Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Luminous Polystyrene Upconverted NPs and MPs
2.3. Cultivation and Synchronization of Worm C. elegans
2.4. Luminous Upconverted PS Particles Exposure with C. elegans
2.5. Visualization of PS@LUC-Nano and PS@LUC-Micro in C. elegans
2.6. Effects of PS-NPs and PS-MPs Exposure on the Physiology of C. elegans
2.6.1. Assessment of the Worm Body Length
2.6.2. Assessment of the Worm Brood Number
2.6.3. Assessment of Worm Locomotion Behavior
2.7. Statistical Analyses
3. Results and Discussion
3.1. Fabrication and Characterization of Luminous Polystyrene Upconverted Particles
3.2. Microscopic Visualization of C. elegans
3.3. Physiological Impacts of PS-NPs and PS-MPs Exposure in C. elegans
3.3.1. PS-NPs and PS-MPs Impact on Locomotion Behavior of C. elegans
3.3.2. PS-NPs and PS-MPs Impact on Reproduction and Growth of C. elegans
3.4. Proposed Toxicity Mechanism of PS-NPs and PS-MPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tariq, M.; Iqbal, B.; Khan, I.; Khan, A.R.; Jho, E.H.; Salam, A.; Zhou, H.; Zhao, X.; Li, G.; Du, D. Microplastic contamination in the agricultural soil—Mitigation strategies, heavy metals contamination, and impact on human health: A review. Plant Cell Rep. 2024, 43, 65. [Google Scholar] [CrossRef] [PubMed]
- Janani, R.; Bhuvana, S.; Geethalakshmi, V.; Jeyachitra, R.; Sathishkumar, K.; Balu, R.; Ayyamperumal, R. Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment. Environ. Res. 2024, 241, 117666. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Barranco, A. Microplastics, a food safety issue? Trends Food Sci. Technol. 2019, 84, 55–57. [Google Scholar] [CrossRef]
- PlasticsEurope, E. Plastics—The facts 2019. In An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe: Brussels, Belgium, 2016; pp. 1–15. [Google Scholar]
- Urbisz, A.Z.; Małota, K.; Chajec, Ł.; Sawadro, M.K. Size-dependent and sex-specific negative effects of micro-and nano-sized polystyrene particles in the terrestrial invertebrate model Drosophila melanogaster. Micron 2024, 176, 103560. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, S.; Zhang, C.; Zhou, Y.; Qin, W. Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis. Environ. Pollut. 2022, 313, 120183. [Google Scholar] [CrossRef]
- Maghchiche, A.; Haouam, A.; Immirzi, B. Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J. Taibah Univ. Sci. 2010, 4, 9–16. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Li, R.; Xu, L.; Shen, Y.; Li, S.; Tu, C.; Wu, L.; Christie, P.; Luo, Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021, 289, 117943. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef]
- Helcoski, R.; Yonkos, L.T.; Sanchez, A.; Baldwin, A.H. Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ. Pollut. 2020, 256, 113391. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Wang, T.; Cao, F.; Yu, C.; Chu, Q.; Wang, F. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films. Ecotoxicol. Environ. Saf. 2021, 209, 111781. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hua, X.; Li, H.; Wang, C.; Dang, Y.; Ding, P.; Yu, Y. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere 2021, 272, 129642. [Google Scholar] [CrossRef]
- Leung, M.C.K.; Williams, P.L.; Benedetto, A.; Au, C.; Helmcke, K.J.; Aschner, M.; Meyer, J.N. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 2008, 106, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, H.; Hua, X.; Dang, Y.; Han, Y.; Yu, Z.; Chen, X.; Ding, P.; Li, H. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans. Sci. Total Environ. 2020, 726, 138679. [Google Scholar] [CrossRef]
- Fryer, E.; Guha, S.; Rogel-Hernandez, L.E.; Logan-Garbisch, T.; Farah, H.; Rezaei, E.; Mollhoff, I.N.; Nekimken, A.L.; Xu, A.; Seyahi, L.S.; et al. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol. 2024, 22, e3002672. [Google Scholar] [CrossRef]
- Rasmann, S.; Ali, J.G.; Helder, J.; van der Putten, W.H. Ecology and Evolution of Soil Nematode Chemotaxis. J. Chem. Ecol. 2012, 38, 615–628. [Google Scholar] [CrossRef]
- Gonzalez-Moragas, L.; Roig, A.; Laromaine, A.C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 2015, 219, 10–26. [Google Scholar] [CrossRef]
- Moghadam, R.Z.; Dizagi, H.R.; Agren, H.; Ehsani, M.H. Understanding the effect of Mn2+ on Yb3+/Er3+ co-doped NaYF4 upconversion and obtaining the optimal combination of these tridoping. Sci. Rep. 2023, 13, 17556. [Google Scholar] [CrossRef]
- Qin, H.; Wu, D.; Sathian, J.; Xie, X.; Ryan, M.; Xie, F. Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping. Sci. Rep. 2018, 8, 12683. [Google Scholar] [CrossRef]
- Maryam, B.; Asim, M.; Qayyum, H.; Pan, L.; Zou, J.-J.; Liu, X. Near-infrared driven photocatalytic hydrogen production from ammonia borane hydrolysis using heterostructure-upconverted nanoparticles. Sustain. Energy Fuels 2024, 8, 4575–4587. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, R.; Hu, J.; Guan, D.; Qiu, X.; Zhang, Y.; Kohane, D.S.; Liu, Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nat. Commun. 2022, 13, 5927. [Google Scholar] [CrossRef] [PubMed]
- Bastos, V.; Oskoei, P.; Andresen, E.; Saleh, M.I.; Rühle, B.; Resch-Genger, U.; Oliveira, H. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 2022, 12, 3770. [Google Scholar] [CrossRef]
- Giang, L.T.K.; Trejgis, K.; Marciniak, L.; Vu, N.; Minh, L.Q. Fabrication and characterization of up-converting β-NaYF4:Er3+,Yb3+@NaYF4 core–shell nanoparticles for temperature sensing applications. Sci. Rep. 2020, 10, 14672. [Google Scholar] [CrossRef]
- Borse, S.; Rafique, R.; Murthy, Z.V.P.; Park, T.J.; Kailasa, S.K. Applications of upconversion nanoparticles in analytical and biomedical sciences: A review. Analyst 2022, 147, 3155–3179. [Google Scholar] [CrossRef]
- Maryam, B.; Asim, M.; Li, J.; Qayyum, H.; Liu, X. Luminous polystyrene upconverted nanoparticles to visualize the traces of nanoplastics in a vegetable plant. Environ. Sci. Nano 2025, 12, 1273–1287. [Google Scholar] [CrossRef]
- González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. 2008, 101, 187–195. [Google Scholar] [CrossRef]
- Nigamatzyanova, L.; Fakhrullin, R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study. Environ. Pollut. 2021, 271, 116337. [Google Scholar] [CrossRef]
- Bernacki, J. Automatic exposure algorithms for digital photography. Multimed. Tools Appl. 2020, 79, 12751–12776. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, R.; Wang, Z.; Zhang, Y.; Hu, Y.; Sun, L.; Fu, L.; Ai, X.-C.; Zhang, J.-P. Effect of excitation mode on the upconversion luminescence of β-NaYF4:Yb/Er nanocrystals. Chem. Phys. Lett. 2021, 779, 138880. [Google Scholar] [CrossRef]
- Lingeshwar Reddy, K.; Srinivas, V.; Shankar, K.R.; Kumar, S.; Sharma, V.; Kumar, A.; Bahuguna, A.; Bhattacharyya, K.; Krishnan, V. Enhancement of Luminescence Intensity in Red Emitting NaYF4:Yb/Ho/Mn Upconversion Nanophosphors by Variation of Reaction Parameters. J. Phys. Chem. C 2017, 121, 11783–11793. [Google Scholar] [CrossRef]
- Reddy, K.L.; Rai, M.; Prabhakar, N.; Arppe, R.; Rai, S.B.; Singh, S.K.; Rosenholm, J.M.; Krishnan, V. Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn2+ doped NaYF4:Yb3+/Ho3+ nanophosphors. RSC Adv. 2016, 6, 53698–53704. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Li, X.; Chen, D. Monodisperse, size-tunable and highly efficient β-NaYF4:Yb,Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 2009, 19, 3546. [Google Scholar] [CrossRef]
- Reddy, K.L.; Prabhakar, N.; Arppe, R.; Rosenholm, J.M.; Krishnan, V. Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. J. Mater. Sci. 2017, 52, 5738–5750. [Google Scholar] [CrossRef]
- Mi, C.; Tian, Z.; Cao, C.; Wang, Z.; Mao, C.; Xu, S. Novel microwave-assisted solvothermal synthesis of NaYF4:Yb,Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 2011, 27, 14632–14637. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Li, Z.; Chu, W.; Li, R.; Lin, K.; Qian, H.; Wang, Y.; Wu, C.; Li, J.; et al. A New Cubic Phase for a NaYF4 Host Matrix Offering High Upconversion Luminescence Efficiency. Adv. Mater. 2015, 27, 5528–5533. [Google Scholar] [CrossRef]
- Khosh Abady, K.; Dankhar, D.; Krishnamoorthi, A.; Rentzepis, P.M. Enhancing the upconversion efficiency of NaYF4:Yb,Er microparticles for infrared vision applications. Sci. Rep. 2023, 13, 8408. [Google Scholar] [CrossRef]
- Zheng, X.; Kankala, R.K.; Liu, C.-G.; Wang, S.-B.; Chen, A.-Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coord. Chem. Rev. 2021, 438, 213870. [Google Scholar] [CrossRef]
- Dubey, N.; Chandra, S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J. Rare Earths 2022, 40, 1343–1359. [Google Scholar] [CrossRef]
- Shobhita, K.C.; Shyam, N.D.V.N.; Kumar, G.K.; Narayen, V.; Priyanka, M.; Shravani, R. Stereomicroscope as an aid in grossing and histopathological diagnosis: A prospective study. J. Oral Maxillofac. Pathol. 2020, 24, 459–465. [Google Scholar] [CrossRef]
- Lay, A.; Sheppard, O.H.; Siefe, C.; McLellan, C.A.; Mehlenbacher, R.D.; Fischer, S.; Goodman, M.B.; Dionne, J.A. Optically Robust and Biocompatible Mechanosensitive Upconverting Nanoparticles. ACS Cent. Sci. 2019, 5, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wei, X.; Li, S.; Zhu, C.; Wu, C. Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment. Int. J. Nanomed. 2020, 15, 9431–9445. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-C.; Yang, Z.-L.; Dong, W.; Tang, R.-J.; Sun, L.-D.; Yan, C.-H. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059–9067. [Google Scholar] [CrossRef]
- Proença, M.d.C.; Barbosa, M.; Amorim, A. Counting microalgae cultures with a stereo microscope and a cell phone using deep learning online resources. Bull. Natl. Res. Cent. 2022, 46, 278. [Google Scholar] [CrossRef]
- De Castro, O.; Colombo, P.; Gianguzzi, L.; Perrone, R. Flower and fruit structure of the endangered species Petagnaea gussonei (Sprengel) Rauschert (Saniculoideae, Apiaceae) and implications for its reproductive biology. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2015, 149, 1042–1051. [Google Scholar] [CrossRef]
- Soares, G.C.; Müller, L.; Josende, M.E.; Ventura-Lima, J. Biochemical and physiological effects of multigenerational exposure to spheric polystyrene microplastics in Caenorhabditis elegans. Environ. Sci. Pollut. Res. 2023, 30, 69307–69320. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Luo, L.; Yang, Y.; Kong, Y.; Li, Y.; Wang, D. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans. Sci. Total Environ. 2020, 705, 135918. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, D.; Jeong, S.-W.; An, Y.-J. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environ. Pollut. 2020, 258, 113740. [Google Scholar] [CrossRef]
- Jeong, A.; Park, S.J.; Lee, E.J.; Kim, K.W. Nanoplastics exacerbate Parkinson’s disease symptoms in C. elegans and human cells. J. Hazard. Mater. 2024, 465, 133289. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, C.; Li, M.; Ke, J.; Huang, Y.; Bian, Y.; Guo, S.; Wu, Y.; Han, Y.; Liu, M. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin. ACS Omega 2020, 5, 33170–33177. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Lei, L.; Cao, C.; Wang, D.; He, D. The toxicity of (nano) microplastics on C. elegans and its mechanisms. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenge; Springer: Cham, Switzerland, 2020; pp. 259–278. [Google Scholar]
- Qiu, Y.; Liu, Y.; Li, Y.; Li, G.; Wang, D. Effect of chronic exposure to nanopolystyrene on nematode Caenorhabditis elegans. Chemosphere 2020, 256, 127172. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Xia, Q.; Qi, Y.; Shen, C.; Li, J.; Pan, Z.; Liu, Y.; Zhang, Y.; Hu, Q.; Huan, P. Testicular Toxicity Assessment of Chronic Low-Dose Exposure to Polystyrene Nanoparticles in Multiexposure Models Using Drosophila. ACS Appl. Nano Mater. 2025, 8, 2269–2279. [Google Scholar] [CrossRef]
- Lei, L.; Liu, M.; Song, Y.; Lu, S.; Hu, J.; Cao, C.; Xie, B.; Shi, H.; He, D. Polystyrene (nano) microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ. Sci. Nano 2018, 5, 2009–2020. [Google Scholar] [CrossRef]
- León, R.E.; Salcedo, V.A.A.; San Miguel, F.J.N.; Tardio, C.R.A.L.; Briceño, A.A.T.; Fouilloux, S.F.C.; de Matos Barbosa, M.; Barros, C.A.S.; Waldman, W.R.; Espinosa-Bustos, C. Photoaged polystyrene nanoplastics exposure results in reproductive toxicity due to oxidative damage in Caenorhabditis elegans. Environ. Pollut. 2024, 348, 123816. [Google Scholar] [CrossRef]
- Sankar, S.; Chandrasekaran, N.; Moovendhan, M.; Parvathi, V.D. Zebrafish and Drosophila as Model Systems for Studying the Impact of Microplastics and Nanoplastics-A Systematic Review. Environ. Qual. Manag. 2025, 34, e70021. [Google Scholar] [CrossRef]
- Xu, T.; Chen, H.; Zhang, L.; Xie, D.; Tan, S.; Guo, H.; Xiang, M.; Yu, Y. Aged polystyrene microplastics cause reproductive impairment via DNA-damage induced apoptosis in Caenorhabditis elegans. Chemosphere 2024, 362, 142519. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Miao, G.; Jiang, H.; Su, H.; Wang, Y.; Chen, L.; Zhang, J.; Wang, Y. Polystyrene nanoplastics at predicted environmental concentrations enhance the toxicity of copper on Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2024, 282, 116749. [Google Scholar] [CrossRef]
- Li, M.; Ha, B.; Li, Y.; Vrieling, K.; Fu, Z.; Yu, Q.; Rasmann, S.; Wei, X.; Ruan, W. Toxicological impacts of microplastics on virulence, reproduction and physiological process of entomopathogenic nematodes. Ecotoxicol. Environ. Saf. 2024, 273, 116153. [Google Scholar] [CrossRef]
- Jewett, E.; Arnott, G.; Connolly, L.; Vasudevan, N.; Kevei, E. Microplastics and their impact on reproduction—Can we learn from the C. elegans model? Front. Toxicol. 2022, 4, 748912. [Google Scholar] [CrossRef]
- Chen, H.; Gu, Y.; Jiang, Y.; Yu, J.; Chen, C.; Shi, C.; Li, H. Photoaged polystyrene nanoplastics result in transgenerational reproductive toxicity associated with the methylation of histone H3K4 and H3K9 in Caenorhabditis elegans. Environ. Sci. Technol. 2023, 57, 19341–19351. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Wang, C.; Hua, X.; Li, H.; Xie, D.; Xiang, M.; Yu, Y. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans. Sci. Total Environ. 2022, 811, 152350. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, T.; Tang, M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. Environ. Pollut. 2022, 306, 119270. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, R.; Yuan, Y.; Yao, Q.; Han, Y.; Cao, H.; Qi, J. Neurotoxicity induced by aged microplastics from plastic bowls: Abnormal neurotransmission in Caenorhabditis elegans. Sci. Total Environ. 2024, 952, 175939. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maryam, B.; Wang, Y.; Li, X.; Asim, M.; Qayyum, H.; Zhang, P.; Liu, X. Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans. Sensors 2025, 25, 3306. https://doi.org/10.3390/s25113306
Maryam B, Wang Y, Li X, Asim M, Qayyum H, Zhang P, Liu X. Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans. Sensors. 2025; 25(11):3306. https://doi.org/10.3390/s25113306
Chicago/Turabian StyleMaryam, Bushra, Yi Wang, Xiaoran Li, Muhammad Asim, Hamna Qayyum, Pingping Zhang, and Xianhua Liu. 2025. "Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans" Sensors 25, no. 11: 3306. https://doi.org/10.3390/s25113306
APA StyleMaryam, B., Wang, Y., Li, X., Asim, M., Qayyum, H., Zhang, P., & Liu, X. (2025). Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans. Sensors, 25(11), 3306. https://doi.org/10.3390/s25113306