Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Data Preprocessing
2.2. Methods
- —the value of the cumulative histogram for the real image at bin i.
- —the corresponding value for the generated image.
- K—the number of histogram bins.
2.3. Evaluation Metrics
- (True Positive): a number of correct predictions from class i.
- (False Positive): samples from other classes misclassified as class i.
- (False Negative): samples from class i mislabeled as other classes.
- correctly classified as its true class (TPi for given class);
- incorrectly classified as a different class (FNi).
- k—feature space dimension;
- —the mean feature vector extracted from the real distribution;
- —the mean feature vector extracted from the generated distribution;
- —the covariance matrix of features for real data;
- —the covariance matrix of features for generated data.
- denotes the squared Euclidean norm of the difference between the means;
- represents the trace of a matrix;
- denotes the matrix square root of products and .
2.4. Training, Testing, and Data Generation
2.5. Hardware and Software
3. Results
3.1. Characteristics of the BloodMNIST Database with Regard to Color Analysis in the R, G, and B Channels
3.2. Image Generation
3.2.1. Generator
3.2.2. Discriminator
3.2.3. Training of Image Generation Models
3.3. Participation of Experts in Image Generation
3.4. Final Evaluation of Image Generation
4. Discussion
4.1. Contribution of Color Channels to Class Discrimination
4.2. Misclassification Patterns and Biological Justification
4.3. Ablation Study
4.4. Comparison with Other Works
4.5. Limitations and Future Works
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asif, S.; Wenhui, Y.; Ur-Rehman, S.; Ul-ain, Q.; Amjad, K.; Yueyang, Y.; Jinhai, S.; Awais, M. Advancements and Prospects of Machine Learning in Medical Diagnostics: Unveiling the Future of Diagnostic Precision. Arch. Comput. Methods Eng. 2024, 32, 853–883. [Google Scholar] [CrossRef]
- Ramírez, J.G.C.; Islam, M.M.; Even, A.I.H. Machine Learning Applications in Healthcare: Current Trends and Future Prospects. J. Artif. Intell. Gen. Sci. 2024, 1, 1–12. [Google Scholar]
- Chen, X. AI in Healthcare: Revolutionizing Diagnosis and Treatment through Machine Learning. MZ J. Artif. Intell. 2024, 1, 1–18. [Google Scholar]
- Afkanpour, M.; Hosseinzadeh, E.; Tabesh, H. Identify the Most Appropriate Imputation Method for Handling Missing Values in Clinical Structured Datasets: A Systematic Review. BMC Med. Res. Methodol. 2024, 24, 188. [Google Scholar] [CrossRef]
- Dekermanjian, J.P.; Shaddox, E.; Nandy, D.; Ghosh, D.; Kechris, K. Mechanism-Aware Imputation: A Two-Step Approach in Handling Missing Values in Metabolomics. BMC Bioinform. 2022, 23, 179. [Google Scholar] [CrossRef]
- Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data Augmentation for Medical Imaging: A Systematic Literature Review. Comput. Biol. Med. 2023, 152, 106391. [Google Scholar] [CrossRef]
- Islam, T.; Hafiz, M.S.; Jim, J.R.; Kabir, M.M.; Mridha, M.F. A Systematic Review of Deep Learning Data Augmentation in Medical Imaging: Recent Advances and Future Research Directions. Healthc. Anal. 2024, 5, 100340. [Google Scholar] [CrossRef]
- Saxena, D.; Cao, J. Generative Adversarial Networks (GANs). ACM Comput. Surv. 2021, 54, 63. [Google Scholar] [CrossRef]
- Wang, Z.; She, Q.; Ward, T.E. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 2021, 54, 37. [Google Scholar] [CrossRef]
- Kazerouni, A.; Aghdam, E.K.; Heidari, M.; Azad, R.; Fayyaz, M.; Hacihaliloglu, I.; Merhof, D. Diffusion Models in Medical Imaging: A Comprehensive Survey. Med. Image Anal. 2023, 88, 102846. [Google Scholar] [CrossRef]
- Rguibi, Z.; Hajami, A.; Zitouni, D.; Elqaraoui, A.; Zourane, R.; Bouajaj, Z. Improving Medical Imaging with Medical Variation Diffusion Model: An Analysis and Evaluation. J. Imaging 2023, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzam, N.; Shatnawi, I. Comparing Supervised and Semi-Supervised Machine Learning Models on Diagnosing Breast Cancer. Ann. Med. Surg. 2021, 62, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, Z.; King, I.; Xu, Z. A Survey on Deep Semi-Supervised Learning. IEEE Trans. Knowl. Data Eng. 2023, 35, 8934–8954. [Google Scholar] [CrossRef]
- Yang, J.; Shi, R.; Wei, D.; Liu, Z.; Zhao, L.; Ke, B.; Pfister, H.; Ni, B. MedMNIST v2—A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification. Sci. Data 2023, 10, 41. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- Mittal, M.; Praveen Gujjar, J.; Guru Prasad, M.S.; Devadas, R.M.; Ambreen, L.; Kumar, V. Dimensionality Reduction Using UMAP and TSNE Technique. In Proceedings of the 2nd IEEE International Conference on Advances in Information Technology, ICAIT 2024, Chikkamagaluru, Karnataka, India, 24–27 July 2024; Volume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Chattamvelli, R. Rank Correlation. In Correlation in Engineering and the Applied Sciences. Synthesis Lectures on Mathematics & Statistics; Springer: Berlin/Heidelberg, Germany, 2024; pp. 77–106. [Google Scholar]
- Shen, S.; Jin, S.; Li, F.; Zhao, J. Optical Coherence Tomography Parameters as Prognostic Factors for Stereopsis after Vitrectomy for Unilateral Epiretinal Membrane: A Cohort Study. Sci. Rep. 2024, 14, 6715. [Google Scholar] [CrossRef]
- Benčević, M.; Habijan, M.; Galić, I.; Babin, D.; Pižurica, A. Understanding Skin Color Bias in Deep Learning-Based Skin Lesion Segmentation. Comput. Methods Programs Biomed. 2024, 245, 108044. [Google Scholar] [CrossRef]
- Kim, H.; Ryu, S.M.; Keum, J.S.; Oh, S.I.; Kim, K.N.; Shin, Y.H.; Jeon, I.H.; Koh, K.H. Clinical Validation of Enhanced CT Imaging for Distal Radius Fractures through Conditional Generative Adversarial Networks (CGAN). PLoS ONE 2024, 19, e0308346. [Google Scholar] [CrossRef]
- Deabes, W.; Abdel-Hakim, A.E. CGAN-ECT: Reconstruction of Electrical Capacitance Tomography Images from Capacitance Measurements Using Conditional Generative Adversarial Networks. Flow Meas. Instrum. 2024, 96, 102566. [Google Scholar] [CrossRef]
- Campbell, J.N.A.; Dais Ferreira, M.; Isenor, A.W. Generation of Vessel Track Characteristics Using a Conditional Generative Adversarial Network (CGAN). Appl. Artif. Intell. 2024, 38, e2360283. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; He, S.; Xu, T.; Yuan, J.; Gu, X. Applying Conditional Generative Adversarial Networks for Imaging Diagnosis. In Proceedings of the 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems, ICPICS 2024, Shenyang, China, 26–28 July 2024; pp. 1717–1722. [Google Scholar]
- Skandarani, Y.; Jodoin, P.M.; Lalande, A. GANs for Medical Image Synthesis: An Empirical Study. J. Imaging 2023, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Shin, B.S. Robust Medical Image Colorization with Spatial Mask-Guided Generative Adversarial Network. Bioengineering 2022, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. The Role of Activation Function in Image Classification. In Proceedings of the 2021 IEEE 3rd International Conference on Communications, Information System and Computer Engineering, CISCE 2021, Beijing, China, 14–16 May 2021; pp. 275–278. [Google Scholar]
- Lakhdari, K.; Saeed, N. A New Vision of a Simple 1D Convolutional Neural Networks (1D-CNN) with Leaky-ReLU Function for ECG Abnormalities Classification. Intell. Based Med. 2022, 6, 100080. [Google Scholar] [CrossRef]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Zhang, Q.; Huang, N.; Yao, L.; Zhang, D.; Shan, C.; Han, J. RGB-T Salient Object Detection via Fusing Multi-Level CNN Features. IEEE Trans. Image Process. 2020, 29, 3321–3335. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.; Zhang, D.; He, S.; Tang, J. Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 47, 1958–1974. [Google Scholar] [CrossRef]
- Gan, W.; Ning, Z.; Qi, Z.; Yu, P.S. Mixture of Experts (MoE): A Big Data Perspective. arXiv 2025, arXiv:2501.16352. [Google Scholar]
- Zhao, C.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Kim, D.I.; Shen, X.S.; Letaief, K.B. Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts. IEEE Wirel. Commun. 2025, 32, 176–184. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 2000, 40, 99–121. [Google Scholar] [CrossRef]
- Mi, J.; Ma, C.; Zheng, L.; Zhang, M.; Li, M.; Wang, M. WGAN-CL: A Wasserstein GAN with Confidence Loss for Small-Sample Augmentation. Expert. Syst. Appl. 2023, 233, 120943. [Google Scholar] [CrossRef]
- Bobadilla, J.; Gutiérrez, A. Wasserstein GAN-Based Architecture to Generate Collaborative Filtering Synthetic Datasets. Appl. Intell. 2024, 54, 2472–2490. [Google Scholar] [CrossRef]
- Ngasa, E.E.; Jang, M.A.; Tarimo, S.A.; Woo, J.; Shin, H.B. Diffusion-Based Wasserstein Generative Adversarial Network for Blood Cell Image Augmentation. Eng. Appl. Artif. Intell. 2024, 133, 108221. [Google Scholar] [CrossRef]
- Anaya-Sánchez, H.; Altamirano-Robles, L.; Díaz-Hernández, R.; Zapotecas-Martínez, S. WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models. Sensors 2025, 25, 167. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.; Brown, C. Comparing Human-Level and Machine Learning Model Performance in White Blood Cell Morphology Assessment. Eur. J. Haematol. 2024, 114, 115–119. [Google Scholar] [CrossRef]
- Constantinescu, A.E.; Bull, C.J.; Jones, N.; Mitchell, R.; Burrows, K.; Dimou, N.; Bézieau, S.; Brenner, H.; Buchanan, D.D.; D’Amato, M.; et al. Circulating White Blood Cell Traits and Colorectal Cancer Risk: A Mendelian Randomisation Study. Int. J. Cancer 2024, 154, 94–103. [Google Scholar] [CrossRef]
- Ozga, M.; Nicolet, D.; Mrózek, K.; Walker, C.J.; Blachly, J.S.; Kohlschmidt, J.; Orwick, S.; Carroll, A.J.; Larson, R.A.; Kolitz, J.E.; et al. White Blood Cell Count Levels Are Associated with Inflammatory Response and Constitute Independent Outcome Predictors in Adult Patients with Acute Myeloid Leukemia Aged <60 Years. Am. J. Hematol. 2024, 99, 2236–2240. [Google Scholar] [CrossRef]
- Wang, J.; Lei, B.; Ding, L.; Xu, X.; Gu, X.; Zhang, M. Autoencoder-Based Conditional Optimal Transport Generative Adversarial Network for Medical Image Generation. Vis. Inform. 2024, 8, 15–25. [Google Scholar] [CrossRef]
- Ding, H.; Tao, Q.; Huang, N. BDGAN: Boundary and Diversity-Aware Generative Adversarial Network for Imbalanced Medical Image Augmentation. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing, Hyderabad, India, 6–11 April 2025; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2025. [Google Scholar]
- Ding, H.; Zhang, K.; Huang, N. DM-GAN: A Data Augmentation-Based Approach for Imbalanced Medical Image Classification. In Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024, Lisbon, Portugal, 3–6 December 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024; pp. 3160–3165. [Google Scholar]
- Ding, H.; Huang, N.; Wu, Y.; Cui, X. LEGAN: Addressing Intraclass Imbalance in GAN-Based Medical Image Augmentation for Improved Imbalanced Data Classification. IEEE Trans. Instrum. Meas. 2024, 73, 2517914. [Google Scholar] [CrossRef]
- Ding, H.; Huang, N.; Wu, Y.; Cui, X. Improving Imbalanced Medical Image Classification through GAN-Based Data Augmentation Methods. Pattern Recognit. 2025, 166, 111680. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Liu, Z.; Li, M. Semi-Supervised Disease Classification Based on Limited Medical Image Data. IEEE J. Biomed. Health Inform. 2024, 28, 1575–1586. [Google Scholar] [CrossRef]
Class | FID |
---|---|
basophil | 91.39 |
eosinophil | 102.35 |
erythroblast | 116.95 |
granulocyte | 109.13 |
lymphocyte | 104.18 |
monocyte | 82.92 |
neutrophil | 69.42 |
platelet | 140.25 |
Nr | NN Architecture | Color Histograms | Accuracy | FID for the Entire Generated Set | FID Averaged for Individual Classes |
---|---|---|---|---|---|
1 | cGAN | Not used | 0.89 | 74.5 | 137.0 |
2 | Red, Green | 0.87 | 76.3 | 138.7 | |
3 | Red, Green, Blue | 0.91 | 91.1 | 149.5 | |
4 | cGAN with residual blocks | Not used | 0.90 | 57.1 | 112.2 |
5 | Red, Green | 0.93 | 66.4 | 123.8 | |
6 | Red, Green, Blue | 0.87 | 71.3 | 132.5 | |
7 | Mixture- of-Experts cGAN | Not used | 0.92 | 50.4 | 98.4 |
8 | Red, Green 1 | 0.97 | 52.1 | 102.1 | |
9 | Red, Green, Blue | 0.86 | 50.0 | 101.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiek, P.; Ciepiela, F.; Jakubowska, M. Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics. Electronics 2025, 14, 2773. https://doi.org/10.3390/electronics14142773
Kwiek P, Ciepiela F, Jakubowska M. Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics. Electronics. 2025; 14(14):2773. https://doi.org/10.3390/electronics14142773
Chicago/Turabian StyleKwiek, Patrycja, Filip Ciepiela, and Małgorzata Jakubowska. 2025. "Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics" Electronics 14, no. 14: 2773. https://doi.org/10.3390/electronics14142773
APA StyleKwiek, P., Ciepiela, F., & Jakubowska, M. (2025). Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics. Electronics, 14(14), 2773. https://doi.org/10.3390/electronics14142773