Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = net zero-energy systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1596 KB  
Article
Technological Pathways to Low-Carbon Supply Chains: Evaluating the Decarbonization Impact of AI and Robotics
by Mariem Mrad, Mohamed Amine Frikha, Younes Boujelbene and Mohieddine Rahmouni
Logistics 2026, 10(2), 31; https://doi.org/10.3390/logistics10020031 - 26 Jan 2026
Abstract
Background: Achieving deep decarbonization in global supply chains is essential for advancing net-zero objectives; however, the integrative role of artificial intelligence (AI) and robotics in this transition remains insufficiently explored. This study examines how these technologies support carbon-emission reduction across supply chain operations. [...] Read more.
Background: Achieving deep decarbonization in global supply chains is essential for advancing net-zero objectives; however, the integrative role of artificial intelligence (AI) and robotics in this transition remains insufficiently explored. This study examines how these technologies support carbon-emission reduction across supply chain operations. Methods: A curated corpus of 83 Scopus-indexed peer-reviewed articles published between 2013 and 2025 is analyzed and organized into six domains covering supply chain and logistics, warehousing operations, AI methodologies, robotic systems, emission-mitigation strategies, and implementation barriers. Results: AI-driven optimization consistently reduces transport emissions by enhancing routing efficiency, load consolidation, and multimodal coordination. Robotic systems simultaneously improve energy efficiency and precision in warehousing, yielding substantial indirect emission reductions. Major barriers include the high energy consumption of certain AI models, limited data interoperability, and poor scalability of current applications. Conclusions: AI and robotics hold substantial transformative potential for advancing supply chain decarbonization; nevertheless, their net environmental impact depends on improving the energy efficiency of digital infrastructures and strengthening cross-organizational data governance mechanisms. The proposed framework delineates technological and organizational pathways that can guide future research and industrial implementation, providing novel insights and actionable guidance for researchers and practitioners aiming to accelerate the low-carbon transition. Full article
Show Figures

Figure 1

24 pages, 393 KB  
Article
Global Transition of Energy Vectors in the Maritime Sector: Role of Liquefied Natural Gas, Green Hydrogen, and Ammonia in Achieving Net Zero by 2050
by Carmen Luisa Vásquez Stanescu, Rhonmer Pérez-Cedeño, Jesús C. Hernández and Teresa Batista
Energies 2026, 19(2), 568; https://doi.org/10.3390/en19020568 - 22 Jan 2026
Viewed by 35
Abstract
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. [...] Read more.
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. In this context, energy vectors such as Liquefied Natural Gas, Green Hydrogen, and Ammonia are emerging as key elements for this shift. This review article proposes a comprehensive analysis of these vectors, contrasting their roles: Liquefied Natural Gas as a transitional solution and Hydrogen and Ammonia as long-term pillars for decarbonization. The research moves beyond a simple comparative analysis, offering a detailed mapping and evaluation of the global port infrastructure required for their safe handling, cryogenic storage, and bunkering operations. We examine their technical specifications, decarbonization potential, and the challenges related to operational feasibility, costs, regulation, and sustainability. The objective is to provide a critical perspective on how the evolution of maritime ports into energy hubs is a sine qua non condition for the secure and efficient management of these vectors, thereby ensuring the sector effectively meets the Net Zero 2050 climate goals. Full article
39 pages, 4728 KB  
Review
Advancing Sustainable Agriculture Through Aeroponics: A Critical Review of Integrated Water–Energy–Nutrient Management and Environmental Impact Mitigation
by Shen-Wei Chu and Terng-Jou Wan
Agriculture 2026, 16(2), 265; https://doi.org/10.3390/agriculture16020265 - 21 Jan 2026
Viewed by 88
Abstract
Aeroponics has emerged as a key technology for sustainable and resource-efficient food production, particularly under intensifying constraints on water availability, land use, and greenhouse gas (GHG) emissions. This review synthesizes recent advances in water–energy–nutrient integration, highlighting operational parameters—humidity (50–80%), temperature (18–25 °C), nutrient [...] Read more.
Aeroponics has emerged as a key technology for sustainable and resource-efficient food production, particularly under intensifying constraints on water availability, land use, and greenhouse gas (GHG) emissions. This review synthesizes recent advances in water–energy–nutrient integration, highlighting operational parameters—humidity (50–80%), temperature (18–25 °C), nutrient solution pH (5.5–6.5), and electrical conductivity (1.5–2.5 mS cm−1)—that critically influence system performance. Evidence indicates that closed-loop water recirculation and AI-assisted monitoring for environmental control and nutrient dosing can stabilize system dynamics and reduce water consumption by more than 90%. Reported yield improvements ranged from 45% to 75% compared with conventional soil-based cultivation. Moreover, systems powered by renewable energy demonstrated up to an 80% reduction in GHG emissions. Life-cycle assessment studies further suggest that aeroponics, coupled with low-carbon electricity in controlled-environment agriculture (CEA), can outperform traditional agricultural supply chains in climate and resource efficiency metrics. Additional technological innovations—including multi-tier vertical rack architectures, optimized misting intervals, and micronutrient-enriched fertigation formulations containing N, P, Ca, Mg, and K—were found to enhance spatial productivity and crop quality. Overall, aeroponics represents a promising pathway toward net-zero, high-performance agricultural systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

17 pages, 1703 KB  
Article
Performance Optimization of Series-Connected Supercapacitor Microbial Fuel Cells Fed with Molasses-Seawater Anolytes
by Jung-Chieh Su, Kai-Chung Huang, Chia-Kai Lin, Ai Tsao, Jhih-Ming Lin and Jung-Jeng Su
Electronics 2026, 15(2), 424; https://doi.org/10.3390/electronics15020424 - 18 Jan 2026
Viewed by 175
Abstract
Microbial fuel cells (MFCs) utilizing livestock wastewater represent a critical path toward sustainable energy and net-zero emissions. To maximize this potential, this study investigates a novel circuit configuration, integrating twin MFCs with dual supercapacitors in a closed-loop system, to enhance charge storage and [...] Read more.
Microbial fuel cells (MFCs) utilizing livestock wastewater represent a critical path toward sustainable energy and net-zero emissions. To maximize this potential, this study investigates a novel circuit configuration, integrating twin MFCs with dual supercapacitors in a closed-loop system, to enhance charge storage and electricity generation. By utilizing molasses-seawater anolytes, the study establishes a performance benchmark for optimizing energy recovery in future livestock wastewater treatment applications. The self-adjusting potential difference between interconnected MFCs is verified, and supercapacitors significantly improve energy harvesting by reducing load impedance and balancing capacitor plate charges. Voltage gain across supercapacitors exceeds that of single MFC charging, demonstrating the benefits of series integration. Experimental results reveal that catholyte properties—electrical conductivity, salinity, pH, and dissolved oxygen—strongly influence MFC performance. Optimal conditions for a neutralized anolyte (pH 7.12) include dissolved oxygen levels of 5.37–5.68 mg/L and conductivity of 24.3 mS/cm. Under these conditions, supercapacitors charged with sterile diluted seawater catholyte store up to 40% more energy than individual MFCs, attributed to increased output current. While the charge balance mechanism of supercapacitors contributes to storage efficiency, its impact is less pronounced than that of conductivity and oxygen solubility. The interplay between electrochemical activation and charge balancing enhances overall electricity harvesting. These findings provide valuable insights into optimizing MFC-supercapacitor systems for renewable energy applications, particularly in livestock wastewater treatment. Full article
Show Figures

Figure 1

22 pages, 7044 KB  
Article
Design of a SMART Valve Testbed for Nuclear Thermal Dispatch
by Anutam Bairagi, Minghui Chen, Ark Ifeanyi, Sarah Creasman, Jamie Coble and Vivek Agarwal
Energies 2026, 19(2), 470; https://doi.org/10.3390/en19020470 - 17 Jan 2026
Viewed by 210
Abstract
By the year 2050, the United States aims to achieve net-zero carbon emissions. To achieve this target, the licensing of the Light Water Reactor (LWR) fleet has been extended for 20 more years. To stay economically competitive with other power sources such as [...] Read more.
By the year 2050, the United States aims to achieve net-zero carbon emissions. To achieve this target, the licensing of the Light Water Reactor (LWR) fleet has been extended for 20 more years. To stay economically competitive with other power sources such as renewable and fossil-fuel power plants, the U.S. Department of Energy has introduced a plan to modernize the existing LWR fleet and diversify the revenue stream. One of the plans is to dispatch thermal energy to endothermic industrial processes. SMART valves will play an important role in this initiative by efficiently balancing the load by regulating valves in a coordinated manner while monitoring the thermal-hydraulic systems to enhance safety and maintain the integrity of the power plant. This research aims to develop a facility to test the coordinated control algorithm and produce various test results for training the monitoring system. The constructed facility is capable of simulating various operational and accidental scenarios by coordinating all the valves (positions) and pump (flowrate). The facility is developed with an Internet of Things (IoT)-based custom system and a python-based valve position control and coordination mechanism. It has achieved stable sensor outputs, pump control, and coordinated valve regulation in all three valves with minimum obstruction in the system. Full article
(This article belongs to the Special Issue Operation Safety and Simulation of Nuclear Energy Power Plant)
Show Figures

Figure 1

17 pages, 858 KB  
Article
Integrated PSA Hydrogen Purification, Amine CO2 Capture, and Underground Storage: Mass–Energy Balance and Cost Analysis
by Ersin Üresin
Processes 2026, 14(2), 319; https://doi.org/10.3390/pr14020319 - 16 Jan 2026
Viewed by 222
Abstract
Although technologies used in non-fossil methane and fossil resources to produce blue hydrogen are relatively mature, a system-integrated approach to reference system (RS)-based purification of H2, CO2 capture and storage, and UHS is relatively unexplored and requires research to fill [...] Read more.
Although technologies used in non-fossil methane and fossil resources to produce blue hydrogen are relatively mature, a system-integrated approach to reference system (RS)-based purification of H2, CO2 capture and storage, and UHS is relatively unexplored and requires research to fill gaps in the literature regarding balanced permutations and geological viability for net-zero requirements. This research proposes a system-integrated process for H2 production through a PSA-based purification technique coupled with amine-based CO2 capture and underground hydrogen storage (UHS). The intellectual novelty of the research is its first quantitative treatment of synergistic effects such as heat recovery and pressure-matching across units. Additionally, a site separation technique is applied, where H2 and CO2 reservoirs are selected based on the permeability of rock formations and fluids. On a research methodology front, a base case of a steam methane reforming process with the production of 99.99% pure H2 at a production rate of 5932 kg/h is modeled and simulated using Aspen Plus™ to create a balanced permutation of mass and energy across units. As per the CO2 capture requirements of this research, a capture of 90% of CO2 is accomplished from the production of 755 t/d CO2 within the model. The compressed CO2 is permanently stored at specifically identified rock strata separated from storage reservoirs of H2 to avoid empirically identified hazards of rock–fluid interaction at high temperatures and pressures. The lean amine cooling of CO2 to 60 °C and elimination of tail-gas recompression simultaneously provides 5.4 MWth of recovered heat. The integrated design achieves a net primary energy penalty of 18% of hydrogen’s LHV, down from ~25% in a standalone configuration. This corresponds to an energy saving of 8–12 MW, or approximately 15–18% of the primary energy demand. The research computes a production cost of H2 of 0.98 USD per kg of H2 within a production atmosphere of a commercialized WGS and non-fossil methane-based production of H2. Additionally, a sensitivity analysis of ±23% of the energy requirements of the reference system shows no marked sensitivity within a production atmosphere of a commercially available WGS process. Full article
(This article belongs to the Special Issue Hydrogen–Carbon Storage Technology and Optimization)
Show Figures

Figure 1

44 pages, 1840 KB  
Review
Pathways to Net Zero and Climate Resilience in Existing Australian Office Buildings: A Systematic Review
by Darren Kelly, Akthar Kalam and Shasha Wang
Buildings 2026, 16(2), 373; https://doi.org/10.3390/buildings16020373 - 15 Jan 2026
Viewed by 188
Abstract
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving [...] Read more.
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving sustainability within existing office buildings. This systematic review examines net zero energy and climate resilience strategies in these buildings by analysing 74 studies from scholarly literature, government reports, and industry publications. The literature search was conducted across Scopus, Google Scholar, and Web of Science databases, with the final search in early 2025. Studies were selected based on keywords and research parameters. A narrative synthesis identified key technologies, evaluating the integration of net zero principles with climate resilience to enhance energy efficiency through HVAC modifications. Technologies like heat pumps, energy recovery ventilators, thermal energy storage, and phase change materials (PCMs) have been identified as crucial in reducing HVAC energy usage intensity (EUI). Lighting control and plug load management advancements are examined for reducing electricity demand. This review highlights the gap between academic research and practical applications, emphasising the need for comprehensive field studies to provide long-term performance data. Current regulatory frameworks influencing the net zero transition are discussed, with recommendations for policy actions and future research. This study links net zero performance with climate adaptation objectives for existing office buildings and provides recommendations for future research, retrofit planning, and policy development. Full article
(This article belongs to the Special Issue Climate Resilient Buildings: 2nd Edition)
Show Figures

Figure 1

26 pages, 1170 KB  
Article
Sustainable Financing Mechanism for Energy System Development Toward a Decarbonized Economy: Conceptual Model and Management Framework
by Artur Zaporozhets, Viktoriia Khaustova, Mykola Kyzym and Nataliia Trushkina
Energies 2026, 19(2), 422; https://doi.org/10.3390/en19020422 - 15 Jan 2026
Viewed by 183
Abstract
The development of energy systems toward a decarbonized economy is increasingly constrained not only by technological challenges, but also by deficiencies in the organization, coordination, and governability of sustainable financing. This study aims to substantiate an integrated conceptual model and a multi-level governance [...] Read more.
The development of energy systems toward a decarbonized economy is increasingly constrained not only by technological challenges, but also by deficiencies in the organization, coordination, and governability of sustainable financing. This study aims to substantiate an integrated conceptual model and a multi-level governance framework for the sustainable financing mechanism of energy system development under decarbonization, ensuring the alignment of financial instruments with transition strategies, performance indicators, and feedback mechanisms. The methodology combines a bibliometric analysis of Scopus-indexed journal publications with an examination of international statistical and analytical data produced by leading global organizations, complemented by systemic, institutional, and comparative analytical approaches. The bibliometric analysis was conducted in 2025 and covered peer-reviewed articles published during 2017–2025, while empirical financial indicators were synthesized for the most recent available period of 2022–2024 using comparable time-series data reported by international institutions. The results indicate that despite global energy investments reaching approximately $3 trillion in 2024—nearly $2 trillion of which was allocated to clean energy technologies—a persistent annual financing gap for climate change mitigation in the energy sector remains. Moreover, to remain consistent with the Net Zero trajectory, investments in clean energy must increase by approximately 1.7 times by 2030. The synthesis of contemporary research and empirical evidence reveals a predominance of studies focused on individual green and transition finance instruments, accompanied by persistent fragmentation between financial flows, governance structures, and measurable decarbonization outcomes. To address this gap, the paper proposes a conceptual model that interprets sustainable finance as a governed system rather than a collection of isolated instruments, together with a multi-level governance framework integrating strategic (policy), sectoral, and project-level decision-making with systems of key performance indicators, monitoring, and feedback. The findings demonstrate that the effectiveness of sustainable financing critically depends on the coherence between financial instruments, governance architectures, and decarbonization objectives, which ultimately determines the capacity to translate mobilized capital into tangible energy infrastructure modernization and measurable emissions reductions. The proposed approach provides a practical foundation for improving energy transition policies and investment strategies at both national and supranational levels. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

16 pages, 1484 KB  
Article
A Comprehensive Understanding of Technologies, Materials, and Strategies for Net-Zero Energy Buildings
by Linita George and Xianhai Meng
Sustainability 2026, 18(2), 717; https://doi.org/10.3390/su18020717 - 10 Jan 2026
Viewed by 214
Abstract
The building sector is significantly responsible for the world’s energy consumption and carbon emissions. Net-zero energy buildings (NZEBs) have become an effective solution to move towards sustainability, maximizing energy efficiency, and minimizing carbon footprint. However, achieving net-zero energy targets requires a comprehensive understanding [...] Read more.
The building sector is significantly responsible for the world’s energy consumption and carbon emissions. Net-zero energy buildings (NZEBs) have become an effective solution to move towards sustainability, maximizing energy efficiency, and minimizing carbon footprint. However, achieving net-zero energy targets requires a comprehensive understanding of building performance from the perspectives of technologies, materials, and strategies, for which existing studies have a knowledge gap. This study aims to bridge the knowledge gap within existing studies through an empirical investigation. Based on a review of the literature, this study employs semi-structured interviews in the United Kingdom (UK) with industrial professionals experienced in NZEBs. The qualitative data collected from interview participants are analyzed minutely using NVivo to identify key themes and patterns, including 14 technologies, 12 materials, and seven strategies for NZEBs. Based on the literature review and, more importantly, the interview analysis, a conceptual framework is well established to describe an NZEB as a complex system that must incorporate appropriate technology adoption, careful material selection, and successful strategy implementation into consideration. This study provides a comprehensive understanding of NZEBs from a systematic point of view. It also contributes to the full fulfillment of Sustainable Development Goals (SDGs) established by the United Nations (UN). Full article
(This article belongs to the Special Issue Green Building: CO2 Emissions in the Construction Industry)
Show Figures

Figure 1

34 pages, 7344 KB  
Article
Fitness-Driven Assessment of Mooring-System Designs for 15-MW FOWT in Shallow Waters
by Shun-Wen Cheng, Nai-Chi Chen, Cheng-Hsien Chung and Ray-Yeng Yang
J. Mar. Sci. Eng. 2026, 14(2), 142; https://doi.org/10.3390/jmse14020142 - 9 Jan 2026
Viewed by 162
Abstract
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is [...] Read more.
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is essential to optimize mooring systems through a systematic and performance driven framework. This study focuses on the mooring assessment of the Taiwan-developed DeltaFloat semi-submersible platform supporting a 15 MW turbine at a 70 m water depth offshore Hsinchu, Taiwan. A full-chain catenary mooring system was designed based on site specific metocean conditions. The proposed framework integrates ANSYS AQWA (version 2024 R1) and Orcina OrcaFlex (version 11.5) simulations with sensitivity analyses and performance-based fitness metrics including offset, inclination, and line tension to identify key parameters governing mooring behavior. Additionally, an analysis of variance (ANOVA) was conducted to quantitatively evaluate the statistical significance of each design parameter. Results indicate that mooring line length is the most influential factor affecting system performance, followed by line angle and diameter. Optimizing these parameters significantly improves platform stability and reduces tension loads without excessive material use. Building on the optimized symmetric configuration, an asymmetric mooring concept with unequal line lengths is proposed. The asymmetric layout achieves performance comparable to traditional 3 × 1 and 3 × 2 systems under extreme environmental conditions while demonstrating potential reductions in material use and overall cost. Nevertheless, the unbalanced load distribution highlights the need for multi-scenario validation and fatigue assessment to ensure long-term reliability. Overall, the study establishes a comprehensive and sensitivity-based evaluation framework for floating wind mooring systems. The findings provide a balanced and practical reference for the cost-efficient design of floating offshore wind farms in the Taiwan Strait and other shallow-water regions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 4808 KB  
Article
Hybrid Renewable Systems Integrating Hydrogen, Battery Storage and Smart Market Platforms for Decarbonized Energy Futures
by Antun Barac, Mario Holik, Kristijan Ćurić and Marinko Stojkov
Energies 2026, 19(2), 331; https://doi.org/10.3390/en19020331 - 9 Jan 2026
Viewed by 394
Abstract
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward [...] Read more.
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward sustainable and transparent energy management. This study evaluates the techno-economic performance and operational feasibility of integrated PV systems combining battery and hydrogen storage with a blockchain-based peer-to-peer (P2P) energy trading platform. A simulation framework was developed for two representative consumer profiles: a scientific–educational institution and a residential household. Technical, economic and environmental indicators were assessed for PV systems integrated with battery and hydrogen storage. The results indicate substantial reductions in grid electricity demand and CO2 emissions for both profiles, with hydrogen integration providing additional peak-load stabilization under current cost constraints. Blockchain functionality was validated through smart contracts and a decentralized application, confirming the feasibility of P2P energy exchange without central intermediaries. Grid electricity consumption is reduced by up to approximately 45–50% for residential users and 35–40% for institutional buildings, accompanied by CO2 emission reductions of up to 70% and 38%, respectively, while hydrogen integration enables significant peak-load reduction. Overall, the results demonstrate the synergistic potential of integrating PV generation, battery and hydrogen storage and blockchain-based trading to enhance energy independence, reduce emissions and improve system resilience, providing a comprehensive basis for future pilot implementations and market optimization strategies. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

17 pages, 828 KB  
Article
Integrating Circular Economy Principles into Energy-Efficient Retrofitting of Post-1950 UK Housing Stock: A Pathway to Sustainable Decarbonisation
by Louis Gyoh, Obas John Ebohon, Juanlan Zhou and Deinsam Dan Ogan
Buildings 2026, 16(2), 262; https://doi.org/10.3390/buildings16020262 - 7 Jan 2026
Viewed by 215
Abstract
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and [...] Read more.
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and heating upgrades—while neglecting broader sustainability considerations. This research advocates systematically integrating Circular Economy (CE) principles into residential retrofit practices. CE approaches emphasise material circularity, waste minimisation, adaptive design, and a lifecycle assessment, delivering superior environmental and economic outcomes compared to conventional methods. The investigation employs mixed-methods research combining a systematic literature analysis, policy review, stakeholder engagement, and a retrofit implementation evaluation across diverse UK contexts. Key barriers identified include regulatory constraints, workforce capability gaps, and supply chain fragmentation, alongside critical transition enablers. An evidence-based decision-making framework emerges from this analysis, aligning retrofit interventions with CE principles. This framework guides policymakers, industry professionals, and researchers in the development of strategies that simultaneously improve energy-efficiency, maximise material reuse, reduce embodied emissions, and enhance environmental and economic sustainability. The findings advance a holistic, systems-oriented approach, positioning housing as a pivotal catalyst in the UK’s transition toward a circular, low-carbon built environment, moving beyond isolated technological fixes toward a comprehensive sustainability transformation. Full article
(This article belongs to the Special Issue Advancements in Net-Zero-Energy Buildings)
Show Figures

Figure 1

14 pages, 788 KB  
Article
Decarbonizing the Skies: A Multidimensional Analysis of Sustainable Aviation from the Perspective of Industry Executives in Türkiye
by Meltem Akca, Levent Kaya, Leyla Akbulut, Atılgan Atılgan, Ahmet Çoşgun and Adem Akbulut
Sustainability 2026, 18(1), 465; https://doi.org/10.3390/su18010465 - 2 Jan 2026
Viewed by 246
Abstract
This study investigates the environmental and economic dynamics of sustainable aviation through the perspectives of senior executives in Türkiye’s civil aviation sector. As global aviation continues to face increasing pressure to decarbonize, understanding how industry leaders perceive and respond to carbon emission challenges [...] Read more.
This study investigates the environmental and economic dynamics of sustainable aviation through the perspectives of senior executives in Türkiye’s civil aviation sector. As global aviation continues to face increasing pressure to decarbonize, understanding how industry leaders perceive and respond to carbon emission challenges is critical. The research employs a qualitative methodology based on semi-structured interviews with ten executives across airlines, airports, and aviation authorities. Using Python-based data mining techniques and thematic analysis, three core themes emerged: (1) sustainable aviation experience and economic dimensions; (2) carbon emissions reduction and efficient aviation systems; (3) sustainable energy and alternative fuel technologies. Findings reveal that while environmental sustainability is a growing concern, operational costs, technological constraints, and regulatory uncertainties significantly influence implementation. Stakeholders emphasized the importance of coordinated action among governments, industry, and international organizations, especially in scaling Sustainable Aviation Fuels (SAFs) and enhancing infrastructure for electric and hydrogen-powered aircraft. The study concludes that achieving net-zero aviation by 2050 requires an integrated approach that balances technological innovation, policy incentives, and stakeholder engagement. This multidimensional insight contributes to the ongoing discourse on low-carbon transition strategies in aviation, offering policy-relevant implications for developing countries. Full article
(This article belongs to the Special Issue Energy Saving and Emission Reduction from Green Transportation)
Show Figures

Figure 1

33 pages, 3089 KB  
Article
Designing a Sustainable Off-Grid EV Charging Station: Analysis Across Urban and Remote Canadian Regions
by Muhammad Nadeem Akram and Walid Abdul-Kader
Batteries 2026, 12(1), 17; https://doi.org/10.3390/batteries12010017 - 1 Jan 2026
Viewed by 348
Abstract
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. [...] Read more.
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. The proposed renewable energy system comprises wind turbines, solar photovoltaic panels, fuel cells, and a hydrogen tank. As an energy storage system, second-life electric vehicle batteries are considered. This study investigates the feasibility and performance of the charging station with respect to two vastly different Canadian regions, Windsor, Ontario (urban), and Eagle Plains, Yukon (remote). In modeling these two regions using HOMER Pro software, this study concludes that due to its higher renewable energy availability, Windsor shows a net-present cost of $2.80 million and cost of energy of $0.201/kWh as compared to the severe climate of Eagle Plains, with a net-present cost of $3.61 million and cost of energy of $0.259/kWh. In both cases, we see zero emissions in off-grid configurations. A sensitivity analysis shows that system performance can be improved by increasing wind turbine hub heights and solar photovoltaic panel lifespans. With Canada’s goal of transitioning towards 100% zero-emission vehicle sales by 2035, this study provides practical insights regarding site-specific resource optimization for electric vehicle infrastructure that does not rely on grid energy. Furthermore, this study highlights a means to progress the sustainable development goals, namely goals 7, 9, and 13, through the development of more accessible electric vehicle charging stations. Full article
Show Figures

Graphical abstract

38 pages, 9662 KB  
Article
Hybrid Optimisation of PV/Wind/BS Standalone System for Sustainable Energy Transition: Case Study of Nigeria
by Kehinde Zacheaus Babalola, Rolains Golchimard Elenga, Ali Mushtaque, Paolo Vincenzo Genovese and Moses Akintayo Aborisade
Energies 2026, 19(1), 89; https://doi.org/10.3390/en19010089 - 24 Dec 2025
Viewed by 392
Abstract
Energy deficits have been a major challenge in Sub-Saharan Africa (SSA), particularly in Nigeria. Consequently, the integration of renewable energy (RE) is a crucial strategy for achieving energy transition goals and addressing climate change issues. Therefore, this article investigates the technical, energy, economic, [...] Read more.
Energy deficits have been a major challenge in Sub-Saharan Africa (SSA), particularly in Nigeria. Consequently, the integration of renewable energy (RE) is a crucial strategy for achieving energy transition goals and addressing climate change issues. Therefore, this article investigates the technical, energy, economic, and environmental impact of PV/Wind/BS/Converter, a standalone hybrid energy mix for electrifying a single-family residential building prototype in multi-regional parts of Nigeria. This study aims to examine the renewable energy potential of three locations using HOMER Pro. The results indicate that Kano exhibits the lowest economic performance indices, with a net present cost (NPC) of USD 32,212.52 and a cost of energy (COE) of USD 0.6072/kWh, followed by Anambra (NPC: USD 45,671.68; COE: USD 0.8609/kWh) and Lagos (NPC: USD 47,184.62; COE: USD 0.8706/kWh). Technically, this study shows that the higher the renewable potential of a site, the lower the energy cost and vice versa. The sensitivity cases of key energy parameters—including solar PV cost, wind turbine cost, wind speed, solar radiation, and inflation rate—were considered to compare multiple scenarios and assess renewable energy potential variability under certain decision-making conditions. Economically, the Kano system shows the feasible capital cost of the energy produced, replacement cost, and operation and maintenance cost (O&M) for wind turbines, compared to the nil cost for Anambra and Lagos. Environmentally, the energy systems revealed 100% renewable fractions (RFs) with zero emissions at the three sites under study, which can enhance Nigeria’s energy transition plan and help in achieving the Sustainable Development Goals. Integrating RE supports the successful implementation of the recommended energy policy strategies for Nigeria. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

Back to TopTop