Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Immunohistochemistry
2.3. Scoring Method
2.4. Statistical Analysis
3. Results
3.1. Immunohistochemical Staining Pattern of CEA, EpCAM, c-MET, and EGFR Expression in Rectal Cancer Biopsies
3.2. CEA, EpCAM, c-MET, and EGFR Expression Before Neoadjuvant Therapy
3.3. Effect of Neoadjuvant Chemoradiotherapy on Marker Expression in Adjacent Healthy Mucosa
3.4. Comparative Expression Patterns of Biomarkers in Tumor and Normal Tissues Before and After nCRT
3.5. Effects of Neoadjuvant Chemoradiotherapy on Tumor Marker Expression Among the Different Treatment Response Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.J.; Strombom, P.; Chow, O.S.; Roxburgh, C.S.; Lynn, P.; Eaton, A.; Widmar, M.; Ganesh, K.; Yaeger, R.; Cercek, A.; et al. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients with a Complete Response after Neoadjuvant Therapy. JAMA Oncol. 2019, 5, e185896. [Google Scholar] [CrossRef]
- Goffredo, P.; Quezada-Diaz, F.F.; Garcia-Aguilar, J.; Smith, J.J. Non-Operative Management of Patients with Rectal Cancer: Lessons Learnt from the OPRA Trial. Cancers 2022, 14, 3204. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-Course Radiotherapy Followed by Chemotherapy before Total Mesorectal Excision (TME) versus Preoperative Chemoradiotherapy, TME, and Optional Adjuvant Chemotherapy in Locally Advanced Rectal Cancer (RAPIDO): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Bosset, J.F.; Etienne, P.L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant Chemotherapy with FOLFIRINOX and Preoperative Chemoradiotherapy for Patients with Locally Advanced Rectal Cancer (UNICANCER-PRODIGE 23): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Glynne-Jones, R. How to Measure Tumour Response in Rectal Cancer? An Explanation of Discrepancies and Suggestions for Improvement. Cancer Treat. Rev. 2020, 84, 101964. [Google Scholar] [CrossRef]
- Maas, M.; Lambregts, D.M.J.; Nelemans, P.J.; Heijnen, L.A.; Martens, M.H.; Leijtens, J.W.A.; Sosef, M.; Hulsewé, K.W.E.; Hoff, C.; Breukink, S.O.; et al. Assessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Ann. Surg. Oncol. 2015, 22, 3873–3880. [Google Scholar] [CrossRef]
- Haak, H.E.; Žmuc, J.; Lambregts, D.M.J.; Beets-Tan, R.G.H.; Melenhorst, J.; Beets, G.L.; Maas, M.; Breukink, S.O.; Festen, S.; de Graaf, E.J.R.; et al. The Evaluation of Follow-up Strategies of Watch-and-Wait Patients with a Complete Response after Neoadjuvant Therapy in Rectal Cancer. Color. Dis. 2021, 23, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Nahas, S.C.; Nahas, C.S.R.; Cama, G.M.; de Azambuja, R.L.; Horvat, N.; Marques, C.F.S.; Menezes, M.R.; Junior, U.R.; Cecconello, I. Diagnostic Performance of Magnetic Resonance to Assess Treatment Response after Neoadjuvant Therapy in Patients with Locally Advanced Rectal Cancer. Abdom. Radiol. 2019, 44, 3632–3640. [Google Scholar] [CrossRef]
- Verheij, F.S.; Omer, D.M.; Williams, H.; Lin, S.T.; Qin, L.X.; Buckley, J.T.; Thompson, H.M.; Yuval, J.B.; Kim, J.K.; Dunne, R.F.; et al. Long-Term Results of Organ Preservation in Patients with Rectal Adenocarcinoma Treated with Total Neoadjuvant Therapy: The Randomized Phase II OPRA Trial. J. Clin. Oncol. 2024, 42, 500–506. [Google Scholar] [CrossRef]
- Dossa, F.; Chesney, T.R.; Acuna, S.A.; Baxter, N.N. A Watch-and-Wait Approach for Locally Advanced Rectal Cancer after a Clinical Complete Response Following Neoadjuvant Chemoradiation: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 501–513. [Google Scholar] [CrossRef]
- Vahrmeijer, A.L.; Hutteman, M.; Van Der Vorst, J.R.; Van De Velde, C.J.; Frangioni, J.V. Image-Guided Cancer Surgery Using Near-infrared Fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620–2640. [Google Scholar] [CrossRef] [PubMed]
- Keereweer, S.; Van Driel, P.B.A.A.; Snoeks, T.J.A.; Kerrebijn, J.D.F.; De Jong, R.J.B.; Vahrmeijer, A.L.; Sterenborg, H.J.C.M.; Löwik, C.W.G.M. Optical Image-Guided Cancer Surgery: Challenges and Limitations. Clin. Cancer Res. 2013, 19, 3745–3754. [Google Scholar] [CrossRef] [PubMed]
- Vuijk, F.A.; Hilling, D.E.; Mieog, J.S.D.; Vahrmeijer, A.L. Fluorescent-Guided Surgery for Sentinel Lymph Node Detection in Gastric Cancer and Carcinoembryonic Antigen Targeted Fluorescent-Guided Surgery in Colorectal and Pancreatic Cancer. J. Surg. Oncol. 2018, 118, 315–323. [Google Scholar] [CrossRef]
- Linders, D.; Deken, M.; van der Valk, M.; Tummers, W.; Bhairosingh, S.; Schaap, D.; van Lijnschoten, G.; Zonoobi, E.; Kuppen, P.; van de Velde, C.; et al. Cea, Epcam, Avβ6 and Upar Expression in Rectal Cancer Patients with a Pathological Complete Response after Neoadjuvant Therapy. Diagnostics 2021, 11, 516. [Google Scholar] [CrossRef]
- van Driel, P.B.A.A.; Boonstra, M.C.; Prevoo, H.A.J.M.; van de Giessen, M.; Snoeks, T.J.A.; Tummers, Q.R.J.G.; Keereweer, S.; Cordfunke, R.A.; Fish, A.; van Eendenburg, J.D.H.; et al. EpCAM as Multi-Tumour Target for near-Infrared Fluorescence Guided Surgery. BMC Cancer 2016, 16, 884. [Google Scholar] [CrossRef] [PubMed]
- Went, P.; Vasei, M.; Bubendorf, L.; Terracciano, L.; Tornillo, L.; Riede, U.; Kononen, J.; Simon, R.; Sauter, G.; Baeuerle, P.A. Frequent High-Level Expression of the Immunotherapeutic Target Ep-CAM in Colon, Stomach, Prostate and Lung Cancers. Br. J. Cancer 2006, 94, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, J.; Kamerling, I.M.C.; Gordon, P.B.; Schrier, L.; De Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; et al. Detection of Colorectal Polyps in Humans Using an Intravenously Administered Fluorescent Peptide Targeted against C-Met. Nat. Med. 2015, 21, 955–961. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, S.J.; Vrouwe, J.P.M.; Voskuil, F.J.; Schmidt, I.; Westerhof, J.; Koornstra, J.J.; de Kam, M.L.; Karrenbeld, A.; Hardwick, J.C.H.; Robinson, D.J.; et al. The Optimal Imaging Window for Dysplastic Colorectal Polyp Detection Using C-Met-Targeted Fluorescence Molecular Endoscopy. J. Nucl. Med. 2020, 61, 1435–1441. [Google Scholar] [CrossRef]
- Armstrong, G.R.; Khot, M.I.; Portal, C.; West, N.P.; Perry, S.L.; Maisey, T.I.; Tiernan, J.P.; Hughes, T.A.; Tolan, D.J.; Jayne, D.G. A Novel Fluorescent C-Met Targeted Imaging Agent for Intra-Operative Colonic Tumour Mapping: Translation from the Laboratory into a Clinical Trial. Surg. Oncol. 2022, 40, 101679. [Google Scholar] [CrossRef]
- Lwin, T.M.; Turner, M.A.; Amirfakhri, S.; Nishino, H.; Hoffman, R.M.; Bouvet, M. Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022, 11, 249. [Google Scholar] [CrossRef] [PubMed]
- Tiernan, J.P.; Perry, S.L.; Verghese, E.T.; West, N.P.; Yeluri, S.; Jayne, D.G.; Hughes, T.A. Carcinoembryonic Antigen Is the Preferred Biomarker for in Vivo Colorectal Cancer Targeting. Br. J. Cancer 2013, 108, 662–667. [Google Scholar] [CrossRef]
- de Valk, K.S.; Deken, M.M.; Schaap, D.P.; Meijer, R.P.; Boogerd, L.S.; Hoogstins, C.E.; van der Valk, M.J.; Kamerling, I.M.; Bhairosingh, S.S.; Framery, B.; et al. Dose-Finding Study of a CEA-Targeting Agent, SGM-101, for Intraoperative Fluorescence Imaging of Colorectal Cancer. Ann. Surg. Oncol. 2021, 28, 1832–1844. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Brouwer de Koning, S.G.; de Jongh, S.J.G.M.; Huppelschoten, S.; Voskuil, F.J.; Deken, M.M.; Vahrmeijer, A.L.; Burggraaf, J. A Phase I Study Assessing the Safety and Performance of VB5-845D-800CW, an Anti-Epcam Fluorescent Agent, for the Intraoperative Detection Of Gastrointestinal Cancer. Cancers 2023, 15, 4972. [Google Scholar]
- de Wit, J.G.; Vonk, J.; Voskuil, F.J.; de Visscher, S.A.H.J.; Schepman, K.P.; Hooghiemstra, W.T.R.; Linssen, M.D.; Elias, S.G.; Halmos, G.B.; Plaat, B.E.C.; et al. EGFR-Targeted Fluorescence Molecular Imaging for Intraoperative Margin Assessment in Oral Cancer Patients: A Phase II Trial. Nat. Commun. 2023, 14, 4952. [Google Scholar] [CrossRef] [PubMed]
- Galema, H.A.; Neijenhuis, L.K.A.; Lauwerends, L.J.; Dekker-Ensink, N.G.; Verhoef, C.; Vahrmeijer, A.L.; Bhairosingh, S.S.; Kuppen, P.J.K.; Rogalla, S.; Burggraaf, J.; et al. Effects of Neoadjuvant Therapy on Tumour Target Expression of Oesophageal Cancer Tissue for NIR Fluorescence Imaging. Mol. Imaging Biol. 2024. [Google Scholar] [CrossRef]
- Mandard, A.-M.; Dalibard, F.; Mandard, J.-C.; Marnay, J.; Henry-Amar, M.; Petiot, J.-F.; Roussel, A.; Jacob, J.-H.; Segol, P.; Samama, G.; et al. Pathologic Assessment of Tumor Regression after Preoperative Chemoradiotherapy of Esophageal Carcinoma. Clinicopathologic Correlations. Cancer 1994, 73, 2680–2686. [Google Scholar] [CrossRef]
- Mazières, J.; Brugger, W.; Cappuzzo, F.; Middel, P.; Frosch, A.; Bara, I.; Klingelschmitt, G.; Klughammer, B. Evaluation of EGFR Protein Expression by Immunohistochemistry Using H-Score and the Magnification Rule: Re-Analysis of the SATURN Study. Lung Cancer 2013, 82, 231–237. [Google Scholar] [CrossRef]
- Gao, H.L.; Guan, M.; Sun, Z.; Bai, C.M. High C-Met Expression Is a Negative Prognostic Marker for Colorectal Cancer: A Meta-Analysis. Tumor Biol. 2015, 36, 515–520. [Google Scholar] [CrossRef]
- Park, J.W.; Chang, H.J.; Kim, B.C.; Yeo, H.Y.; Kim, D.Y. Clinical Validity of Tissue Carcinoembryonic Antigen Expression as Ancillary to Serum Carcinoembryonic Antigen Concentration in Patients Curatively Resected for Colorectal Cancer. Color. Dis. 2013, 15, 503–511. [Google Scholar] [CrossRef]
- Spizzo, G.; Fong, D.; Wurm, M.; Ensinger, C.; Obrist, P.; Hofer, C.; Mazzoleni, G.; Gastl, G.; Went, P. EpCAM Expression in Primary Tumour Tissues and Metastases: An Immunohistochemical Analysis. J. Clin. Pathol. 2011, 64, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, L.S.F.; van der Valk, M.J.M.; Boonstra, M.C.; Prevoo, H.A.J.M.; Hilling, D.E.; van de Velde, C.J.H.; Sier, C.F.M.; Sarasqueta, A.F.; Vahrmeijer, A.L. Biomarker Expression in Rectal Cancer Tissue before and after Neoadjuvant Therapy. OncoTargets Ther. 2018, 11, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.C.; Sankpal, N.V.; Gillanders, W.E. Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021, 11, 956. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Yuan, F.; Fu, C.; Shen, G.; Hu, S.; Shen, G. Relationship between Epithelial Cell Adhesion Molecule (EpCAM) Overexpression and Gastric Cancer Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0175357. [Google Scholar] [CrossRef]
- Saif, M.W. Colorectal Cancer in Review: The Role of the EGFR Pathway. Expert Opin. Investig. Drugs 2010, 19, 357–369. [Google Scholar] [CrossRef]
- Messersmith, W.; Oppenheimer, D.; Peralba, J.; Sebastiani, V.; Amador, M.; Jimeno, A.; Embuscado, E.; Hidalgo, M.; Iacobuzio-Donahue, C. Assessment of Epidermal Growth Factor Receptor (EGFR) Signaling in Paired Colorectal Cancer and Normal Colon Tissue Samples Using Computer-Aided Immunohistochemical Analysis. Cancer Biol. Ther. 2005, 4, 1381–1386. [Google Scholar] [CrossRef]
- Brandt, B.; Meyer-Staeckling, S.; Schmidt, H.; Agelopoulos, K.; Buerger, H. Mechanisms of Egfr Gene Transcription Modulation: Relationship to Cancer Risk and Therapy Response. Clin. Cancer Res. 2006, 12, 7252–7260. [Google Scholar] [CrossRef]
- Marston, J.C.; Kennedy, G.D.; Lapi, S.E.; Hartman, Y.E.; Richardson, M.T.; Modi, H.M.; Warram, J.M. Panitumumab-IRDye800CW for Fluorescence-Guided Surgical Resection of Colorectal Cancer. J. Surg. Res. 2019, 239, 44–51. [Google Scholar] [CrossRef]
- de Jongh, S.J.; Voskuil, F.J.; Schmidt, I.; Karrenbeld, A.; Kats-Ugurlu, G.; Meersma, G.J.; Westerhof, J.; Witjes, M.J.H.; van Dam, G.M.; Robinson, D.J.; et al. C-Met Targeted Fluorescence Molecular Endoscopy in Barrett’s Esophagus Patients and Identification of Outcome Parameters for Phase-I Studies. Theranostics 2020, 10, 5357–5367. [Google Scholar] [CrossRef]
Biomarker | Origin | Primary Antibody | Stock | Dilution | Antigen Retrieval | Secondary Antibody | Positive Control |
---|---|---|---|---|---|---|---|
CEA | SantaCruz Biotechnology | CI-P83–1 | 0.2 mg/mL | 1:1000 | Target retrieval solution, pH 6.0, 95 °C, 10 m (Dako PT) | Anti-mouse (Envision, Dako) | Colon tumor |
EpCAM | Acris Antibodies | MOC31 | 0.64 mg/mL | 1:10,000 | Target retrieval solution, pH 6.0, 95 °C, 10 m (Dako PT) | Anti-mouse (Envision, Dako) | Colon tumor |
c-MET | Bio SB | EP1454Y | 1 µg/mL | 1:40 | Target retrieval solution, pH 9.0, 95 °C, 10 m (Dako PT) | Anti-rabbit (Envision, Dako) | Colon tumor |
EGFR | Cell Signaling | D38BXP | 0.64 mg/mL | 1:60 | Target retrieval solution, pH 9.0, 95 °C, 10 m (Dako PT) | Anti-rabbit (Envision, Dako) | Placenta |
Characteristic | Value | |
---|---|---|
Patients, n (%) | 51 (100) | |
Age at surgery, mean (sd), range (years) | 65.55 (8.97), 40–87 | |
Gender, n (%) | Male | 31 (60.8) |
Female | 20 (39.2) | |
Tumor type, n (%) | Adenocarcinoma | 48 (94.1) |
Intramucosal carcinoma | 1 (2.0) | |
Mucinous | 1 (2.0) | |
Unknown | 1 (2.0) | |
Type of neoadjuvant therapy n (%) | Capecitabine +25 × 2 Gy | 26 (51.0) |
N.A. + 5 × 5 Gy | 16 (31.4) | |
CapOx/Avastin + 5 × 5 Gy | 5 (9.8) | |
CapOx+ 5 × 5 Gy | 2 (3.9) | |
N.A. + 13 × 3 Gy | 1 (2.0) | |
CapOx/Avastin + N.A. | 1 (2.0) | |
Type of surgery | Low anterior resection | 34 (66.7) |
Abdominoperineal resection | 16 (31.4) | |
Recto-sigmoid resection | 1 (2.0) | |
Response n (%) | Complete response (TRG1) | 15 (25.4) |
Near complete response (TRG2) | 8 (13.6) | |
Moderate response (TRG3) | 13 (22) | |
Minimal to no response (TRG4/5) | 15 (25.4) | |
Clinical stage before NT | Tumor stage, n | |
cTx | 5 (9.8) | |
cT1 | 1 (2) | |
cT2 | 12 (23.5) | |
cT3 | 29 (56.9) | |
cT4 | 4 (7.8) | |
Nodal stage, n | ||
cNx | 7 (13.7) | |
cN0 | 12 (23.5) | |
cN1 | 21 (41.2) | |
cN2 | 11 (21.6) | |
Metastatic stage, n | ||
cMx | 36 (70.6) | |
cM0 | 8 (15.7) | |
cM1 | 7 (13.7) | |
Clinical stage after NT | Tumor stage, n | |
cTx | 2 (3.9) | |
cT0 | 3 (5.9) | |
cT1 | 1 (2.0) | |
cT2 | 5 (9.8) | |
cT3 | 14 (27.5) | |
cT4 | 2 (3.9) | |
N.A. | 24 (47.1) | |
Nodal stage, n | ||
cN0 | 13 (25.5) | |
cN1 | 8 (15.7) | |
cN2 | 4 (7.8) | |
N.A. | 26 (51.0) | |
Metastatic stage, n | ||
cM0 | 3 (5.9) | |
cM1 | 1 (2.0) | |
N.A. | 47 (92.2) | |
Pathological stage | Tumor stage, n | |
pT0 | 16 (31.4) | |
pT1 | 2 (3.9) | |
pT2 | 9 (17.6) | |
pT3 | 17 (33.3) | |
pTx | 1 (2.0) | |
N.A. | 6 (11.8) | |
Nodal stage, n | ||
pN0 | 31 (60.8) | |
pN1 | 11 (21.6) | |
pN2 | 3 (5.9) | |
N.A. | 6 (11.8) | |
Metastatic stage, n | ||
pM1 | 1 (2.0) | |
N.A. | 50 (98.0) | |
Time between neoadjuvant therapy and surgery, median weeks (range; sd) | 15.1 weeks (range 1.0–91.1; 13.7) |
Tumor Marker | Expression Location in Tumor | Expression Location in Healthy Adjacent Mucosa | Expression in Other Healthy Tissue |
---|---|---|---|
CEA | Apical staining | Weak to moderate staining on the apical side of 97.36% of epithelial cells, diminishing in deeper layers | No detectable expression |
EpCAM | Memberanous staining | Moderate to strong membranous staining in 94.73% of epithelial cells | No detectable expression |
c-MET | Memberanous and cytoplasmatic staining | Weak staining in 31.58% of luminal side of epithelial cells | No detectable expression |
EGFR | Cytoplasmic staining | Weak to moderate staining in 97.37% of luminal epithelial cells; diffuse staining in deeper layers | Weak expression in 100% of muscular layers |
H-Score n (%) | |||||||
---|---|---|---|---|---|---|---|
Tumor Marker | Number of Tissues (n) | Histology of Epithelium | No Expression (H-Score = 0) | Weak Expression (H-Score = 0.5–1.4) | Moderate Expression (H-Score = 1.5–2.4) | Strong Expression (H-Score = 2.5–3) | p * |
CEA | |||||||
Biopsy | 51 | Tumor | 0 (0%) | 18 (35.3%) | 23 (45.1%) | 10 (19.6%) | p < 0.001 ↑ |
19 | Normal | 0 (0%) | 14 (73.7%) | 5 (26.3%) | 0 (0%) | ||
Surgical resection | 31 | Tumor | 0 (0%) | 0 (0%) | 14 (45.2%) | 17 (54.8%) | p < 0.001 ↑ |
18 | Normal | 0 (0%) | 10 (55.6%) | 8 (44.4%) | 0 (0%) | ||
EpCAM | |||||||
Biopsy | 50 | Tumor | 0 (0%) | 14 (28%) | 19 (38%) | 17 (34%) | p = 0.003 ↑ |
19 | Normal | 0 (0%) | 6 (31.6%) | 13 (68.4%) | 0 (0%) | ||
Surgical resection | 34 | Tumor | 0 (0%) | 1 (2.9%) | 19 (55.9%) | 14 (41.2%) | p < 0.001 ↑ |
18 | Normal | 1 (5.6%) | 3 (16.7%) | 13 (72.2%) | 1 (5.6%) | ||
c-MET | |||||||
Biopsy | 51 | Tumor | 4 (7.8%) | 35 (68.6%) | 12 (23.5%) | 0 (0%) | p < 0.001 ↑ |
19 | Normal | 13(68.4%) | 6 (31.6%) | 0 (0%) | 0 (0%) | ||
Surgical resection | 29 | Tumor | 2 (6.9%) | 23 (79.3%) | 4 (13.8%) | 0 (0%) | p = 0.005 ↑ |
16 | Normal | 6 (37.5%) | 10 (62.5%) | 0 (0%) | 0 (0%) | ||
EGFR | |||||||
Biopsy | 51 | Tumor | 5 (9.8%) | 44 (86.3%) | 2 (3.9%) | 0 (0%) | p < 0.001 ↓ |
19 | Normal | 0 (0%) | 18 (94.7%) | 1 (5.3%) | 0 (0%) | ||
Surgical resection | 31 | Tumor | 3 (9.7%) | 23 (74.2%) | 4 (12.9%) | 1 (3.2%) | p = 0.151 ↓ |
18 | Normal | 0 (0%) | 13 (72.2%) | 5 (27.8%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zonoobi, E.; Neijenhuis, L.K.A.; Lemij, A.A.; Linders, D.G.J.; Nazemalhosseini-Mojarad, E.; Bhairosingh, S.S.; Dekker-Ensink, N.G.; van Vlierberghe, R.L.P.; Peeters, K.C.M.J.; Holman, F.A.; et al. Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging. Cancers 2025, 17, 1958. https://doi.org/10.3390/cancers17121958
Zonoobi E, Neijenhuis LKA, Lemij AA, Linders DGJ, Nazemalhosseini-Mojarad E, Bhairosingh SS, Dekker-Ensink NG, van Vlierberghe RLP, Peeters KCMJ, Holman FA, et al. Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging. Cancers. 2025; 17(12):1958. https://doi.org/10.3390/cancers17121958
Chicago/Turabian StyleZonoobi, Elham, Lisanne K. A. Neijenhuis, Annelieke A. Lemij, Daan G. J. Linders, Ehsan Nazemalhosseini-Mojarad, Shadhvi S. Bhairosingh, N. Geeske Dekker-Ensink, Ronald L. P. van Vlierberghe, Koen C. M. J. Peeters, Fabian A. Holman, and et al. 2025. "Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging" Cancers 17, no. 12: 1958. https://doi.org/10.3390/cancers17121958
APA StyleZonoobi, E., Neijenhuis, L. K. A., Lemij, A. A., Linders, D. G. J., Nazemalhosseini-Mojarad, E., Bhairosingh, S. S., Dekker-Ensink, N. G., van Vlierberghe, R. L. P., Peeters, K. C. M. J., Holman, F. A., Tollenaar, R. A. E. M., Hilling, D. E., Crobach, A. S. L. P., Vahrmeijer, A. L., & Kuppen, P. J. K. (2025). Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging. Cancers, 17(12), 1958. https://doi.org/10.3390/cancers17121958