Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = neo-sex chromosome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1376 KB  
Article
Neo-X-Linked Chromosome Polymorphism: Cytogenetic Insights from Passalites nemorivagus (Mammalia, Cervidae)
by Raquel Muhlbeier Bonato, Agda Maria Bernegossi, Eluzai Dinai Pinto Sandoval, Halina Cernohorska, Miluse Vozdova and José Maurício Barbanti Duarte
Animals 2025, 15(17), 2557; https://doi.org/10.3390/ani15172557 - 30 Aug 2025
Viewed by 947
Abstract
Chromosomal instability plays a significant role in karyotype evolution and speciation in mammalian groups with notable intraspecific chromosomal variation. The Cervidae family, known for its rapid karyotypic evolution due to chromosomal fragility, shows substantial chromosomal diversity, making it a focal point for studies [...] Read more.
Chromosomal instability plays a significant role in karyotype evolution and speciation in mammalian groups with notable intraspecific chromosomal variation. The Cervidae family, known for its rapid karyotypic evolution due to chromosomal fragility, shows substantial chromosomal diversity, making it a focal point for studies on chromosomal evolution, particularly with respect to conservation and taxonomic classification. The Amazon gray brocket deer (Passalites nemorivagus) exhibits pronounced chromosomal polymorphism, including two distinct sex chromosome systems: the ancestral XX/XY system and a new system due to an X–autosome fusion (neo-X), where males present XY1Y2. This variation is intriguing, especially given that the effects on hybrids have not been previously reported. This study uses bovine whole-chromosome painting (WCP) and BAC probes to document karyotypic variation in P. nemorivagus. A male with the XY system and a heterozygous autosomal Robertsonian fusion was paired with a female with neo-X chromosomes, and the resulting female offspring displayed an X–autosome fusion in heterozygosity. The females in this study, hybrids for the sex system, exhibited estrus, copulated, and both gave birth to offspring. This characterization is the first step in investigating the effects of sex chromosome system variation on hybrid viability and fertility, and provides insights into the reproductive biology of Neotropical deer. Full article
(This article belongs to the Special Issue Advances in Animal Chromosomal and Genomic Instability)
Show Figures

Figure 1

21 pages, 4257 KB  
Article
Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae)
by Geize Aparecida Deon, Tariq Ezaz, José Henrique Forte Stornioli, Rodrigo Zeni dos Santos, Anderson José Baia Gomes, Príncia Grejo Setti, Edivaldo Herculano Correa de Oliveira, Fábio Porto-Foresti, Ricardo Utsunomia, Thomas Liehr and Marcelo de Bello Cioffi
Biomolecules 2025, 15(9), 1248; https://doi.org/10.3390/biom15091248 - 29 Aug 2025
Viewed by 1296
Abstract
Bats are great models for studying repetitive DNAs due to their compact genomes and extensive chromosomal rearrangements. Here, we investigated the repetitive DNA content of two phyllostomid bat species, Artibeus lituratus (2nn = 30♀/31♂) and Carollia perspicillata (2n = 20♀/21♂), both [...] Read more.
Bats are great models for studying repetitive DNAs due to their compact genomes and extensive chromosomal rearrangements. Here, we investigated the repetitive DNA content of two phyllostomid bat species, Artibeus lituratus (2nn = 30♀/31♂) and Carollia perspicillata (2n = 20♀/21♂), both harboring a multiple XY1Y2 sex chromosome system. Satellite DNA (satDNA) libraries were isolated and characterized, revealing four and ten satDNA families in A. lituratus and C. perspicillata, respectively. These sequences, along with selected microsatellites, were in situ mapped onto chromosomes in both species and phylogenetically related taxa. SatDNAs showed strong accumulation in centromeric and subtelomeric regions, especially pericentromeric areas. Cross-species mapping with C. perspicillata-derived probes indicated terminal localization patterns in other bat species, suggesting conserved distribution. Microsatellites co-localized with 45S rDNA clusters on the neo-sex chromosomes. Additionally, genomic hybridization revealed a male-specific signal on the Y1 chromosome, pointing to potential sex-linked repetitive regions. These findings confirm that bat genomes display relatively low amounts of repetitive DNA compared to other mammals and underscore the role of these elements in genome organization and sex chromosome evolution in phyllostomid bats. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

16 pages, 5347 KB  
Article
Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes)
by Renata Luiza Rosa de Moraes, Francisco de Menezes Cavalcante Sassi, Jhon Alex Dziechciarz Vidal, Caio Augusto Gomes Goes, Rodrigo Zeni dos Santos, José Henrique Forte Stornioli, Fábio Porto-Foresti, Thomas Liehr, Ricardo Utsunomia and Marcelo de Bello Cioffi
Int. J. Mol. Sci. 2023, 24(17), 13654; https://doi.org/10.3390/ijms241713654 - 4 Sep 2023
Cited by 11 | Viewed by 2823
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where [...] Read more.
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 5716 KB  
Article
Whole-Genome Analysis Reveals the Dynamic Evolution of Holocentric Chromosomes in Satyrine Butterflies
by Elena A. Pazhenkova and Vladimir A. Lukhtanov
Genes 2023, 14(2), 437; https://doi.org/10.3390/genes14020437 - 8 Feb 2023
Cited by 7 | Viewed by 3780
Abstract
Butterfly chromosomes are holocentric, i.e., lacking a localized centromere. Potentially, this can lead to rapid karyotypic evolution through chromosome fissions and fusions, since fragmented chromosomes retain kinetic activity, while fused chromosomes are not dicentric. However, the actual mechanisms of butterfly genome evolution are [...] Read more.
Butterfly chromosomes are holocentric, i.e., lacking a localized centromere. Potentially, this can lead to rapid karyotypic evolution through chromosome fissions and fusions, since fragmented chromosomes retain kinetic activity, while fused chromosomes are not dicentric. However, the actual mechanisms of butterfly genome evolution are poorly understood. Here, we analyzed chromosome-scale genome assemblies to identify structural rearrangements between karyotypes of satyrine butterfly species. For the species pair Erebia ligeaManiola jurtina, sharing the ancestral diploid karyotype 2n = 56 + ZW, we demonstrate a high level of chromosomal macrosynteny and nine inversions separating these species. We show that the formation of a karyotype with a low number of chromosomes (2n = 36 + ZW) in Erebia aethiops was based on ten fusions, including one autosome–sex chromosome fusion, resulting in a neo-Z chromosome. We also detected inversions on the Z sex chromosome that were differentially fixed between the species. We conclude that chromosomal evolution is dynamic in the satyrines, even in the lineage that preserves the ancestral chromosome number. We hypothesize that the exceptional role of Z chromosomes in speciation may be further enhanced by inversions and sex chromosome–autosome fusions. We argue that not only fusions/fissions but also inversions are drivers of the holocentromere-mediated mode of chromosomal speciation. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Figure 1

14 pages, 1221 KB  
Article
On the Origin of Neo-Sex Chromosomes in the Neotropical Dragonflies Rhionaeschna bonariensis and R. planaltica (Aeshnidae, Odonata)
by Liliana M. Mola, Iva Vrbová, Daniela S. Tosto, Magda Zrzavá and František Marec
Insects 2022, 13(12), 1159; https://doi.org/10.3390/insects13121159 - 15 Dec 2022
Cited by 3 | Viewed by 2698
Abstract
Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the [...] Read more.
Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the distribution of the nucleolar organizer region (NOR) using FISH with rDNA probes in Rhionaeschna bonariensis (n = 12 + neo-XY), R. planaltica (n = 7 + neo-XY), and Aeshna cyanea (n = 13 + X0). In R. bonariensis and A. cyanea, the NOR is located on a large pair of autosomes, which have a secondary constriction in the latter species. In R. planaltica, the NOR is located on the ancestral part of the neo-X chromosome. Meiotic analysis and FISH results in R. planaltica led to the conclusion that the neo-XY system arose by insertion of the ancestral X chromosome into an autosome. Genomic in situ hybridization, performed for the first time in Odonata, highlighted the entire neo-Y chromosome in meiosis of R. bonariensis, suggesting that it consists mainly of repetitive DNA. This feature and the terminal chiasma localization suggest an ancient origin of the neo-XY system. Our study provides new information on the origin and evolution of neo-sex chromosomes in Odonata, including new types of chromosomal rearrangements, NOR transposition, and heterochromatin accumulation. Full article
(This article belongs to the Special Issue Comparative Cytogenetics and Molecular Systematics of Insects)
Show Figures

Figure 1

13 pages, 3675 KB  
Article
W Chromosome Evolution by Repeated Recycling in the Frog Glandirana rugosa
by Mitsuaki Ogata, Foyez Shams, Yuri Yoshimura, Tariq Ezaz and Ikuo Miura
DNA 2022, 2(3), 172-184; https://doi.org/10.3390/dna2030012 - 1 Aug 2022
Cited by 6 | Viewed by 4626
Abstract
The Y or W sex chromosome of a heteromorphic pair is usually heterochromatinised and degenerated. However, whether chromosome degeneration constantly proceeds toward an extreme end is not fully understood. Here, we present a case of intermittent evolution of W chromosomes caused by interpopulation [...] Read more.
The Y or W sex chromosome of a heteromorphic pair is usually heterochromatinised and degenerated. However, whether chromosome degeneration constantly proceeds toward an extreme end is not fully understood. Here, we present a case of intermittent evolution of W chromosomes caused by interpopulation hybridisation in the Japanese soil-frog, Glandirana rugosa. This species includes two heteromorphic sex chromosome systems, which are separated into geographic populations, namely the XY and ZW groups. In this study, to uncover the evolutionary mechanisms of the heterogeneous W chromosomes, we genetically investigated the geographic differentiation of the ZW populations along with the closely located XY populations. Analysis of mitochondrial cytochrome b sequences detected three distinct clades, named ZW1, ZW2, and ZW3. High throughput analyses of nuclear genomic DNA showed that autosomal alleles of XY populations were deeply introgressed into the ZW3 sub-group. Based on the genotypes of sex-linked single nucleotide polymorphisms, W-borne androgen receptor gene expression, and WW developmental mortality, we concluded that the X chromosomes were recycled to W chromosomes. Upon inclusion of two cases from another group, Neo-ZW, we observed that the X chromosomes were recycled independently at least four times to the new W chromosomes: a repetition of degeneration and resurrection. Full article
Show Figures

Graphical abstract

14 pages, 2195 KB  
Article
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes)
by Fernando H. S. de Souza, Francisco de M. C. Sassi, Pedro H. N. Ferreira, Luiz A. C. Bertollo, Tariq Ezaz, Thomas Liehr, Manolo F. Perez and Marcelo B. Cioffi
Biology 2022, 11(2), 315; https://doi.org/10.3390/biology11020315 - 16 Feb 2022
Cited by 3 | Viewed by 3874
Abstract
Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among [...] Read more.
Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone. Full article
Show Figures

Figure 1

21 pages, 4603 KB  
Article
Degenerated, Undifferentiated, Rearranged, Lost: High Variability of Sex Chromosomes in Geometridae (Lepidoptera) Identified by Sex Chromatin
by Martina Hejníčková, Martina Dalíková, Pavel Potocký, Toomas Tammaru, Marharyta Trehubenko, Svatava Kubíčková, František Marec and Magda Zrzavá
Cells 2021, 10(9), 2230; https://doi.org/10.3390/cells10092230 - 28 Aug 2021
Cited by 15 | Viewed by 5043
Abstract
Sex chromatin is a conspicuous body that occurs in polyploid nuclei of most lepidopteran females and consists of numerous copies of the W sex chromosome. It is also a cytogenetic tool used to rapidly assess the W chromosome presence in Lepidoptera. However, certain [...] Read more.
Sex chromatin is a conspicuous body that occurs in polyploid nuclei of most lepidopteran females and consists of numerous copies of the W sex chromosome. It is also a cytogenetic tool used to rapidly assess the W chromosome presence in Lepidoptera. However, certain chromosomal features could disrupt the formation of sex chromatin and lead to the false conclusion that the W chromosome is absent in the respective species. Here we tested the sex chromatin presence in 50 species of Geometridae. In eight selected species with either missing, atypical, or normal sex chromatin patterns, we performed a detailed karyotype analysis by means of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). The results showed a high diversity of W chromosomes and clarified the reasons for atypical sex chromatin, including the absence or poor differentiation of W, rearrangements leading to the neo-W emergence, possible association with the nucleolus, and the existence of multiple W chromosomes. In two species, we detected intraspecific variability in the sex chromatin status and sex chromosome constitution. We show that the sex chromatin is not a sufficient marker of the W chromosome presence, but it may be an excellent tool to pinpoint species with atypical sex chromosomes. Full article
(This article belongs to the Collection Non-human Chromosome Analysis)
Show Figures

Figure 1

15 pages, 3807 KB  
Article
Multiple Sex Chromosomes and Evolutionary Relationships in Amazonian Catfishes: The Outstanding Model of the Genus Harttia (Siluriformes: Loricariidae)
by Francisco de M. C. Sassi, Geize A. Deon, Orlando Moreira-Filho, Marcelo R. Vicari, Luiz A. C. Bertollo, Thomas Liehr, Ezequiel Aguiar de Oliveira and Marcelo B. Cioffi
Genes 2020, 11(10), 1179; https://doi.org/10.3390/genes11101179 - 10 Oct 2020
Cited by 27 | Viewed by 4208
Abstract
The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including [...] Read more.
The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates. Full article
(This article belongs to the Special Issue Fish Cytogenetics: Present and Future)
Show Figures

Figure 1

28 pages, 7981 KB  
Article
Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation
by Alexandr Sember, Michaela Pappová, Martin Forman, Petr Nguyen, František Marec, Martina Dalíková, Klára Divišová, Marie Doležálková-Kaštánková, Magda Zrzavá, David Sadílek, Barbora Hrubá and Jiří Král
Genes 2020, 11(8), 849; https://doi.org/10.3390/genes11080849 - 24 Jul 2020
Cited by 19 | Viewed by 5318
Abstract
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are [...] Read more.
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes. Full article
(This article belongs to the Special Issue Functional Evolution of Sex Chromosomes)
Show Figures

Figure 1

17 pages, 1207 KB  
Article
Complex Structure of Lasiopodomys mandarinus vinogradovi Sex Chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism
by Svetlana A. Romanenko, Antonina V. Smorkatcheva, Yulia M. Kovalskaya, Dmitry Yu. Prokopov, Natalya A. Lemskaya, Olga L. Gladkikh, Ivan A. Polikarpov, Natalia A. Serdyukova, Vladimir A. Trifonov, Anna S. Molodtseva, Patricia C. M. O’Brien, Feodor N. Golenishchev, Malcolm A. Ferguson-Smith and Alexander S. Graphodatsky
Genes 2020, 11(4), 374; https://doi.org/10.3390/genes11040374 - 30 Mar 2020
Cited by 8 | Viewed by 5148
Abstract
The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the [...] Read more.
The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed. Full article
(This article belongs to the Special Issue Mechanisms Driving Karyotype Evolution and Genomic Architecture)
Show Figures

Figure 1

14 pages, 4268 KB  
Article
ZZ/ZW Sex Determination with Multiple Neo-Sex Chromosomes is Common in Madagascan Chameleons of the Genus Furcifer (Reptilia: Chamaeleonidae)
by Michail Rovatsos, Marie Altmanová, Barbora Augstenová, Sofia Mazzoleni, Petr Velenský and Lukáš Kratochvíl
Genes 2019, 10(12), 1020; https://doi.org/10.3390/genes10121020 - 6 Dec 2019
Cited by 23 | Viewed by 10553
Abstract
Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and [...] Read more.
Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and molecular (comparative genomic hybridization, in situ hybridization with rDNA, microsatellite, and telomeric sequences) cytogenetic approaches. In contrast to most sauropsid lineages, the chameleons of the genus Furcifer show chromosomal variability even among closely related species, with diploid chromosome numbers varying from 2n = 22 to 2n = 28. We identified female heterogamety with cytogenetically distinct Z and W sex chromosomes in all studied species. Notably, multiple neo-sex chromosomes in the form Z1Z1Z2Z2/Z1Z2W were uncovered in four species of the genus (F. bifidus, F. verrucosus, F. willsii, and previously studied F. pardalis). Phylogenetic distribution and morphology of sex chromosomes suggest that multiple sex chromosomes, which are generally very rare among vertebrates with female heterogamety, possibly evolved several times within the genus Furcifer. Although acrodontan lizards (chameleons and dragon lizards) demonstrate otherwise notable variability in sex determination, it seems that female heterogamety with differentiated sex chromosomes remained stable in the chameleons of the genus Furcifer for about 30 million years. Full article
(This article belongs to the Special Issue Chromosome-Centric View of the Genome Organization and Evolution)
Show Figures

Figure 1

17 pages, 7502 KB  
Article
Cytogenetic Analysis Did Not Reveal Differentiated Sex Chromosomes in Ten Species of Boas and Pythons (Reptilia: Serpentes)
by Barbora Augstenová, Sofia Mazzoleni, Alexander Kostmann, Marie Altmanová, Daniel Frynta, Lukáš Kratochvíl and Michail Rovatsos
Genes 2019, 10(11), 934; https://doi.org/10.3390/genes10110934 - 15 Nov 2019
Cited by 15 | Viewed by 6273
Abstract
Homologous and differentiated ZZ/ZW sex chromosomes (or derived multiple neo-sex chromosomes) were often described in caenophidian snakes, but sex chromosomes were unknown until recently in non-caenophidian snakes. Previous studies revealed that two species of boas (Boa imperator, B. constrictor) and [...] Read more.
Homologous and differentiated ZZ/ZW sex chromosomes (or derived multiple neo-sex chromosomes) were often described in caenophidian snakes, but sex chromosomes were unknown until recently in non-caenophidian snakes. Previous studies revealed that two species of boas (Boa imperator, B. constrictor) and one species of python (Python bivittatus) independently evolved XX/XY sex chromosomes. In addition, heteromorphic ZZ/ZW sex chromosomes were recently revealed in the Madagascar boa (Acrantophis sp. cf. dumerili) and putatively also in the blind snake Myriopholis macrorhyncha. Since the evolution of sex chromosomes in non-caenophidian snakes seems to be more complex than previously thought, we examined ten species of pythons and boas representing the families Boidae, Calabariidae, Candoiidae, Charinidae, Pythonidae, and Sanziniidae by conventional and molecular cytogenetic methods, aiming to reveal their sex chromosomes. Our results show that all examined species do not possess sex-specific differences in their genomes detectable by the applied cytogenetic methods, indicating the presence of poorly differentiated sex chromosomes or even the absence of sex chromosomes. Interestingly, fluorescence in situ hybridization with telomeric repeats revealed extensive distribution of interstitial telomeric repeats in eight species, which are likely a consequence of intra-chromosomal rearrangements. Full article
(This article belongs to the Special Issue Chromosome-Centric View of the Genome Organization and Evolution)
Show Figures

Figure 1

12 pages, 2912 KB  
Article
To Trim or Not to Trim: Effects of Read Trimming on the De Novo Genome Assembly of a Widespread East Asian Passerine, the Rufous-Capped Babbler (Cyanoderma ruficeps Blyth)
by Shang-Fang Yang, Chia-Wei Lu, Cheng-Te Yao and Chih-Ming Hung
Genes 2019, 10(10), 737; https://doi.org/10.3390/genes10100737 - 23 Sep 2019
Cited by 12 | Viewed by 5197
Abstract
Trimming low quality bases from sequencing reads is considered as routine procedure for genome assembly; however, we know little about its pros and cons. Here, we used empirical data to examine how read trimming affects assembled genome quality and computational time for a [...] Read more.
Trimming low quality bases from sequencing reads is considered as routine procedure for genome assembly; however, we know little about its pros and cons. Here, we used empirical data to examine how read trimming affects assembled genome quality and computational time for a widespread East Asian passerine, the rufous-capped babbler (Cyanoderma ruficeps Blyth). We found that scaffolds assembled from raw reads were always longer than those from trimmed ones, whereas computational times for the former were sometimes much longer than the latter. Nevertheless, assembly completeness showed little difference among the trimming strategies. One should determine the optimal trimming strategy based on what the assembled genome will be used for. For example, to identify single nucleotide polymorphisms (SNPs) associated with phenotypic evolution, applying PLATANUS to gently trim reads would yield a reference genome with a slightly shorter scaffold length (N50 = 15.64 vs. 16.89 Mb) than the raw reads, but would save 75% of computational time. We also found that chromosomes Z, W, and 4A of the rufous-capped babbler were poorly assembled, likely due to a recently fused, neo-sex chromosome. The rufous-capped babbler genome with long scaffolds and quality gene annotation can provide a good system to study avian ecological adaptation in East Asia. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

25 pages, 3161 KB  
Review
Neo Sex Chromosomes, Colour Polymorphism and Male-Killing in the African Queen Butterfly, Danaus chrysippus (L.)
by David A.S. Smith, Walther Traut, Simon H. Martin, Piera Ireri, Kennedy S. Omufwoko, Richard ffrench-Constant and Ian J. Gordon
Insects 2019, 10(9), 291; https://doi.org/10.3390/insects10090291 - 9 Sep 2019
Cited by 11 | Viewed by 7880
Abstract
Danaus chrysippus (L.), one of the world’s commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma [...] Read more.
Danaus chrysippus (L.), one of the world’s commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma ixodetis, has invaded, causing female-biased populations to predominate. In ssp. chrysippus, inside the Rift only, an autosome carrying a colour locus has fused with the W chromosome to create a neo-W chromosome. A total of 40–100% of Rift females are neo-W and carry Spiroplasma, thus transmitting a linked, matrilineal neo-W, MK complex. As neo-W females have no sons, half the mother’s genes are lost in each generation. Paradoxically, although neo-W females have no close male relatives and are thereby forced to outbreed, MK restricts gene flow between subspecies and may thus promote speciation. The neo-W chromosome originated in the Nairobi region around 2.2 k years ago and subsequently spread throughout the Rift contact zone in some 26 k generations, possibly assisted by not having any competing brothers. Our work on the neo-W chromosome, the spread of Spiroplasma and possible speciation is ongoing. Full article
Show Figures

Figure 1

Back to TopTop