Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = near infrared absorbance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4444 KiB  
Article
Unveiling the Potential of Novel Ternary Chalcogenide SrHfSe3 for Eco-Friendly, Self-Powered, Near-Infrared Photodetectors: A SCAPS-1D Simulation Study
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Sanjida Akter, Haroldo Hattori, Nicholas Kanizaj and Andrey E. Miroshnichenko
Sci 2025, 7(3), 113; https://doi.org/10.3390/sci7030113 - 6 Aug 2025
Abstract
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. [...] Read more.
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. However, their relatively large bandgaps often limit their suitability for near-infrared (NIR) photodetectors. Here, we conducted a comprehensive investigation of SrHfSe3, a ternary chalcogenide with an orthorhombic crystal structure and distinctive needle-like morphology, as a promising candidate for NIR photodetection. SrHfSe3 exhibits a direct bandgap of 1.02 eV, placing it well within the NIR range. Its robust structure, high temperature stability, phase stability and natural abundance make it a compelling material for next-generation, self-powered NIR photodetectors. An in-depth analysis of the SrHfSe3-based photodetector was performed using SCAPS-1D simulations, focusing on key performance metrics such as J–V behavior, photoresponsivity, and specific detectivity. Device optimization was achieved by thoroughly altering each layer thickness, doping concentrations, and defect densities. Additionally, the influence of interface defects, absorber bandgap, and operating temperature was assessed to enhance the photoresponse. Under optimal conditions, the device achieved a short-circuit current density (Jsc) of 45.88 mA/cm2, an open-circuit voltage (Voc) of 0.7152 V, a peak photoresponsivity of 0.85 AW−1, and a detectivity of 2.26 × 1014 Jones at 1100 nm. A broad spectral response spanning 700–1200 nm confirms its efficacy in the NIR region. These results position SrHfSe3 as a strong contender for future NIR photodetectors and provide a foundation for experimental validation in advanced optoelectronic applications. Full article
Show Figures

Figure 1

11 pages, 1758 KiB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 - 1 Aug 2025
Viewed by 155
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

10 pages, 1632 KiB  
Article
An Ultra-Narrowband Graphene-Perfect Absorber Based on Bound States in the Continuum of All-Dielectric Metasurfaces
by Qi Zhang, Xiao Zhang, Zhihong Zhu and Chucai Guo
Nanomaterials 2025, 15(14), 1124; https://doi.org/10.3390/nano15141124 - 19 Jul 2025
Viewed by 338
Abstract
Enhancing light absorption in two-dimensional (2D) materials, particularly few-layer structures, is critical for advancing optoelectronic devices such as light sources, photodetectors, and sensors. However, conventional absorption enhancement strategies often suffer from unstable resonant wavelengths and low-quality factors (Q-factors) due to the inherent weak [...] Read more.
Enhancing light absorption in two-dimensional (2D) materials, particularly few-layer structures, is critical for advancing optoelectronic devices such as light sources, photodetectors, and sensors. However, conventional absorption enhancement strategies often suffer from unstable resonant wavelengths and low-quality factors (Q-factors) due to the inherent weak light–matter interactions in 2D materials. To address these limitations, we propose an all-dielectric metasurface graphene-perfect absorber based on toroidal dipole bound state in the continuum (TD-BIC) with an ultra-narrow bandwidth and stable resonant wavelength. The proposed structure achieves tunable absorption linewidths spanning three orders of magnitude (6 nm to 0.0076 nm) through critical coupling modulation. Furthermore, the operational wavelength can be flexibly extended to any near-infrared region by adjusting the grating width. This work establishes a novel paradigm for enhancing the absorption of 2D materials in photonic device applications. Full article
Show Figures

Figure 1

18 pages, 2570 KiB  
Article
Applicability of Visible–Near-Infrared Spectroscopy to Predicting Water Retention in Japanese Forest Soils
by Rando Sekiguchi, Tatsuya Tsurita, Masahiro Kobayashi and Akihiro Imaya
Forests 2025, 16(7), 1182; https://doi.org/10.3390/f16071182 - 17 Jul 2025
Viewed by 267
Abstract
This study assessed the applicability of visible–near-infrared (vis-NIR) spectroscopy to predicting the water retention characteristics of forest soils in Japan, which vary widely owing to the presence of volcanic ash. Soil samples were collected from 34 sites, and the volumetric water content was [...] Read more.
This study assessed the applicability of visible–near-infrared (vis-NIR) spectroscopy to predicting the water retention characteristics of forest soils in Japan, which vary widely owing to the presence of volcanic ash. Soil samples were collected from 34 sites, and the volumetric water content was measured at eight levels of matric suction. Spectral data were processed by using the second derivative of the absorbance, and regression models were developed by using explainable boosting machine (EBM), which is an interpretable machine learning method. Although the prediction accuracy was limited owing to the small sample size and soil heterogeneity, EBM performed better under saturated conditions (R2 = 0.30), which suggests that vis-NIR spectroscopy can capture water-related features, especially under wet conditions. Importance analysis consistently selected wavelengths that were associated with organic matter and hydrated clay minerals. The important wavelengths clearly shifted from free-water bands in wet soils to mineral-related absorption bands in dry soils. These findings highlight the potential of coupling vis-NIR spectroscopy with interpretable models like EBM for estimating the hydraulic properties of forest soils. Improved accuracy is expected with larger datasets and stratified models by soil type, which can facilitate more efficient soil monitoring in forests. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 9529 KiB  
Article
Development of a Highly Reliable PbS QDs-Based SWIR Photodetector Based on Metal Oxide Electron/Hole Extraction Layer Formation Conditions
by JinBeom Kwon, Yuntae Ha, Suji Choi and Donggeon Jung
Nanomaterials 2025, 15(14), 1107; https://doi.org/10.3390/nano15141107 - 16 Jul 2025
Viewed by 308
Abstract
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they [...] Read more.
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they have low safety because they use the near-infrared (NIR) region that can damage the retina. Therefore, they are difficult to apply to automation technologies such as automobiles and factories where humans can be constantly exposed. In contrast, short-wavelength infrared photodetectors based on PbS QDs are actively being developed because they can absorb infrared rays in the eye-safe region by controlling the particle size of QDs and can be easily and inexpensively manufactured through a solution process. However, PbS QDs-based SWIR photodetectors have low chemical stability due to the electron/hole extraction layer processed by the solution process, making it difficult to manufacture them in the form of patterning and arrays. In this study, bulk NiO and ZnO were deposited by sputtering to achieve uniformity and patterning of thin films, and the performance of PbS QDs-based photodetectors was improved by optimizing the thickness and annealing conditions of the thin films. The fabricated photodetector achieved a high response characteristic of 114.3% through optimized band gap and improved transmittance characteristics. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

31 pages, 5332 KiB  
Review
Photothermal Release by Melanin-like Nanoparticles: Biomedical Applications
by Arianna Menichetti, Silvia Vicenzi, Agata Pane, Dario Mordini, Fabrizio Mancin and Marco Montalti
J. Funct. Biomater. 2025, 16(7), 243; https://doi.org/10.3390/jfb16070243 - 2 Jul 2025
Viewed by 796
Abstract
Melanin-like nanoparticles (NPs) exhibit a remarkable ability to absorb light across a wide range of wavelengths, from the ultraviolet (UV) to the near-infrared (NIR) spectrum. This characteristic enables them to serve as effective photothermal agents (PTAs). Upon irradiation, especially within the NIR window, [...] Read more.
Melanin-like nanoparticles (NPs) exhibit a remarkable ability to absorb light across a wide range of wavelengths, from the ultraviolet (UV) to the near-infrared (NIR) spectrum. This characteristic enables them to serve as effective photothermal agents (PTAs). Upon irradiation, especially within the NIR window, a region where biological tissues are highly transparent, these NPs efficiently convert light energy into heat. This phenomenon, known as the photothermal effect, leads to localized temperature increases. The resulting heat can be strategically employed to induce selective cell death in photothermal therapy (PTT) or to enhance the release of therapeutic agents directly from the NPs. The inherent versatility of melanin-like NPs, stemming from their synthesis methods and the presence of various functional groups, allows for straightforward loading with drugs or other bioactive molecules. Consequently, they are attractive tools for photothermally activated release. This review paper thoroughly examines and critically discusses the latest applications of melanin-like NPs in photothermally controlled release. We dedicate a specific section to general mechanisms and approaches, and this paper concludes with an analysis of critical challenges and prospective future developments. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Figure 1

29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 385
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

12 pages, 4292 KiB  
Article
Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
by Hedde van Hoorn, Fahimeh Pourmohammadi, Arie-Willem de Leeuw, Amey Vasulkar, Jerry de Vos and Steven van den Berg
Sensors 2025, 25(12), 3777; https://doi.org/10.3390/s25123777 - 17 Jun 2025
Viewed by 474
Abstract
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging [...] Read more.
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging systems on conveyor belts cannot be implemented. Here, we investigate how two fundamentally different handheld infrared spectral devices can identify plastic types by benchmarking the same analysis against a high-resolution bench-top spectral approach. We used the handheld Plastic Scanner, which measures a discrete infrared spectrum using LED illumination at different wavelengths, and the SpectraPod, which has an integrated photonics chip which has varying responsivity in different channels in the near-infrared. We employ machine learning using SVM, XGBoost, Random Forest and Gaussian Naïve Bayes models on a full dataset of plastic samples of PET, HDPE, PVC, LDPE, PP and PS, with samples of varying shape, color and opacity, as measured with three different experimental approaches. The high-resolution spectral approach can obtain an accuracy (mean ± standard deviation) of (0.97 ± 0.01), whereas we obtain (0.93 ± 0.01) for the SpectraPod and (0.70 ± 0.03) for the Plastic Scanner. Differences of reflectance at subsequent wavelengths prove to be the most important features in the plastic-type classification model when using high-resolution spectroscopy, which is not possible with the other two devices. Lower accuracy for the handheld devices is caused by their limitations, as the spectral range of both devices is limited—up to 1600 nm for the SpectraPod, while the Plastic Scanner has limited sensitivity to reflectance at wavelengths of 1100 and 1350 nm, where certain plastic types show characteristic absorbance bands. We suggest that combining selective sensitivity channels (as in the SpectraPod) and illuminating the sample with varying LEDs (as with the Plastic Scanner) could increase the accuracy in plastic-type identification with a handheld device. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 389
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

12 pages, 2628 KiB  
Article
Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area
by Washington Duarte Silva da Silva, Joielan Xipaia dos Santos, Tawani Lorena Naide Acosta, Deivison Venicio Souza, Ana Paula Souza Ferreira, Pamella Carolline Marques dos Reis Reis, Leonardo Pequeno Reis, Helena Cristina Vieira, Graciela Inés Bolzon de Muñiz and Silvana Nisgoski
Forests 2025, 16(6), 984; https://doi.org/10.3390/f16060984 - 11 Jun 2025
Viewed by 441
Abstract
This study analyzes near-infrared (NIR) spectral characteristics of the wood of Hevea spruceana (Benth.) Müll. Arg., Hura crepitans L., Ocotea cymbarum Kunth, and Pseudobombax munguba (Mart.) Dugand from an Amazon floodplain forest area located in the Mamirauá Sustainable Development Reserve, aiming at their [...] Read more.
This study analyzes near-infrared (NIR) spectral characteristics of the wood of Hevea spruceana (Benth.) Müll. Arg., Hura crepitans L., Ocotea cymbarum Kunth, and Pseudobombax munguba (Mart.) Dugand from an Amazon floodplain forest area located in the Mamirauá Sustainable Development Reserve, aiming at their discrimination using artificial intelligence. The samples were collected as increment cores, from which NIR spectra were randomly collected in the transversal anatomical surface and compared. Principal component analysis (PCA) was applied to explore variation patterns in the data. Additionally, the classifier support vector machine algorithm, partial least squares–discriminant analysis (PLS-DA), and k-nearest neighbors regression were used to evaluate the accuracy in distinguishing the woods based on the NIR data. The results indicate similar spectral behavior among the species, with differences in absorbance intensities. PCA revealed a greater tendency for samples of the same species to cluster together, with Ocotea cymbarum showing the highest tendency for grouping. Among the classifiers, PLS-DA achieved the highest accuracy (98%). We can conclude that NIR spectroscopy combined with artificial intelligence classifiers has the potential to distinct wood species from the Amazon floodplain forest analyzed. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

15 pages, 2507 KiB  
Article
Selective Photothermal Therapy Using Antioxidant Nanoparticles Encapsulating Novel Near-Infrared-Absorbing Platinum(II) Complexes
by Ryota Sawamura, Hiromi Kurokawa, Atsushi Taninaka, Takuto Toriumi, Yukio Nagasaki, Hidemi Shigekawa, Hirofumi Matsui and Nobuhiko Iki
Nanomaterials 2025, 15(11), 796; https://doi.org/10.3390/nano15110796 - 25 May 2025
Viewed by 750
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato [...] Read more.
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato radical) can kill cancer cells through its photothermal conversion ability. In this study, we developed PtL2-loading nanoparticles (PtL2@RNPs) for the delivery of the complex to tumors based on the enhanced permeability and retention effect using an amphiphilic block copolymer that can scavenge reactive oxygen species. PtL2@RNPs exhibited particle diameters of 20–30 nm, an encapsulation efficiency exceeding 90%, and loading capacities of up to 12%. Under NIR laser irradiation, PtL2@RNPs stably generated heat with almost 100% photothermal conversion efficiency. Although the particles were not modified for cancer cell targeting, their uptake by cancer cells was approximately double that by normal cells. PtL2@RNPs exhibited NIR absorption and effectively killed cancer cells at a low irradiation power (0.15 W). Normal cells treated with PtL2@RNPs remained largely undamaged under identical irradiation conditions, demonstrating a cancer-cell-specific photothermal killing effect. These findings can provide insights for future basic studies on cancer cells and the development of effective cancer treatment modalities. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

15 pages, 2171 KiB  
Article
First Application of a New Rapid Method of Age Determination in European Anchovy (Engraulis encrasicolus) by Fourier Transform Near-Infrared Spectroscopy
by Gualtiero Basilone, Miryam Fortuna, Gabriella Lo Cicero, Simona Genovese, Giovanni Giacalone, Ignazio Fontana, Angelo Bonanno, Salvatore Aronica and Rosalia Ferreri
J. Mar. Sci. Eng. 2025, 13(5), 961; https://doi.org/10.3390/jmse13050961 - 15 May 2025
Viewed by 431
Abstract
Age determination through reading annual rings in whole otoliths is a complicated, time-consuming task that can lead to errors in population age structure, negatively affecting marine fish management plans. Recently, Fourier transform near-infrared spectroscopy (FT-NIRS) has been successfully used to evaluate annual age, [...] Read more.
Age determination through reading annual rings in whole otoliths is a complicated, time-consuming task that can lead to errors in population age structure, negatively affecting marine fish management plans. Recently, Fourier transform near-infrared spectroscopy (FT-NIRS) has been successfully used to evaluate annual age, at least in several long-life fish species. European anchovy (Engraulis encrasicolus) is an important pelagic species for its ecological role and socioeconomic value. In the Mediterranean Sea, anchovy stocks are regularly monitored for assessment purposes, and fish age is calculated by traditional otolith reading. In the present study, anchovies, caught over a decade (2012 to 2023) during on-board surveys in four different areas (i.e., North Tyrrhenian, South Tyrrhenian, North of Sicily, and Strait of Sicily), provided an otolith collection used to acquire absorption spectra by FT-NIRS. These spectra were processed to optimize calibration models, and the best linear models obtained revealed a good predictability for anchovy annual age (coefficient of determination of 0.90, mean squared error 0.3 years, bias < 0.001 years). The calibration model developed for all regions combined proved more robust than the models for each area, demonstrating its efficacy for the entire study area. FT-NIRS analyses proved suitable for predicting age, when applied to E. encrasicolus individuals within the age range of 0 to 3, also when compared to traditional aging methods. Moreover, this methodology improved the standardization of age estimates. Finally, this preliminary study encourages the further application of FT-NIRS also to short-life pelagic species involved in stock assessment plans. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 3645 KiB  
Article
Effects of Graphene Derivatives and Near-Infrared Laser Irradiation on E. coli Biofilms and Stress Response Gene Expression
by Yuliya Maksimova, Ekaterina Pyankova, Larisa Nesterova and Aleksandr Maksimov
Int. J. Mol. Sci. 2025, 26(10), 4728; https://doi.org/10.3390/ijms26104728 - 15 May 2025
Cited by 1 | Viewed by 504
Abstract
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial [...] Read more.
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial effect. This investigation is devoted to the determination of the expression level of bacterial stress response genes (soxS and rpoS) under graphene oxide (GO), reduced graphene oxide (rGO), and NIR laser irradiation (1270 nm). GO, rGO and NIR laser irradiation separately and irradiation in the presence of graphene derivatives cause an increase in the expression level of rpoS associated with the general stress response of bacteria. GO and rGO do not change the expression level of soxS associated with the cell response to oxidative stress, and decrease it in the presence of a strong oxidizing agent paraquat (PQ). The expression of soxS increases under laser irradiation, but decreases under NIR laser irradiation in combination with graphene derivatives. The effect of GO, rGO, and NIR laser irradiation on the formation and eradication of E. coli biofilms was studied. NIR laser with GO and rGO suppresses the metabolic rate and decreases the intracellular ATP content by 94 and 99.6%, respectively. CNMs are shown to reduce biofilm biomass and the content of extracellular polymeric substances (EPSs), both exopolysaccharides and protein in the biofilm matrix. Graphene derivatives in combination with NIR laser irradiation may be an effective means of combating emerging and mature biofilms of Gram-negative bacteria. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 6706 KiB  
Article
Enhanced Efficiency and Stability of Perovskite Solar Cells Through Neodymium-Doped Upconversion Nanoparticles with TiO2 Coating
by Masfer Alkahtani, Bayan Alshehri, Hadeel Alrashood, Latifa Alshehri, Yahya A. Alzahrani, Sultan Alenzi, Ibtisam S. Almalki, Ghazal S. Yafi, Abdulmalik M. Alessa, Faisal S. Alghannam, Abdulaziz Aljuwayr, Nouf K. AL-Saleem, Anwar Alanazi and Masud Almalki
Molecules 2025, 30(10), 2166; https://doi.org/10.3390/molecules30102166 - 14 May 2025
Viewed by 766
Abstract
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as [...] Read more.
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as a novel sensitizer shifts the near-infrared (NIR) absorption band away from the water vapor absorption region in the solar spectrum. This modification enables UCNPs to efficiently convert NIR light into ultraviolet (UV) and blue wavelengths, which are readily absorbed by TiO2, generating additional charge carriers and improving photovoltaic performance. The optimized PSCs, fabricated by blending 30% UCNPs@TiO2 with commercial TiO2 paste, achieved a peak power conversion efficiency (PCE) of 21.71%, representing a 20.4% improvement over the control (18.04%). This enhancement included a 0.9% increase in the open-circuit voltage (Voc), a 6.6% rise in the short-circuit current density (Jsc), and an 11.9% boost in the fill factor (FF). Additionally, the optimized PSCs exhibited remarkable stability, retaining over 90% of their initial PCE after 900 h in humid conditions, compared to only 70% for the control. These improvements result from enhanced light absorption, reduced moisture infiltration, and lower defect-related recombination. This approach provides a promising pathway for developing highly efficient and durable PSCs. Full article
(This article belongs to the Special Issue 5th Anniversary of Applied Chemistry Section)
Show Figures

Figure 1

22 pages, 4250 KiB  
Article
Synthesis and Photocatalytic Properties of Manganese-Substituted Layered Perovskite-like Titanates A′2La2MnxTi3−xO10 (A′ = Na, H)
by Sergei A. Kurnosenko, Anastasiya I. Ustinova, Iana A. Minich, Vladimir V. Voytovich, Oleg I. Silyukov, Dmitrii V. Pankin, Olga V. Volina, Alina V. Kulagina and Irina A. Zvereva
Solids 2025, 6(2), 23; https://doi.org/10.3390/solids6020023 - 12 May 2025
Viewed by 1402
Abstract
The search for effective and reliable methods of photosensitization of oxide-based semiconductor materials is of great significance for their use in photocatalytic reactions of hydrogen production and environmental remediation under natural sunlight. The present study is focused on partial substitution of titanium with [...] Read more.
The search for effective and reliable methods of photosensitization of oxide-based semiconductor materials is of great significance for their use in photocatalytic reactions of hydrogen production and environmental remediation under natural sunlight. The present study is focused on partial substitution of titanium with manganese in the structure of layered perovskite-like titanate Na2La2Ti3O10, which was employed to yield a series of photocatalytically active materials, Na2La2MnxTi3−xO10 (x = 0.002–1.0), as well as their protonated forms H2La2MnxTi3−xO10 and nanosheets. It was established that the manganese cations Mn4+ are embedded in the middle sublayer of oxygen octahedra in the perovskite slabs La2MnxTi3−xO102− and that the maximum achievable manganese content x in the products is ≈0.9. The partial cationic substitution in the perovskite sublattice led to a pronounced contraction of the optical band gap from 3.20 to 1.35 eV (depending on x) and, therefore, allowed the corresponding photocatalysts to utilize not only ultraviolet, but also visible and near-infrared light with wavelengths up to ≈920 nm. The materials obtained were tested as photocatalysts of hydrogen evolution from aqueous methanol, and the greatest activity in this reaction was demonstrated by the samples with low manganese contents (x = 0.002–0.01). However, the materials with greater substitution degrees may be of high interest for use in other photocatalytic processes and, especially, in thermophotocatalysis due to their improved ability to absorb the near-infrared part of solar radiation. Full article
Show Figures

Figure 1

Back to TopTop