Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = net power generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2474 KiB  
Article
Performance Analysis of a Novel Directly Combined Organic Rankine Cycle and Dual-Evaporator Vapor Compression Refrigeration Cycle
by Nagihan Bilir Sag and Metehan Isik
Appl. Sci. 2025, 15(15), 8545; https://doi.org/10.3390/app15158545 (registering DOI) - 31 Jul 2025
Abstract
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat [...] Read more.
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat source but also generate power. The proposed novel ORC-VCC system has been analyzed for its energetic performance using four selected fluids: R290, R600a, R601, and R1234ze(E). Parametric analysis has been conducted to investigate the effects of parameters of heat source temperature, heat source mass flow rate, cooling capacities, condenser temperature, ORC evaporator temperature, pinch point temperature difference and isentropic efficiencies on net power production. Among the working fluids, R290 has provided the highest net power production under all conditions in which it was available to operate. Additionally, the results have been analyzed concerning a reference cycle for comparative evaluation. The proposed novel cycle has outperformed the reference cycle in all investigated cases in terms of net power production such as demonstrating an improvement of approximately from 8.7% to 57.8% in geothermal heat source temperature investigations. Similar improvements have been observed over the reference cycle at lower heat source mass flow rates, where net power increases by up to 50.8%. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 (registering DOI) - 31 Jul 2025
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 401
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

20 pages, 5871 KiB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 347
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 345
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

28 pages, 2724 KiB  
Article
Data-Driven Dynamic Optimization for Hosting Capacity Forecasting in Low-Voltage Grids
by Md Tariqul Islam, M. J. Hossain and Md Ahasan Habib
Energies 2025, 18(15), 3955; https://doi.org/10.3390/en18153955 - 24 Jul 2025
Viewed by 220
Abstract
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. [...] Read more.
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. However, conventional HC analysis and forecasting approaches struggle to capture temporal dependencies, the impact of DOE constraints on network operation, and uncertainty in DER output. This study introduces a dynamic optimization framework that leverages the benefits of the sensitivity gate of the Sensitivity-Enhanced Recurrent Neural Network (SERNN) forecasting model, Particle Swarm Optimization (PSO), and Bayesian Optimization (BO) for HC forecasting. The PSO determines the optimal weights and biases, and BO fine-tunes hyperparameters of the SERNN forecasting model to minimize the prediction error. This approach dynamically adjusts the import/export of the DER output to the grid by integrating the DOE constraints into the SG-PSO-BO architecture. Performance evaluation on the IEEE-123 test network and a real Australian distribution network demonstrates superior HC forecasting accuracy, with an R2 score of 0.97 and 0.98, Mean Absolute Error (MAE) of 0.21 and 0.16, and Root Mean Square Error (RMSE) of 0.38 and 0.31, respectively. The study shows that the model effectively captures the non-linear and time-sensitive interactions between network parameters, DER variables, and weather information. This study offers valuable insights into advancing dynamic HC forecasting under real-time DOE constraints in sustainable DER integration, contributing to the global transition towards net-zero emissions. Full article
Show Figures

Figure 1

30 pages, 906 KiB  
Article
The Impact of Carbon Trading Market on the Layout Decision of Renewable Energy Investment—Theoretical Modeling and Case Study
by Ning Yan, Shenhai Huang, Yan Chen, Daini Zhang, Qin Xu, Xiangyi Yang and Shiyan Wen
Energies 2025, 18(15), 3950; https://doi.org/10.3390/en18153950 - 24 Jul 2025
Viewed by 273
Abstract
The Carbon Emissions Trading System (ETS) serves as a market-based mechanism to drive renewable energy (RE) investments, yet its heterogeneous impacts on different stakeholders remain underexplored. This paper treats the carbon market as an exogenous shock and develops a multi-agent equilibrium model incorporating [...] Read more.
The Carbon Emissions Trading System (ETS) serves as a market-based mechanism to drive renewable energy (RE) investments, yet its heterogeneous impacts on different stakeholders remain underexplored. This paper treats the carbon market as an exogenous shock and develops a multi-agent equilibrium model incorporating carbon pricing, encompassing power generation enterprises, power transmission enterprises, power consumers, and the government, to analyze how carbon prices reshape RE investment layouts under dual-carbon goals. Using panel data from Zhejiang Province (2017–2022), a high-energy-consumption region with 25% net electricity imports, we simulate heterogeneous responses of agents to carbon price fluctuations (CNY 50–250/ton). The results show that RE on-grid electricity increases (+0.55% to +2.89%), while thermal power declines (–4.98% to −15.39%) on the generation side. Transmission-side RE sales rise (+3.25% to +9.74%), though total electricity sales decrease (−0.49% to −2.22%). On the consumption side, RE self-generation grows (+2.12% to +5.93%), yet higher carbon prices reduce overall utility (−0.44% to −2.05%). Furthermore, external electricity integration (peaking at 28.5% of sales in 2020) alleviates provincial entities’ carbon cost pressure under high carbon prices. This study offers systematic insights for renewable energy investment decisions and policy optimization. Full article
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 330
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 330
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

35 pages, 6888 KiB  
Article
AirTrace-SA: Air Pollution Tracing for Source Attribution
by Wenchuan Zhao, Qi Zhang, Ting Shu and Xia Du
Information 2025, 16(7), 603; https://doi.org/10.3390/info16070603 - 13 Jul 2025
Viewed by 270
Abstract
Air pollution source tracing is vital for effective pollution prevention and control, yet traditional methods often require large amounts of manual data, have limited cross-regional generalizability, and present challenges in capturing complex pollutant interactions. This study introduces AirTrace-SA (Air Pollution Tracing for Source [...] Read more.
Air pollution source tracing is vital for effective pollution prevention and control, yet traditional methods often require large amounts of manual data, have limited cross-regional generalizability, and present challenges in capturing complex pollutant interactions. This study introduces AirTrace-SA (Air Pollution Tracing for Source Attribution), a novel hybrid deep learning model designed for the accurate identification and quantification of air pollution sources. AirTrace-SA comprises three main components: a hierarchical feature extractor (HFE) that extracts multi-scale features from chemical components, a source association bridge (SAB) that links chemical features to pollution sources through a multi-step decision mechanism, and a source contribution quantifier (SCQ) based on the TabNet regressor for the precise prediction of source contributions. Evaluated on real air quality datasets from five cities (Lanzhou, Luoyang, Haikou, Urumqi, and Hangzhou), AirTrace-SA achieves an average R2 of 0.88 (ranging from 0.84 to 0.94 across 10-fold cross-validation), an average mean absolute error (MAE) of 0.60 (ranging from 0.46 to 0.78 across five cities), and an average root mean square error (RMSE) of 1.06 (ranging from 0.51 to 1.62 across ten pollution sources). The model outperforms baseline models such as 1D CNN and LightGBM in terms of stability, accuracy, and cross-city generalization. Feature importance analysis identifies the main contributions of source categories, further improving interpretability. By reducing the reliance on labor-intensive data collection and providing scalable, high-precision source tracing, AirTrace-SA offers a powerful tool for environmental management that supports targeted emission reduction strategies and sustainable development. Full article
(This article belongs to the Special Issue Machine Learning and Data Mining: Innovations in Big Data Analytics)
Show Figures

Figure 1

24 pages, 2440 KiB  
Article
A Novel Dynamic Context Branch Attention Network for Detecting Small Objects in Remote Sensing Images
by Huazhong Jin, Yizhuo Song, Ting Bai, Kaimin Sun and Yepei Chen
Remote Sens. 2025, 17(14), 2415; https://doi.org/10.3390/rs17142415 - 12 Jul 2025
Viewed by 262
Abstract
Detecting small objects in remote sensing images is challenging due to their size, which results in limited distinctive features. This limitation necessitates the effective use of contextual information for accurate identification. Many existing methods often struggle because they do not dynamically adjust the [...] Read more.
Detecting small objects in remote sensing images is challenging due to their size, which results in limited distinctive features. This limitation necessitates the effective use of contextual information for accurate identification. Many existing methods often struggle because they do not dynamically adjust the contextual scope based on the specific characteristics of each target. To address this issue and improve the detection performance of small objects (typically defined as objects with a bounding box area of less than 1024 pixels), we propose a novel backbone network called the Dynamic Context Branch Attention Network (DCBANet). We present the Dynamic Context Scale-Aware (DCSA) Block, which utilizes a multi-branch architecture to generate features with diverse receptive fields. Within each branch, a Context Adaptive Selection Module (CASM) dynamically weights information, allowing the model to focus on the most relevant context. To further enhance performance, we introduce an Efficient Branch Attention (EBA) module that adaptively reweights the parallel branches, prioritizing the most discriminative ones. Finally, to ensure computational efficiency, we design a Dual-Gated Feedforward Network (DGFFN), a lightweight yet powerful replacement for standard FFNs. Extensive experiments conducted on four public remote sensing datasets demonstrate that the DCBANet achieves impressive mAP@0.5 scores of 80.79% on DOTA, 89.17% on NWPU VHR-10, 80.27% on SIMD, and a remarkable 42.4% mAP@0.5:0.95 on the specialized small object benchmark AI-TOD. These results surpass RetinaNet, YOLOF, FCOS, Faster R-CNN, Dynamic R-CNN, SKNet, and Cascade R-CNN, highlighting its effectiveness in detecting small objects in remote sensing images. However, there remains potential for further improvement in multi-scale and weak target detection. Future work will integrate local and global context to enhance multi-scale object detection performance. Full article
(This article belongs to the Special Issue High-Resolution Remote Sensing Image Processing and Applications)
Show Figures

Figure 1

23 pages, 3645 KiB  
Article
Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics
by Patrycja Kwiek, Filip Ciepiela and Małgorzata Jakubowska
Electronics 2025, 14(14), 2773; https://doi.org/10.3390/electronics14142773 - 10 Jul 2025
Viewed by 230
Abstract
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware [...] Read more.
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware loss functions to enhance synthetic blood cell image quality. Methods: RGB microscopic images from the BloodMNIST dataset (eight blood cell types, resolution 3 × 128 × 128) underwent preprocessing with k-means clustering to extract the dominant colors and UMAP for visualizing class similarity. Spearman correlation-based distance matrices were used to evaluate the discriminative power of each RGB channel. A MoE–cGAN architecture was developed with residual blocks and LeakyReLU activations. Expert generators were conditioned on cell type, and the generator’s loss was augmented with a Wasserstein distance-based term comparing red and green channel histograms, which were found most relevant for class separation. Results: The red and green channels contributed most to class discrimination; the blue channel had minimal impact. The proposed model achieved 0.97 classification accuracy on generated images (ResNet50), with 0.96 precision, 0.97 recall, and a 0.96 F1-score. The best Fréchet Inception Distance (FID) was 52.1. Misclassifications occurred mainly among visually similar cell types. Conclusions: Integrating histogram alignment into the MoE–cGAN training significantly improves the realism and class-specific variability of synthetic images, supporting robust model development under data scarcity in hematological imaging. Full article
Show Figures

Figure 1

32 pages, 3173 KiB  
Article
Exploring Long-Term Clean Energy Transition Pathways in Ghana Using an Open-Source Optimization Approach
by Romain Akpahou, Jesse Essuman Johnson, Erica Aboagye, Fernando Plazas-Niño, Mark Howells and Jairo Quirós-Tortós
Energies 2025, 18(13), 3516; https://doi.org/10.3390/en18133516 - 3 Jul 2025
Viewed by 628
Abstract
Access to clean and sustainable energy technologies is critical for all nations, particularly developing countries in Africa. Ghana has committed to ambitious greenhouse gas emission reduction targets, aiming for 10% and 20% variable renewable energy integration by 2030 and 2070, respectively. This study [...] Read more.
Access to clean and sustainable energy technologies is critical for all nations, particularly developing countries in Africa. Ghana has committed to ambitious greenhouse gas emission reduction targets, aiming for 10% and 20% variable renewable energy integration by 2030 and 2070, respectively. This study explores potential pathways for Ghana to achieve its renewable energy production targets amidst a growing energy demand. An open-source energy modelling tool was used to assess four scenarios accounting for current policies and additional alternatives to pursue energy transition goals. The scenarios include Business as Usual (BAU), Government Target (GT), Renewable Energy (REW), and Net Zero (NZ). The results indicate that total power generation and installed capacity would increase across all scenarios, with natural gas accounting for approximately 60% of total generation under the BAU scenario in 2070. Total electricity generation is projected to grow between 10 and 20 times due to different electrification levels. Greenhouse gas emission reduction is achievable with nuclear energy being critical to support renewables. Alternative pathways based on clean energy production may provide cost savings of around USD 11–14 billion compared to a Business as Usual case. The findings underscore the necessity of robust policies and regulatory frameworks to support this transition, providing insights applicable to other developing countries with similar energy profiles. This study proposes a unique contextualized open-source modelling framework for a data-constrained, lower–middle-income country, offering a replicable approach for similar contexts in Sub-Saharan Africa. Its novelty also extended towards contributing to the knowledge of energy system modelling, with nuclear energy playing a crucial role in meeting future demand and achieving the country’s objectives under the Paris Agreement. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 14028 KiB  
Article
Heuristic-Based Scheduling of BESS for Multi-Community Large-Scale Active Distribution Network
by Ejikeme A. Amako, Ali Arzani and Satish M. Mahajan
Electricity 2025, 6(3), 36; https://doi.org/10.3390/electricity6030036 - 1 Jul 2025
Viewed by 323
Abstract
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) [...] Read more.
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) co-simulations for determining optimal heuristic solutions at each time interval are computationally intensive, particularly for large-scale systems. To address this, a two-stage intelligent BESS scheduling approach implemented in a MATLAB–OpenDSS environment with parallel processing is proposed in this paper. In the first stage, a rule-based decision tree generates initial charge/discharge setpoints for community BESS units. These setpoints are refined in the second stage using an optimization algorithm aimed at minimizing community net load power deviations and reducing peak demand. By assigning each ADN community to a dedicated CPU core, the proposed approach utilizes parallel processing to significantly reduce the execution time. Performance evaluations on an IEEE 8500-node test feeder demonstrate that the approach enhances peak shaving while reducing QSTS co-simulation execution time, utility peak demand, distribution network losses, and point of interconnection (POI) nodal voltage deviations. In addition, the use of smart inverter functions improves BESS operations by mitigating voltage violations and active power curtailment, thereby increasing the amount of energy shaved during peak demand periods. Full article
Show Figures

Figure 1

24 pages, 2324 KiB  
Article
FUSE-Net: Multi-Scale CNN for NIR Band Prediction from RGB Using GNDVI-Guided Green Channel Enhancement
by Gwanghyeong Lee, Deepak Ghimire, Donghoon Kim, Sewoon Cho, Byoungjun Kim and Sunghwan Jeong
Sensors 2025, 25(13), 4076; https://doi.org/10.3390/s25134076 - 30 Jun 2025
Viewed by 402
Abstract
Hyperspectral imaging (HSI) is a powerful tool for precision imaging tasks such as vegetation analysis, but its widespread use remains limited due to the high cost of equipment and challenges in data acquisition. To explore a more accessible alternative, we propose a Green [...] Read more.
Hyperspectral imaging (HSI) is a powerful tool for precision imaging tasks such as vegetation analysis, but its widespread use remains limited due to the high cost of equipment and challenges in data acquisition. To explore a more accessible alternative, we propose a Green Normalized Difference Vegetation Index (GNDVI)-guided green channel adjustment method, termed G-RGB, which enables the estimation of near-infrared (NIR) reflectance from standard RGB image inputs. The G-RGB method enhances the green channel to encode NIR-like information, generating a spectrally enriched representation. Building on this, we introduce FUSE-Net, a novel deep learning model that combines multi-scale convolutional layers and MLP-Mixer-based channel learning to effectively model spatial and spectral dependencies. For evaluation, we constructed a high-resolution RGB-HSI paired dataset by capturing basil leaves under controlled conditions. Through ablation studies and band combination analysis, we assessed the model’s ability to recover spectral information. The experimental results showed that the G-RGB input consistently outperformed unmodified RGB across multiple metrics, including mean squared error (MSE), peak signal-to-noise ratio (PSNR), spectral correlation coefficient (SCC), and structural similarity (SSIM), with the best performance observed when paired with FUSE-Net. While our method does not replace true NIR data, it offers a viable approximation during inference when only RGB images are available, supporting cost-effective analysis in scenarios where HSI systems are inaccessible. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop