Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (790)

Search Parameters:
Keywords = net ecosystem production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1721 KiB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 (registering DOI) - 1 Aug 2025
Viewed by 22
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

22 pages, 3015 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 (registering DOI) - 1 Aug 2025
Viewed by 70
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 40
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 52
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 (registering DOI) - 31 Jul 2025
Viewed by 252
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

23 pages, 3204 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 229
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

22 pages, 11876 KiB  
Article
Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China
by Wenfeng Ji, Siyuan Liu, Yi Yang, Mengxue Liu, Hejie Wei and Ling Li
Land 2025, 14(8), 1522; https://doi.org/10.3390/land14081522 - 24 Jul 2025
Viewed by 229
Abstract
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies [...] Read more.
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies have examined intra- and inter-regional ecosystem carbon sequestration flows, making regional ecosystem carbon sequestration flows less comprehensive. Against this background, the research objectives of this paper are as follows. The flow of carbon sequestration services between Henan Province and out-of-province regions is studied. In addition, this study clarifies the beneficiary and supply areas of carbon sink services in Henan Province and the neighboring regions at the prefecture-level city scale to obtain a more systematic, comprehensive, and actual flow of carbon sequestration services for scientific and effective eco-compensation and to promote regional synergistic emission reductions. The research methodologies used in this paper are as follows. First, this study adopts a meta-coupling framework, designating Henan Province as the focal system, the Central Urban Agglomeration as the adjacent system, and eight surrounding provinces as remote systems. Regional carbon sequestration was assessed using net primary productivity (NEP), while carbon emissions were evaluated based on per capita carbon emissions and population density. A carbon balance analysis integrated carbon sequestration and emissions. Hotspot analysis identified areas of carbon sequestration service supply and associated benefits. Ecological radiation force formulas were used to quantify service flows, and compensation values were estimated considering the government’s payment capacity and willingness. A three-dimensional evaluation system—incorporating technology, talent, and fiscal capacity—was developed to propose a diversified ecological compensation scheme by comparing supply and beneficiary areas. By modeling the ecosystem carbon sequestration service flow, the main results of this paper are as follows: (1) Within Henan Province, Luoyang and Nanyang provided 521,300 tons and 515,600 tons of carbon sinks to eight cities (e.g., Jiaozuo, Zhengzhou, and Kaifeng), warranting an ecological compensation of CNY 262.817 million and CNY 263.259 million, respectively. (2) Henan exported 3.0739 million tons of carbon sinks to external provinces, corresponding to a compensation value of CNY 1756.079 million. Conversely, regions such as Changzhi, Xiangyang, and Jinzhong contributed 657,200 tons of carbon sinks to Henan, requiring a compensation of CNY 189.921 million. (3) Henan thus achieved a net ecological compensation of CNY 1566.158 million through carbon sink flows. (4) In addition to monetary compensation, beneficiary areas may also contribute through technology transfer, financial investment, and talent support. The findings support the following conclusions: (1) it is necessary to consider the externalities of ecosystem services, and (2) the meta-coupling framework enables a comprehensive assessment of carbon sequestration service flows, providing actionable insights for improving ecosystem governance in Henan Province and comparable regions. Full article
(This article belongs to the Special Issue Land Resource Assessment (Second Edition))
Show Figures

Figure 1

27 pages, 15353 KiB  
Article
Drought Evolution in the Yangtze and Yellow River Basins and Its Dual Impact on Ecosystem Carbon Sequestration
by Yuanhe Yu, Huan Deng, Shupeng Gao and Jinliang Wang
Agriculture 2025, 15(14), 1552; https://doi.org/10.3390/agriculture15141552 - 19 Jul 2025
Viewed by 254
Abstract
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution [...] Read more.
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution of drought patterns and their ecological impacts. Using meteorological station data and Climatic Research Unit Gridded Time Series (CRU TS) data, this study analyzed the spatiotemporal characteristics of drought evolution in the YZRB and YRB from 1961 to 2021 using the standardized precipitation evapotranspiration index (SPEI) and run theory. Additionally, this study examined drought effects on ecosystem carbon sequestration (CS) at the city, county, and pixel scales. The results revealed the following: (1) the CRU data effectively captured precipitation (annual r = 0.94) and temperature (annual r = 0.95) trends in both basins, despite significantly underestimating winter temperatures, with the optimal SPEI calculation accuracy found at the monthly scale; (2) both basins experienced frequent autumn–winter droughts, with the YRB facing stronger droughts, including nine events which exceeded 10 months (the longest lasting 25 months), while the mild droughts increased in frequency and extreme intensity; and (3) the drought impacts on CS demonstrated a significant threshold effect, where the intensified drought unexpectedly enhanced CS in western regions, such as the Garzê Autonomous Prefecture in Sichuan Province and Changdu City in the Xizang Autonomous Region, but suppressed CS in the midstream and downstream plains. The CS responded positively under weak drought conditions but declined once the drought intensity surpassed the threshold. This study revealed a nonlinear relationship between drought and CS across climatic zones, thereby providing a scientific foundation for enhancing ecological resilience. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

22 pages, 35931 KiB  
Article
Spatiotemporal Dynamics and Future Climate Change Response of Forest Carbon Sinks in an Ecologically Oriented County
by Jiale Lei, Caihong Chen, Jiyun She and Ye Xu
Sustainability 2025, 17(14), 6552; https://doi.org/10.3390/su17146552 - 17 Jul 2025
Viewed by 268
Abstract
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models [...] Read more.
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models to estimate the forest net ecosystem productivity (NEP) in Taoyuan County from 2000 to 2023. The spatiotemporal differentiation was analyzed using seasonal Mann–Kendall tests, Theil–Sen slope estimation, and standard deviation ellipses. The forest NEP for 2035 was predicted under multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) by applying a discrete coupling of the Patch-generating Land Use Simulation (PLUS) model, incorporating territorial spatial planning policy, and using the CASA model. The results indicated that the Taoyuan County forest NEP exhibited a fluctuating upward trend from 2000 to 2023, with higher (lower) values in the west/south (east/north). Under future warming and humidification, the overall forest NEP in Taoyuan County was projected to decrease by 2035, with predicted NEP values across scenarios ranking as SSP5-8.5 > SSP1-2.6 > SSP2-4.5. The findings offer practical insights for improving local forest management, optimizing forest configuration, and guiding county-level “dual-carbon” policies under future climate and land use change, thereby contributing to ecological sustainability. Full article
Show Figures

Figure 1

26 pages, 3149 KiB  
Article
The Spatiotemporal Impact of Socio-Economic Factors on Carbon Sink Value: A Geographically and Temporally Weighted Regression Analysis at the County Level from 2000 to 2020 in China’s Fujian Province
by Tao Wang and Qi Liang
Land 2025, 14(7), 1479; https://doi.org/10.3390/land14071479 - 17 Jul 2025
Viewed by 319
Abstract
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic [...] Read more.
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic drivers. Carbon sink values from 2000 to 2020 were estimated using Net Ecosystem Productivity (NEP) simulation combined with the carbon market valuation method. Eleven socio-economic variables were selected through correlation and multicollinearity testing, and their impacts were examined using Geographically and Temporally Weighted Regression (GTWR) at the county level. The results indicate that the total carbon sink value in Fujian declined from CNY 3.212 billion in 2000 to CNY 2.837 billion in 2020, showing a spatial pattern of higher values in the southern region and lower values in the north. GTWR analysis reveals spatiotemporal heterogeneity in the effects of socio-economic factors. For example, the influence of urbanization and retail sales of consumer goods shifts direction over time, while the effects of industrial structure, population, road, and fixed asset investment vary across space. This study emphasizes the necessity of incorporating spatial and temporal dynamics into carbon sink valuation. The findings suggest that northern areas of Fujian should prioritize ecological restoration, rapidly urbanizing regions should adopt green development strategies, and counties guided by investment and consumption should focus on sustainable development pathways to maintain and enhance carbon sink capacity. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 292
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

29 pages, 11247 KiB  
Article
The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China
by Chaofan Zhang and Jie Liu
Sustainability 2025, 17(13), 5979; https://doi.org/10.3390/su17135979 - 29 Jun 2025
Viewed by 485
Abstract
As the global population continues to rise, the impact of urbanization on land utilization and ecosystems are growing more pronounced, particularly within the expanding area of Asia. The land use/land change (LULC) brought by urban expansion directly impacts plant growth and ecological productivity, [...] Read more.
As the global population continues to rise, the impact of urbanization on land utilization and ecosystems are growing more pronounced, particularly within the expanding area of Asia. The land use/land change (LULC) brought by urban expansion directly impacts plant growth and ecological productivity, altering the carbon cycle and climate regulation functions of the region. This research focuses on Harbin City as a case study, employing an enhanced version of the Carnegie–Ames–Stanford Approach (CASA) model to analyze the spatial–temporal variations in vegetation Net Primary Productivity (NPP) across the area from 2000 to 2020. The findings indicate that Net Primary Productivity (NPP) in Harbin exhibited notable interannual variability and spatial heterogeneity. From 2000 to 2005, a decline in NPP was observed across 60.75% of the area. This reduction was predominantly concentrated in the central and eastern areas of the city, where forested landscapes are the dominant feature. In contrast, from 2010 to 2015, 92.12% of the region saw an increase in NPP, closely related to the overall improvement in NPP across all land-use types. Land-use change significantly influenced NPP dynamics. Between 2000 and 2005, 54.26% of NPP increases stemmed from the transition of farmland into forest, highlighting the effectiveness of the “conversion of farmland back to forests” policy. From 2005 to 2010, 98.6% of the area experienced NPP decline, mainly due to forest and cropland degradation, especially the unstable carbon sink function of forest ecosystems. Between 2010 and 2015, NPP improved across 96.86% of the area, driven by forest productivity recovery and better agricultural management. These results demonstrate the profound and lasting impact of land-use transitions on the spatiotemporal dynamics of NPP. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

17 pages, 17662 KiB  
Article
Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020
by Qibeier Xie and Jie Ren
Atmosphere 2025, 16(7), 790; https://doi.org/10.3390/atmos16070790 - 28 Jun 2025
Viewed by 288
Abstract
Understanding the interplay between climate change, landscape patterns, and carbon sequestration is critical for sustainable ecosystem management. This study investigates the spatiotemporal evolution of vegetation Net Primary Productivity (NPP) and landscape patterns in Inner Mongolia, China, from 2000 to 2020, and evaluates their [...] Read more.
Understanding the interplay between climate change, landscape patterns, and carbon sequestration is critical for sustainable ecosystem management. This study investigates the spatiotemporal evolution of vegetation Net Primary Productivity (NPP) and landscape patterns in Inner Mongolia, China, from 2000 to 2020, and evaluates their implications for carbon sink capacity under climate change. Using remote sensing data, meteorological records, and landscape metrics (CONTAG, SPLIT, IJI), we quantified the relationships between vegetation productivity, landscape connectivity, and fragmentation. Results reveal a northeast-to-southwest gradient in NPP, with high values concentrated in forested regions of the Greater Khingan Range and low values in arid western deserts. Over two decades, NPP increased by 73% in high-productivity zones, driven by rising temperatures and ecological restoration policies. Landscape aggregation (CONTAG) and patch connectivity showed strong positive correlations with NPP, while higher fragmentation values (SPLIT, IJI) negatively impacted carbon sequestration. Climate factors, particularly precipitation variability, emerged as critical drivers of NPP fluctuations, with human activities amplifying regional disparities. We propose targeted strategies—enhancing landscape connectivity, regional differentiation management, and optimizing patch structure—to bolster climate-resilient carbon sinks. These findings underscore the necessity of integrating climate-adaptive landscape planning into regional carbon neutrality frameworks, offering feasible alternatives for mitigating climate impacts in ecologically vulnerable regions. Full article
Show Figures

Figure 1

21 pages, 6768 KiB  
Article
Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023
by Tao Long, Yonghong Wang, Yunchao Jiang, Yun Zhang and Bo Wang
Sustainability 2025, 17(13), 5804; https://doi.org/10.3390/su17135804 - 24 Jun 2025
Viewed by 276
Abstract
This study quantitatively evaluates the effects of human activities (HAs) and climate change (CC) on the terrestrial ecosystem carbon cycle, providing a scientific basis for ecosystem management and the formulation of sustainable development policies in urban agglomerations located in arid and ecotone regions. [...] Read more.
This study quantitatively evaluates the effects of human activities (HAs) and climate change (CC) on the terrestrial ecosystem carbon cycle, providing a scientific basis for ecosystem management and the formulation of sustainable development policies in urban agglomerations located in arid and ecotone regions. Using the LanXi urban agglomeration in China as a case study, we simulated the spatiotemporal variation of vegetation net primary productivity (NPP) from 2000 to 2023 based on MODIS remote sensing data and the CASA model. Trend analysis and the Hurst index were employed to identify the dynamic trends and persistence of NPP. Furthermore, the Geographical Detector model with optimized parameters, along with nonlinear residual analysis, was employed to investigate the driving mechanisms and relative contributions of HAs and CC to NPP variation. The results indicate that NPP in the LanXi urban agglomeration exhibited a fluctuating upward trend, with an average annual increase of 4.26 gC/m2 per year. Spatially, this trend followed a pattern of “higher in the center, lower in the east and west,” with more than 95% of the region showing an increase in NPP. Precipitation, mean annual temperature, evapotranspiration, and land use types were identified as the primary driving factors of NPP change. The interaction among these factors demonstrated a stronger explanatory power through factor coupling. Compared with linear residual analysis, the nonlinear model showed clear advantages, indicating that vegetation NPP in the LanXi urban agglomeration was jointly influenced by HAs and CC. These findings can further act as a basis for resource and environmental research in similar ecotone regions globally, such as Central Asia, the Mediterranean Basin, the southwestern United States, and North Africa. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

26 pages, 11805 KiB  
Article
Coupling Marxan and InVEST Models to Identify Ecological Protection Areas: A Case Study of Anhui Province
by Xinmu Zhang, Xinran Zhang, Lei Zhang, Kangkang Gu and Xinchen Gu
Land 2025, 14(7), 1314; https://doi.org/10.3390/land14071314 - 20 Jun 2025
Viewed by 415
Abstract
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of [...] Read more.
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of multi-stakeholder decision-making preferences and the Marxan model. Four conservation scenarios (ecological security priority, social benefit orientation, minimum cost constraint, and balance synergy) were established to explore the spatial optimization pathways of ecological protection zones under differentiated policy objectives. The findings indicated that: (1) The ecosystem services in Anhui Province exhibited a “low north and high south” spatial gradient, with significant synergies observed in natural ecosystem services in the southern Anhui mountainous areas, while the northern Anhui agricultural areas were subjected to significant trade-offs due to intensive development. (2) High service provision in the southern Anhui mountainous areas was maintained by topographic barriers and forest protection policies (significant NPP improvement zones accounted for 50.125%), whereas soil–water services degradation in the northern Anhui plains was caused by agricultural intensification and groundwater overexploitation (slight soil retention degradation covered 24.505%, and water yield degradation areas reached 29.766%). Urbanization demonstrated a double-edged sword effect—the expansion of the Hefei metropolitan area triggered suburban biodiversity degradation (significant degradation patches occupied 0.0758%), while ecological restoration projects promoted mountain NPP growth, highlighting the necessity of synergizing natural recovery and artificial interventions. (3) Multi-scenario planning revealed that the spatial congruence between the ecological security priority scenario and traditional ecological protection redlines reached 46.57%, whereas the social benefit scenario achieved only 12.13%, exposing the inadequate responsiveness of the current conservation framework to service demands in densely populated areas. This research validated the technical superiority of multi-objective systematic planning in reconciling ecological protection and development conflicts, providing scientific support for optimizing ecological security patterns in the Yangtze River Delta region. Full article
Show Figures

Figure 1

Back to TopTop