresses through a spectrum of devastating clinical manifestations and remains the 2nd leading contributor to global mortality. Current cancer therapeutics display various drawbacks that result in inefficient management. The present study is intended to evaluate [...] Read more.
Background: Cancer is a chronic, heterogeneous illness that progresses through a spectrum of devastating clinical manifestations and remains the 2nd leading contributor to global mortality. Current cancer therapeutics display various drawbacks that result in inefficient management. The present study is intended to evaluate the anticancer potential of Cu-Mn bimetallic NPs (CMBNPs) synthesized from pumpkin seed extract against colon adenocarcinoma cancer cell line (HT-29). Methods: The CMBNPs were biosynthesized by continuously stirring an aqueous solution of pumpkin seed extract with CuSO4 and manganese (II) acetate tetrahydrate until a dark green solution was obtained. The characteristic features of biogenic CMBNPs were assessed by UV-visible spectrophotometry (UV-vis), X-ray powder diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A battery of biological assays, viz. neutral red uptake (NRU) assay, in vitro scratch assay, and comet assay, were performed for anticancer efficacy evaluation. Results: The formation of spherical monodispersed bimetallic nanoparticles with an average size of 50 nm was recorded using TEM. We observed dose-dependent cytotoxicity of CMBNPs in the HT-29 cell line with an IC50 dose of 115.2 µg/mL. On the other hand, CMBNPs did not show significant cytotoxicity against normal cell lines (Vero cells). Furthermore, the treatment of CMBNPs inhibited the migration of cancer cells and caused DNA damage with a significant increase in comet tail length. Conclusions: The results showed substantial anticancer efficacy of CMBNPs against the studied cancer cell line. However, it is advocated that the current work be expanded to different in vitro cancer models so that an in vivo validation could be carried out in the most appropriate cancer model. Full article
Show Figures

Figure 1

27 pages, 4176 KiB  
Article
Genotoxicity of Novel Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides in Normal and Cancer Cells In Vitro
by Mateusz Kciuk, Somdutt Mujwar, Beata Marciniak, Adrianna Gielecińska, Karol Bukowski, Mariusz Mojzych and Renata Kontek
Int. J. Mol. Sci. 2023, 24(4), 4053; https://doi.org/10.3390/ijms24044053 - 17 Feb 2023
Cited by 5 | Viewed by 1841
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel group of heterocyclic compounds with broad biological activities including anticancer properties. The compounds investigated in this study (MM134, -6, -7, and 9) were found to have antiproliferative activity against [...] Read more.
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel group of heterocyclic compounds with broad biological activities including anticancer properties. The compounds investigated in this study (MM134, -6, -7, and 9) were found to have antiproliferative activity against BxPC-3 and PC-3 cancer cell lines in micromolar concentrations (IC50 0.11–0.33 µM). Here, we studied the genotoxic potential of the tested compounds with alkaline and neutral comet assays, accompanied by immunocytochemical detection of phosphorylated γH2AX. We found that pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides induce significant levels of DNA damage in BxPC-3 and PC-3 cells without causing genotoxic effects in normal human lung fibroblasts (WI-38) when used in their respective IC50 concentrations (except for MM134) and showed a dose-dependent increase in DNA damage following 24 h incubation of tested cancer cells with these agents. Furthermore, the influence of MM compounds on DNA damage response (DDR) factors was assessed using molecular docking and molecular dynamics simulation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 3768 KiB  
Article
ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin
by Xiao-Yan Ma, Jia-Fu Zhao, Yong Ruan, Wang-Ming Zhang, Lun-Qing Zhang, Zheng-Dong Cai and Hou-Qiang Xu
Molecules 2022, 27(24), 8790; https://doi.org/10.3390/molecules27248790 - 12 Dec 2022
Cited by 2 | Viewed by 2723
Abstract
Using standard DNA-damaging medicines with DNA repair inhibitors is a promising anticancer tool to achieve better therapeutic responses and reduce therapy-related side effects. Cell viability assay, neutral comet assay, western blotting (WB), and cell cycle and apoptosis analysis were used to determine the [...] Read more.
Using standard DNA-damaging medicines with DNA repair inhibitors is a promising anticancer tool to achieve better therapeutic responses and reduce therapy-related side effects. Cell viability assay, neutral comet assay, western blotting (WB), and cell cycle and apoptosis analysis were used to determine the synergistic effect and mechanism of ML216, a Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, in PCa cells. Based on the online database research, our findings revealed that BLM was substantially expressed in PCa, which is associated with a bad prognosis for PCa patients. The combination of ML216 and CDDP improved the antiproliferative properties of three PCa cell lines. As indicated by the increased production of γH2AX and caspase-3 cleavage, ML216 significantly reduced the DNA damage-induced high expression of BLM, making PC3 more susceptible to apoptosis and DNA damage caused by CDDP. Furthermore, the combination of ML216 and CDDP increased p-Chk1 and p-Chk2 expression. The DNA damage may have triggered the ATR-Chk1 and ATM-Chk2 pathways simultaneously. Our results demonstrated that ML216 and CDDP combination therapy exhibited synergistic effects, and combination chemotherapy could be a novel anticancer tactic. Full article
Show Figures

Graphical abstract

14 pages, 4430 KiB  
Article
Adverse Effect of Blue Light on DNA Integrity Is Accelerated by 5-Aminolevulinic Acid in HaCaT Human Keratinocyte Cells and B16F1 Murine Melanoma Cells
by Taiki Sato and Kazuomi Sato
Biology 2022, 11(12), 1743; https://doi.org/10.3390/biology11121743 - 30 Nov 2022
Cited by 4 | Viewed by 2334
Abstract
Several studies have suggested the potential benefits of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a precursor of heme, which generates reactive oxygen species (ROS) following photoirradiation. Some reports indicate that blue light induces intracellular ROS production. In the present study, we [...] Read more.
Several studies have suggested the potential benefits of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a precursor of heme, which generates reactive oxygen species (ROS) following photoirradiation. Some reports indicate that blue light induces intracellular ROS production. In the present study, we elucidated the effects of blue light and 5-ALA on DNA integrity in B16F1 murine melanoma and human keratinocyte HaCaT cells using a variety of comet assay techniques. Co-treatment with blue light and 5-ALA significantly decreased cell viability in both cell lines. A neutral comet assay was performed to assess DNA double-strand break (DSB) formation and blue light and 5-ALA caused DSBs. We also performed an alkali comet assay to detect single-strand breaks (SSB) and alkali labile sites (ALS). The results indicated that 5-ALA accelerated blue light-induced SSB formation. In addition, modified comet assays were done using two types of enzymes to evaluate oxidative DNA damages. The results indicated that blue light and 5-ALA generated oxidized purine and pyrimidines in both cell lines. In summary, co-treatment with 5-ALA and photoirradiation may cause unexpected DNA damage in cells and tissues. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

16 pages, 4483 KiB  
Article
Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance
by Julita Kulbacka, Nina Rembiałkowska, Anna Szewczyk, Joanna Rossowska, Małgorzata Drąg-Zalesińska, Marek Kulbacki and Anna Choromańska
Int. J. Mol. Sci. 2022, 23(21), 12943; https://doi.org/10.3390/ijms232112943 - 26 Oct 2022
Cited by 6 | Viewed by 2381
Abstract
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis [...] Read more.
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods. Full article
(This article belongs to the Special Issue Targeted Therapies and Molecular Methods in Cancer)
Show Figures

Figure 1

23 pages, 34217 KiB  
Article
Synthesis, Anticancer Activity and Molecular Docking Studies of Novel N-Mannich Bases of 1,3,4-Oxadiazole Based on 4,6-Dimethylpyridine Scaffold
by Małgorzata Strzelecka, Teresa Glomb, Małgorzata Drąg-Zalesińska, Julita Kulbacka, Anna Szewczyk, Jolanta Saczko, Paulina Kasperkiewicz-Wasilewska, Nina Rembiałkowska, Kamil Wojtkowiak, Aneta Jezierska and Piotr Świątek
Int. J. Mol. Sci. 2022, 23(19), 11173; https://doi.org/10.3390/ijms231911173 - 22 Sep 2022
Cited by 19 | Viewed by 3375
Abstract
Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is [...] Read more.
Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is based on direct impact only on cancer cells. As a continuation of our research on new biologically active molecules, we report herein the design, synthesis and anticancer evaluation of a new series of N-Mannich-base-type hybrid compounds containing morfoline or different substituted piperazines moieties, a 1,3,4-oxadiazole ring and a 4,6-dimethylpyridine core. All compounds were tested for their potential cytotoxicity against five human cancer cell lines, A375, C32, SNB-19, MCF-7/WT and MCF-7/DX. Two of the active N-Mannich bases (compounds 5 and 6) were further evaluated for growth inhibition effects in melanoma (A375 and C32), and normal (HaCaT) cell lines using clonogenic assay and a population doubling time test. The apoptosis was determined with the neutral version of comet assay. The confocal microscopy method enabled the visualization of F-actin reorganization. The obtained results demonstrated that compounds 5 and 6 have cytotoxic and proapoptotic effects on melanoma cells and are capable of inducing F-actin depolarization in a dose-dependent manner. Moreover, computational chemistry approaches, molecular docking and electrostatic potential were employed to study non-covalent interactions of the investigated compounds with four receptors. It was found that all the examined molecules exhibit a similar binding affinity with respect to the chosen reference drugs. Full article
(This article belongs to the Special Issue Bioactive Oxadiazoles 3.0)
Show Figures

Figure 1

19 pages, 3010 KiB  
Article
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro
by Karol Bukowski, Beata Marciniak, Mateusz Kciuk, Mariusz Mojzych and Renata Kontek
Molecules 2022, 27(12), 3761; https://doi.org/10.3390/molecules27123761 - 11 Jun 2022
Cited by 8 | Viewed by 2689
Abstract
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic [...] Read more.
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17–1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine. Full article
(This article belongs to the Special Issue Advances in Anticancer Drug Discovery II)
Show Figures

Graphical abstract

15 pages, 3222 KiB  
Article
Effective Radiosensitization of Bladder Cancer Cells by Pharmacological Inhibition of DNA-PK and ATR
by Ahmed Ali Chughtai, Julia Pannhausen, Pia Dinger, Julia Wirtz, Ruth Knüchel, Nadine T. Gaisa, Michael J. Eble and Michael Rose
Biomedicines 2022, 10(6), 1277; https://doi.org/10.3390/biomedicines10061277 - 30 May 2022
Cited by 7 | Viewed by 2852
Abstract
This study aims at analyzing the impact of the pharmacological inhibition of DNA damage response (DDR) targets (DNA-PK and ATR) on radiosensitization of bladder cancer cell lines of different molecular/histological subtypes. Applying DNA-PK (AZD7648) and ATR (Ceralasertib) inhibitors on SCaBER, J82 and VMCUB-1 [...] Read more.
This study aims at analyzing the impact of the pharmacological inhibition of DNA damage response (DDR) targets (DNA-PK and ATR) on radiosensitization of bladder cancer cell lines of different molecular/histological subtypes. Applying DNA-PK (AZD7648) and ATR (Ceralasertib) inhibitors on SCaBER, J82 and VMCUB-1 bladder cancer cell lines, we revealed sensitization upon ionizing radiation (IR), i.e., the IC50 for each drug shifted to a lower drug concentration with increased IR doses. In line with this, drug exposure retarded DNA repair after IR-induced DNA damage visualized by a neutral comet assay. Western blot analyses confirmed specific inhibition of targeted DDR pathways in the analyzed bladder cancer cell lines, i.e., drugs blocked DNA-PK phosphorylation at Ser2056 and the ATR downstream mediator CHK1 at Ser317. Interestingly, clonogenic survival assays indicated a cell-line-dependent synergism of combined DDR inhibition upon IR. Calculating combined index (CI) values, with and without IR, according to the Chou–Talalay method, confirmed drug- and IR-dose-specific synergistic CI values. Thus, we provide functional evidence that DNA-PK and ATR inhibitors specifically target corresponding DDR pathways retarding the DNA repair process at nano-molar concentrations. This, in turn, leads to a strong radiosensitizing effect and impairs the survival of bladder cancer cells. Full article
(This article belongs to the Special Issue Advances in Urothelial Cancer)
Show Figures

Figure 1

18 pages, 5317 KiB  
Article
Depletion of HIF-1α by Inducible Cre/loxP Increases the Sensitivity of Cultured Murine Hepatocytes to Ionizing Radiation in Hypoxia
by Akram Hamidi, Alexandra Wolf, Rositsa Dueva, Melanie Kaufmann, Kirsten Göpelt, George Iliakis and Eric Metzen
Cells 2022, 11(10), 1671; https://doi.org/10.3390/cells11101671 - 18 May 2022
Cited by 5 | Viewed by 3491
Abstract
The transcription factor hypoxia-inducible factor (HIF) is the main oxygen sensor which regulates adaptation to cellular hypoxia. The aim of this study was to establish cultured murine hepatocyte derived cells (mHDC) as an in vitro model and to analyze the role of HIF-1α [...] Read more.
The transcription factor hypoxia-inducible factor (HIF) is the main oxygen sensor which regulates adaptation to cellular hypoxia. The aim of this study was to establish cultured murine hepatocyte derived cells (mHDC) as an in vitro model and to analyze the role of HIF-1α in apoptosis induction, DNA damage repair and sensitivity to ionizing radiation (IR). We have crossed C57/BL6 mice that bear loxP sites flanking exon 2 of Hif1a with mice which carry tamoxifen-inducible global Cre expression. From the offspring, we have established transduced hepatocyte cultures which are permanently HIF-1α deficient after tamoxifen treatment. We demonstrated that the cells produce albumin, acetylcholine esterase, and the cytokeratins 8 and 18 which functionally characterizes them as hepatocytes. In moderate hypoxia, HIF-1α deficiency increased IR-induced apoptosis and significantly reduced the surviving fraction of mHDC as compared to HIF-1α expressing cells in colony formation assays. Furthermore, HIF-1α knockout cells displayed increased IR-induced DNA damage as demonstrated by increased generation and persistence of γH2AX foci. HIF-1α deficient cells showed delayed DNA repair after IR in hypoxia in neutral comet assays which may indicate that non-homologous end joining (NHEJ) repair capacity was affected. Overall, our data suggest that HIF-1α inactivation increases radiation sensitivity of mHDC cells. Full article
(This article belongs to the Special Issue Molecular Mechanism of Stress, Stress Response, and Adaptation)
Show Figures

Figure 1

12 pages, 3165 KiB  
Article
Black Phosphorus Quantum Dots Enhance the Radiosensitivity of Human Renal Cell Carcinoma Cells through Inhibition of DNA-PKcs Kinase
by Yue Lang, Xin Tian, Hai-Yue Dong, Xiang-Xiang Zhang, Lan Yu, Ming Li, Meng-Meng Gu, Dexuan Gao and Zeng-Fu Shang
Cells 2022, 11(10), 1651; https://doi.org/10.3390/cells11101651 - 16 May 2022
Cited by 10 | Viewed by 2993
Abstract
Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. [...] Read more.
Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physicochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified DNA–protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells. Full article
(This article belongs to the Special Issue DNA Double-Strand Break Repair and Its Clinical Implications)
Show Figures

Figure 1

Back to TopTop