Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = near-infrared probes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3360 KiB  
Article
Efficient and Selective Multiple Ion Chemosensor by Novel Near-Infrared Sensitive Symmetrical Squaraine Dye Probe
by Sushma Thapa, Kshitij RB Singh and Shyam S. Pandey
Chemosensors 2025, 13(8), 288; https://doi.org/10.3390/chemosensors13080288 - 4 Aug 2025
Abstract
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the [...] Read more.
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the solvent environment: It selectively detects Cu2+ in acetonitrile and Ag+ in an ethanol–water mixture. Upon binding with either ion, SQ-68 undergoes significant absorption changes in the NIR region, accompanied by visible color changes, enabling naked-eye detection. Spectroscopic studies confirm a 1:1 binding stoichiometry with both Cu2+ and Ag+, accompanied by hypochromism. The detection limits are 0.09 μM for Cu2+ and 0.38 μM for Ag+, supporting highly sensitive quantification. The sensor’s practical applicability was validated in real water samples (sea, lake, and tap water), with recovery rates ranging from 73–95% for Cu2+ to 59–99% for Ag+. These results establish SQ-68 as a reliable and efficient chemosensor for environmental monitoring and water quality assessment. Its dual-analyte capability, solvent-tunable selectivity, and visual detection features make it a promising tool for rapid and accurate detection of heavy metal ions in diverse aqueous environments. Full article
Show Figures

Figure 1

11 pages, 1538 KiB  
Article
Feasibility of Near-Infrared Spectroscopy for Monitoring Tissue Oxygenation During Uterus Transplantation and Hysterectomy
by Jeremy Applebaum, Dan Zhao, Nawar Latif and Kathleen O’Neill
J. Clin. Med. 2025, 14(14), 4832; https://doi.org/10.3390/jcm14144832 - 8 Jul 2025
Viewed by 276
Abstract
Background/Objective: Thrombosis is the leading cause of graft failure and immediate hysterectomy following uterus transplantation (UTx). Currently, there is no standardized method for real-time assessment of UTx graft perfusion. This feasibility study aims to evaluate the utility of a near-infrared spectroscopy (NIRS) probe [...] Read more.
Background/Objective: Thrombosis is the leading cause of graft failure and immediate hysterectomy following uterus transplantation (UTx). Currently, there is no standardized method for real-time assessment of UTx graft perfusion. This feasibility study aims to evaluate the utility of a near-infrared spectroscopy (NIRS) probe for non-invasive monitoring of local cervical tissue oxygenation (StO2) during UTx. As proof-of-concept for the NIRS device, cervical StO2 was also measured during non-donor hysterectomy and bilateral salpingo-oophorectomy to establish its capacity to reflect perfusion changes corresponding to vascular ligation. Methods: The ViOptix T. Ox Tissue Oximeter NIRS probe was attached to four uterine cervices during hysterectomy procedures and three separate donor cervices during UTx. Real-time StO2 measurements were recorded at critical surgical steps: baseline, ovarian vessel ligation, contralateral ovarian vessel ligation, uterine vessel ligation, contralateral uterine vessel ligation, and colpotomy for hysterectomy; donor internal iliac vein anastomosis to recipient external iliac vein, donor internal iliac artery anastomosis to recipient external iliac artery, contralateral donor internal iliac vein anastomosis to recipient external iliac vein, contralateral donor internal iliac artery anastomosis to recipient external iliac artery, and donor and recipient vagina anastomosis for UTx. Results: During hysterectomy, average StO2 levels sequentially decreased: 70.2% (baseline), 56.7% (ovarian vessel ligation), 62.1% (contralateral ovarian vessel ligation), 50.5% (uterine vessel ligation), 35.8% (contralateral uterine vessel ligation), and 8.5% (colpotomy). Conversely, during UTx, StO2 progressive increased with each anastomosis: 8.9% (internal iliac vein- external iliac vein), 27.9% (internal iliac artery-external iliac artery), 56.9% (contralateral internal iliac vein-contralateral external iliac vein), 65.9% (contralateral internal iliac artery-contralateral external iliac artery), and 65.2% (vaginal anastomosis). Conclusions: The inverse correlation between StO2 and vascular ligation during hysterectomy and the progressive rise in StO2 during UTx suggests that cervical tissue oximetry may serve as a non-invasive modality for monitoring uterine graft perfusion. Further studies are warranted to determine whether these devices complement current assessments of uterine graft viability and salvage thrombosed grafts. Full article
(This article belongs to the Special Issue New Advances in Uterus and Ovarian Transplantation: 2nd Edition)
Show Figures

Figure 1

20 pages, 691 KiB  
Systematic Review
Indocyanine Green as a Photosensitizer in Periodontitis Treatment: A Systematic Review of Randomized Controlled Trials
by Rafał Wiench, Jakub Fiegler-Rudol, Katarzyna Latusek, Katarzyna Brus-Sawczuk, Hanna Fiegler, Jacek Kasperski and Dariusz Skaba
Life 2025, 15(7), 1015; https://doi.org/10.3390/life15071015 - 25 Jun 2025
Viewed by 473
Abstract
Photodynamic therapy (PDT) using indocyanine green (ICG) has gained attention as an adjunctive treatment for periodontitis due to its antimicrobial and anti-inflammatory properties and its ability to penetrate deep periodontal tissues via near-infrared light activation. We aimed to evaluate the clinical and microbiological [...] Read more.
Photodynamic therapy (PDT) using indocyanine green (ICG) has gained attention as an adjunctive treatment for periodontitis due to its antimicrobial and anti-inflammatory properties and its ability to penetrate deep periodontal tissues via near-infrared light activation. We aimed to evaluate the clinical and microbiological efficacy of ICG-mediated PDT as an adjunct to conventional periodontal therapy in patients with periodontitis based on data from randomized controlled trials (RCTs). A systematic search of PubMed, Embase, Scopus, and the Cochrane Library was conducted to identify randomized controlled trials (RCTs) exclusively investigating ICG-PDT in periodontitis based on predefined eligibility criteria. Studies were selected based on predefined inclusion criteria, and methodological quality was assessed using a 14-point scoring system. Data were extracted on clinical outcomes (e.g., probing depth, clinical attachment level) and microbiological changes. Sixteen RCTs met the inclusion criteria. Most studies reported improvements in probing depth, clinical attachment level, and microbial reduction following ICG-aPDT; however, some trials found no significant differences compared to control groups. These discrepancies may be attributable to variations in laser settings, ICG concentration, treatment frequency, or initial disease severity. Microbiological benefits included significant reductions in key periodontal pathogens. The therapy was well tolerated, with no adverse effects reported. However, variability in treatment protocols and limited long-term follow-up restricted the ability to draw definitive conclusions. ICG-mediated PDT is a promising, safe, and effective adjunct in periodontal therapy. Future trials should aim for protocol standardization and long-term outcome assessment to strengthen clinical guidance. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 27538 KiB  
Article
A Near-Infrared Fluorescent Probe for Specific Imaging of Lymph Node Metastases in Ovarian Cancer via Active Targeting of the Gonadotropin-Releasing Hormone Receptor
by Qiyu Liu, Jiaan Sun, Xiaobo Zhou, Mingxing Zhang, Tao Pu, Xiaolan Gao, Meng Zhang, Congjian Xu and Xiaoyan Zhang
Biomolecules 2025, 15(6), 868; https://doi.org/10.3390/biom15060868 - 14 Jun 2025
Viewed by 622
Abstract
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing [...] Read more.
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing hormone receptor (GnRHR)-targeted near-infrared (NIR) fluorescent probe, GnRHa-PEG-Rh760, through conjugation of a GnRH analog peptide with the Rh760 fluorophore and polyethylene glycol (PEG). A non-targeted probe (PEG-Rh760) served as control. In mouse models of subcutaneous xenografts, peritoneal and lymph node metastases derived from ovarian cancer cells, GnRHa-PEG-Rh760 showed superior tumor-specific accumulation. NIR fluorescence imaging revealed strong fluorescence signals localized to primary tumors, peritoneal lesions, and metastatic lymph nodes with no off-target signals in normal lymph nodes. The spatial co-localization between the NIR fluorescence of GnRHa-PEG-Rh760 and tumor-derived bioluminescence clearly confirmed the probe’s target specificity. GnRHa-PEG-Rh760 mainly accumulated in the tumor and liver and was gradually cleared at 96 h post-injection. The retention of fluorescence signals in normal ovary tissue further validated GnRHR-mediated binding of the probe. Notably, GnRHa-PEG-Rh760 exhibited excellent biocompatibility with no observed systemic toxicity as evidenced by hematologic and histopathologic analyses. These data demonstrate the potential of GnRHa-PEG-Rh760 as an intraoperative imaging agent, providing real-time fluorescence imaging guidance to optimize surgical precision. This study highlights the value of receptor-targeted molecular imaging probes in precision cancer surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 3449 KiB  
Article
Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging
by Elham Zonoobi, Lisanne K. A. Neijenhuis, Annelieke A. Lemij, Daan G. J. Linders, Ehsan Nazemalhosseini-Mojarad, Shadhvi S. Bhairosingh, N. Geeske Dekker-Ensink, Ronald L. P. van Vlierberghe, Koen C. M. J. Peeters, Fabian A. Holman, Rob A. E. M. Tollenaar, Denise E. Hilling, A. Stijn L. P. Crobach, Alexander L. Vahrmeijer and Peter J. K. Kuppen
Cancers 2025, 17(12), 1958; https://doi.org/10.3390/cancers17121958 - 12 Jun 2025
Viewed by 438
Abstract
Background: Rectal cancer (RC) patients with a clinical complete response (cCR) after neoadjuvant chemoradiotherapy (nCRT) may qualify for a watch-and-wait (W&W) approach. However, a 20–30% local tumor regrowth rate highlights challenges in identifying true responders. This study explores markers for future near-infrared fluorescence [...] Read more.
Background: Rectal cancer (RC) patients with a clinical complete response (cCR) after neoadjuvant chemoradiotherapy (nCRT) may qualify for a watch-and-wait (W&W) approach. However, a 20–30% local tumor regrowth rate highlights challenges in identifying true responders. This study explores markers for future near-infrared fluorescence tumor imaging by endoscopy to differentiate responders and the effect of nCRT on their expression. Methods: RC samples (n = 51) were collected from both pre-treatment biopsies and corresponding post-treatment surgical specimens. Samples were categorized by treatment response and determined using tumor regression grade (TRG) scoring. Immunohistochemistry assessed the expression of CEA, EpCAM, EGFR, and c-MET in tumors and adjacent normal tissues. Expression levels were quantified using H-scores (0–3), combining the percentage and intensity of stained cells. Pre- and post-treatment H-scores were compared to evaluate the impact of nCRT. Results: CEA, EpCAM, and c-MET were overexpressed in tumor tissue as compared to adjacent healthy mucosa in 100% (51/51), 98.4% (50/51), and 92% (47/51) of tumor biopsies, respectively, while EGFR showed no overexpression. A tumor-to-normal (T/N) ratio ≥ 2 was considered sufficient for differentiation in molecular fluorescence imaging. In pre-treatment biopsy samples, c-MET showed the highest T/N expression ratio (53% of the samples ≥ 2), followed by CEA (26.3%) and EpCAM (16%). Following nCRT treatment, CEA and c-MET maintained a ≥ 2 differential expression in 45% of all samples, whereas EpCAM exhibited this difference in only 9.2% of cases. Neoadjuvant therapy even significantly improved the T/N expression ratio for CEA and c-MET (p < 0.01) and EpCAM (p < 0.05), while EGFR expression remained lower than adjacent normal tissue. Significant increases in all marker expressions were observed in minimal responders (TRG4/5, p < 0.01–0.001), while near-complete responders (TRG2) exhibited non-significant changes in CEA, c-MET, and EGFR expression. Conclusions: c-MET and CEA emerged as optimal tumor imaging targets, showing sustained differential expression after nCRT. In vivo fluorescence-guided endoscopy using probes against these markers could play a role in future clinical decision-making. Full article
(This article belongs to the Special Issue Cancer Biomarkers—Detection and Evaluation of Response to Therapy)
Show Figures

Figure 1

10 pages, 968 KiB  
Article
Computational-Chemistry-Based Prediction of Near-Infrared Rhodamine Fluorescence Peaks with Sub-12 nm Accuracy
by Qinlin Yuan, Hanwei Wang, Pingping Sun, Chaoyuan Zeng and Weijie Chi
Photochem 2025, 5(2), 15; https://doi.org/10.3390/photochem5020015 - 12 Jun 2025
Viewed by 646
Abstract
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) [...] Read more.
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) solvation models across five functionals (CAM-B3LYP, M06-2X, ωB97X-D, B3LYP, MN15) and optimized the ground/excited states for 42 rhodamine derivatives. A robust linear calibration framework was established by connecting the computed and experimental wavelengths, which was rigorously validated through six-fold cross-validation. The key metrics included the mean absolute error (MAE) and R2 to assess the prediction robustness. CAM-B3LYP combined with LR solvation achieved the highest accuracy (absorption: MAE = 6 nm, R2 = 0.94; emission: MAE = 12 nm, R2 = 0.72). By integrating the TDDFT with a calibrated linear-response solvation model, we achieved sub-12 nm accuracy in predicting the NIR fluorescence peaks. This framework enabled the rational design of nine novel rhodamine derivatives with emissions beyond 700 nm, offering a paradigm shift in bioimaging probe development. Full article
Show Figures

Graphical abstract

18 pages, 2959 KiB  
Article
Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans
by Bushra Maryam, Yi Wang, Xiaoran Li, Muhammad Asim, Hamna Qayyum, Pingping Zhang and Xianhua Liu
Sensors 2025, 25(11), 3306; https://doi.org/10.3390/s25113306 - 24 May 2025
Viewed by 498
Abstract
With the increasing prevalence of plastic pollution, understanding its impact on soil nematodes is crucial for environmental sustainability and food security. Traditional fluorescence-based probes have the limitations of high background noise and interference from autofluorescence. In this study, the luminous upconverted NaYF4:Yb3+ [...] Read more.
With the increasing prevalence of plastic pollution, understanding its impact on soil nematodes is crucial for environmental sustainability and food security. Traditional fluorescence-based probes have the limitations of high background noise and interference from autofluorescence. In this study, the luminous upconverted NaYF4:Yb3+/Er3+ nanoparticles acted as high-sensitivity probes for real-time visualization of ingestion and biodistribution of polystyrene microplastics (PS-MPs) and nanoplastics (PS-NPs) in Caenorhabditis elegans. The novel probes enabled efficient near-infrared-to-visible light conversion. This approach improved the precision of nano- and microplastic detection in biological tissues. Microscopic imaging revealed that the probes effectively distinguished size-dependent plastic distribution patterns, with microplastics remaining in the digestive tract, whereas nanoparticles penetrated intestinal walls and entered systemic circulation. Quantitative fluorescence analysis confirmed that PS-NPs exhibited higher bioavailability and deeper tissue penetration, providing crucial insights into plastic behavior at the organismal level. The different toxicities of PS-NPs and PS-MPs were further confirmed by measurement of the locomotor impairments and the physiological disruptions. These findings emphasize the broader applications of upconverted nanoparticles as advanced bio-imaging probes, offering a sensitive and non-invasive tool for tracking pollutant interactions in environmental and biological systems. Full article
(This article belongs to the Special Issue Novel Biosensors Based on Nanomaterials)
Show Figures

Graphical abstract

46 pages, 25492 KiB  
Review
Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO)
by Hai-Hao Han, Pan-Xin Ge, Wen-Jia Li, Xi-Le Hu and Xiao-Peng He
Sensors 2025, 25(10), 3018; https://doi.org/10.3390/s25103018 - 10 May 2025
Viewed by 936
Abstract
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics [...] Read more.
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics in live cells and a variety of animal models of human diseases. However, the clinical applications of those probes remain much less explored. This review delves into the biological roles of ONOO and summarizes the design strategies, sensing mechanisms, and bioimaging applications of near-infrared (NIR), long-wavelength, two-photon, and ratiometric fluorescent probes modified with a diverse range of functional groups responsive to ONOO. Furthermore, we will discuss the remaining problems that prevent the currently developed ONOO probes from translating into clinical practice. Full article
(This article belongs to the Special Issue Fluorescence Sensors for Biological and Medical Applications)
Show Figures

Figure 1

15 pages, 8991 KiB  
Article
Development and Application of an Optoelectronic Sensor for Flame Monitoring of a Copper Concentrate Flash Burner
by Gonzalo Reyes, Walter Díaz, Carlos Toro, Eduardo Balladares, Sergio Torres, Roberto Parra, Jonathan Torres-Sanhueza, Maximiliano Roa, Carla Taramasco, Víctor Montenegro and Milen Kadiyski
Sensors 2025, 25(9), 2897; https://doi.org/10.3390/s25092897 - 3 May 2025
Viewed by 521
Abstract
A flash smelting furnace operation is based on the exothermic reduction of copper concentrates in the combustion shaft, and these reactions occur at high temperatures (1250–1350 °C), where flame control is fundamental to optimizing copper reduction. Furthermore, inherent physicochemical reactions of the reduction [...] Read more.
A flash smelting furnace operation is based on the exothermic reduction of copper concentrates in the combustion shaft, and these reactions occur at high temperatures (1250–1350 °C), where flame control is fundamental to optimizing copper reduction. Furthermore, inherent physicochemical reactions of the reduction process have been shown to emit spectral lines in the visible-near infrared spectrum (250–900 nm). Thus, an optoelectronic sensor prototype is proposed and developed for flame measurements of an industrial copper concentrate flash smelting furnace. The sensor system is composed of a high-temperature optical fiber probe, which functions as a waveguide to capture the emitted flame radiation and a visible-near infrared spectrometer. From the measured radiation, flame temperature and flame dynamics are analyzed. Flame temperature is estimated using the two-wavelength temperature estimation method, and flame dynamics are defined as variations in the total emissive power, which are studied in the time and frequency domain via the Fourier Transform method. These combustion dynamics are then used to create a flame instability index, which is used to characterize the flame combustion quality. The combination of this index and sensor platform provides a powerful tool to aid in proper flame control. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

14 pages, 2939 KiB  
Article
Innovative Discrete Multi-Wavelength Near-Infrared Spectroscopic (DMW-NIRS) Imaging for Rapid Breast Lesion Differentiation: Feasibility Study
by Jiyoung Yoon, Kyunghwa Han, Min Jung Kim, Heesun Hong, Eunice S. Han and Sung-Ho Han
Diagnostics 2025, 15(9), 1067; https://doi.org/10.3390/diagnostics15091067 - 23 Apr 2025
Viewed by 528
Abstract
Background/Objectives: This study evaluated the role of a discrete multi-wavelength near-infrared spectroscopic (DMW-NIRS) imaging device for rapid breast lesion differentiation. Methods: A total of 62 women (mean age, 49.9 years) with ultrasound (US)-guided biopsy-confirmed breast lesions (37 malignant, 25 benign) were [...] Read more.
Background/Objectives: This study evaluated the role of a discrete multi-wavelength near-infrared spectroscopic (DMW-NIRS) imaging device for rapid breast lesion differentiation. Methods: A total of 62 women (mean age, 49.9 years) with ultrasound (US)-guided biopsy-confirmed breast lesions (37 malignant, 25 benign) were included. A handheld probe equipped with five pairs of light-emitting diodes (LEDs) and photodiodes (PDs) measured lesion-to-normal tissue (L/N) ratios of four chromophores, THC (Total Hemoglobin Concentration), StO2, and the Tissue Optical Index (TOI: log10(THC × Water/Lipid)). Lesions were localized using US. Diagnostic performance was assessed for each L/N ratio, with subgroup analysis for BI-RADS 4A lesions. Two adaptive BI-RADS models were developed: Model 1 used TOIL/N thresholds (Youden index), while Model 2 incorporated radiologists’ reassessments of US findings integrated with DMW-NIRS results. These models were compared to the initial BI-RADS assessments, conducted by breast-dedicated radiologists. Results: All L/N ratios significantly differentiated malignant from benign lesions (p < 0.05), with TOIL/N achieving the highest AUC-ROC (0.901; 95% CI: 0.825–0.976). In BI-RADS 4A lesions, all L/N ratios except Lipid significantly differentiated malignancy (p < 0.05), with TOIL/N achieving the highest AUC-ROC (0.902; 95% CI: 0.788–1.000). Model 1 and Model 2 showed superior diagnostic performance (AUC-ROCs: 0.962 and 0.922, respectively), significantly outperforming initial BI-RADS assessments (prospective AUC-ROC: 0.862; retrospective AUC-ROC: 0.866; p < 0.05). Conclusions: Integrating DMW-NIRS findings with US evaluations enhances diagnostic accuracy, particularly for BI-RADS 4A lesions. This novel device offers a rapid, non-invasive, and efficient method to reduce unnecessary biopsies and improve breast cancer diagnostics. Further validation in larger cohorts is warranted. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 7271 KiB  
Article
A Multitask CNN for Near-Infrared Probe: Enhanced Real-Time Breast Cancer Imaging
by Maryam Momtahen and Farid Golnaraghi
Sensors 2025, 25(8), 2349; https://doi.org/10.3390/s25082349 - 8 Apr 2025
Viewed by 580
Abstract
The early detection of breast cancer, particularly in dense breast tissues, faces significant challenges with traditional imaging techniques such as mammography. This study utilizes a Near-infrared Scan (NIRscan) probe and an advanced convolutional neural network (CNN) model to enhance tumor localization accuracy and [...] Read more.
The early detection of breast cancer, particularly in dense breast tissues, faces significant challenges with traditional imaging techniques such as mammography. This study utilizes a Near-infrared Scan (NIRscan) probe and an advanced convolutional neural network (CNN) model to enhance tumor localization accuracy and efficiency. CNN processed data from 133 breast phantoms into 266 samples using data augmentation techniques, such as mirroring. The model significantly improved image reconstruction, achieving an RMSE of 0.0624, MAE of 0.0360, R2 of 0.9704, and Fuzzy Jaccard Index of 0.9121. Subsequently, we introduced a multitask CNN that reconstructs images and classifies them based on depth, length, and health status, further enhancing its diagnostic capabilities. This multitasking approach leverages the robust feature extraction capabilities of CNNs to perform complex tasks simultaneously, thereby improving the model’s efficiency and accuracy. It achieved exemplary classification accuracies in depth (100%), length (92.86%), and health status, with a perfect F1 Score. These results highlight the promise of NIRscan technology, in combination with a multitask CNN model, as a supportive tool for improving real-time breast cancer screening and diagnostic workflows. Full article
(This article belongs to the Special Issue Vision- and Image-Based Biomedical Diagnostics—2nd Edition)
Show Figures

Figure 1

13 pages, 5570 KiB  
Article
Coffee Bean Characterization Using Terahertz Sensing
by Dook van Mechelen, Daan Meulendijks and Milan Koumans
Sensors 2025, 25(7), 2096; https://doi.org/10.3390/s25072096 - 27 Mar 2025
Viewed by 511
Abstract
Coffee bean sorting is currently based primarily on visual appearance and near-infrared techniques that probe the bean’s skin. However, sorting based on compositional differences has significant potential to optimize the roasting process. We present a novel coffee bean sorting method using terahertz (THz) [...] Read more.
Coffee bean sorting is currently based primarily on visual appearance and near-infrared techniques that probe the bean’s skin. However, sorting based on compositional differences has significant potential to optimize the roasting process. We present a novel coffee bean sorting method using terahertz (THz) spectroscopy, which effectively penetrates both green and roasted beans. Our findings show that the optical properties of coffee beans at THz frequencies are primarily governed by internal moisture levels. To demonstrate industrial feasibility, we implement a robot-guided THz sensing system capable of scanning beds of beans for automated sorting. More broadly, our results confirm the potential of THz technology for moisture content analysis across various applications. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

21 pages, 3704 KiB  
Article
Effective Polarizability in Near-Field Microscopy of Phonon-Polariton Resonances
by Viktoriia E. Babicheva
Nanomaterials 2025, 15(6), 458; https://doi.org/10.3390/nano15060458 - 18 Mar 2025
Cited by 1 | Viewed by 555
Abstract
We investigate the resonant characteristics of planar surfaces and distinct edges of structures with the excitation of phonon-polaritons. We analyze two materials supporting phonon-polariton excitations in the mid-infrared spectrum: silicon carbide, characterized by an almost isotropic dielectric constant, and hexagonal boron nitride, notable [...] Read more.
We investigate the resonant characteristics of planar surfaces and distinct edges of structures with the excitation of phonon-polaritons. We analyze two materials supporting phonon-polariton excitations in the mid-infrared spectrum: silicon carbide, characterized by an almost isotropic dielectric constant, and hexagonal boron nitride, notable for its pronounced anisotropy in a spectral region exhibiting hyperbolic dispersion. We formulate a theoretical framework that accurately captures the excitations of the structure involving phonon-polaritons, predicts the response in scattering-type near-field optical microscopy, and is effective for complex resonant geometries where the locations of hot spots are uncertain. We account for the tapping motion of the probe, perform analysis for different heights of the probe, and demodulate the signal using a fast Fourier transform. Using this Fourier demodulation analysis, we show that light enhancement across the entire apex is the most accurate characteristic for describing the response of all resonant excitations and hot spots. We demonstrate that computing the demodulation orders of light enhancement in the microscope probe accurately predicts its imaging. Full article
Show Figures

Figure 1

14 pages, 4481 KiB  
Article
A Hydrogen Peroxide Responsive Biotin-Guided Near-Infrared Hemicyanine-Based Fluorescent Probe for Early Cancer Diagnosis
by Lingyu Zhong, Yingfei Wang, Qing Hao and Hong Liu
Chemosensors 2025, 13(3), 104; https://doi.org/10.3390/chemosensors13030104 - 13 Mar 2025
Cited by 1 | Viewed by 876
Abstract
H2O2 plays an important role in oxidative damage and redox signaling. Studies have shown that abnormal levels of H2O2 are closely related to the development of cancer. The levels of H2O2 in tumor cells [...] Read more.
H2O2 plays an important role in oxidative damage and redox signaling. Studies have shown that abnormal levels of H2O2 are closely related to the development of cancer. The levels of H2O2 in tumor cells are higher than in normal cells. Thus, it is of great importance to develop a fluorescent probe to monitor the level of H2O2 in vivo. This work reports a new biotin-guided NIR fluorescent probe, Bio-B-Cy, consisting of boronic acid ester as a H2O2-recognition site and biotin as a tumor binding site, which accelerates the fluorescence response to H2O2 in vivo. Bio-B-Cy exhibits good sensitivity and selectivity toward H2O2. In addition, Bio-B-Cy shows a dose-dependent response to H2O2 and the detection limit is 0.14 μM. We further demonstrate that Bio-B-Cy could successfully detect the H2O2 in biotin receptor-positive cancer cells and tumor tissues. Based on the results, Bio-B-Cy has the potential to serve as an efficient tool for early diagnosis of cancer. Full article
Show Figures

Figure 1

23 pages, 7772 KiB  
Review
Recent Advances in NIR-II Molecular Aggregates and Applications in the Biomedical Field
by Kun Wu, Ruowen Yang, Xuefang Song, Huangxian Ju and Ying Liu
Chemosensors 2025, 13(2), 67; https://doi.org/10.3390/chemosensors13020067 - 13 Feb 2025
Cited by 1 | Viewed by 1399
Abstract
Near-infrared (NIR) light is a promising tool for biomedical imaging and therapy, offering excellent tissue penetration, low scattering, and minimal biological fluorescence interference. An NIR-II optical range of 900–1880 nm with reduced background interference is particularly useful for disease diagnosis and treatment. Probes [...] Read more.
Near-infrared (NIR) light is a promising tool for biomedical imaging and therapy, offering excellent tissue penetration, low scattering, and minimal biological fluorescence interference. An NIR-II optical range of 900–1880 nm with reduced background interference is particularly useful for disease diagnosis and treatment. Probes based on organic molecules are gaining attention for their structural flexibility and stable performance. Organic molecular aggregates, such as J-aggregates, H-aggregates, and aggregation-induced emission (AIE)-aggregates, exhibit unique optical properties like tunable spectral shifts, improved photostability, and higher absorption and fluorescence quantum yields. This mini review briefly discusses the advancements in NIR-II optical imaging and therapy technologies, focusing on the classification, formation mechanisms, and applications of organic molecular aggregates in disease diagnosis and treatment, offering a theoretical foundation and practical guidance for future research. Full article
Show Figures

Figure 1

Back to TopTop