Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Study
2.2. Species and Sampling
2.3. Near-Infrared Spectroscopy (NIR)
2.4. Statistical Analysis and Classification Methods
2.4.1. Support Vector Machine (SVM) Learning
2.4.2. Partial Least Squares—Discriminant Analysis (PLS-DA)
2.4.3. K-Nearest Neighbors (k-NN)
2.5. Experiments, Cross-Validation, and Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abreu, J.C.; Guedes, M.C.; Guedes, A.C.L.; Batista, E.M. Estrutura e Distribuição Espacial de Andirobeiras (Carapa spp.) Em Floresta de Várzea Do Estuário Amazônico. Ciência Florest. 2014, 24, 1007–1016. [Google Scholar] [CrossRef]
- Semenishchenkov, Y.A.; Lobanov, G.V. Geoecological Conditions of Habitats of Floodplain Oak Forests in River Valleys of the Upper Dnieper Basin. Vestn. St. Petersburg Univ. Earth Sci. 2019, 64, 328–362. [Google Scholar] [CrossRef]
- Richardson, S.B.; Simeone, J.C.; Deklerck, V. The global wood species priority list: A living database of tree species most at risk for illegal logging, unsustainable deforestation, and high rates of trade globally. Wood Fiber Sci. 2023, 55, 31–42. [Google Scholar] [CrossRef]
- Reis, A.R.S. Anatomia Da Madeira de Quatro Espécies de Aspidosperma Mart. & Zucc. Comercializadas No Estado Do Pará, Brasil. Rev. Ciência Madeira—RCM 2015, 6, 47–62. [Google Scholar] [CrossRef]
- Silva da Silva, W.; Santos, J.; Souza, D.; Naide Acosta, T.; Ferreira, A.; Reis, P.; Reis, L.; Vieira, H.; Muñiz, G.; Nisgoski, S. Applying Colorimetry and Visible Spectroscopy to Discriminate Wood Species in a Forest Management Area in the Amazon Foodplain. Holzforschung 2025, 79, 251–261. [Google Scholar] [CrossRef]
- Silva, W.D.S.d.; Santos, A.d.S.; Ferreira, A.C.S.; Reis, P.C.M.d.R.; Reis, L.P.; Ferreira, A.P.S.; Naide Acosta, T.L.; Santos, J.X.d.; Ferreira, M.d.L.; Gris, D.; et al. Anatomical Characterization of Wood from Three Tree Species from a Floodplain Forest, Central Amazon, Brazil. Bosque 2024, 45, 315–324. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y. Optimizing Recognition Models for Wood Species Identification Using Multi-Spectral Techniques. Holzforschung 2025, 79, 177–187. [Google Scholar] [CrossRef]
- Santos, J.X.; Vieira, H.C.; Souza, D.V.; de Menezes, M.C.; de Muñiz, G.I.B.; Soffiatti, P.; Nisgoski, S. Discrimination of “Louros” Wood from the Brazilian Amazon by near-Infrared Spectroscopy and Machine Learning Techniques. Eur. J. Wood Wood Prod. 2021, 79, 989–998. [Google Scholar] [CrossRef]
- MMA-Ministério do Meio Ambiente Industrialização, Comércio e Transporte de Produtos Florestais. Available online: https://dd.serpro.gov.br/publico/sense/app/36ac6782-2c5b-4365-b11f-a5e713fbacad/sheet/bd361063-6a3b-4112-9cc2-0ea9d4a38963/state/analysis (accessed on 31 March 2025).
- Ramalho, E.E.; Macedo, J.; Vieira, T.M.; Valsecchi, J.; Calvimontes, J.; Marmontel, M.; Queiroz, H.L. Ciclo Hidrológico Nos Ambientes de Várzea Da Reserva de Desenvolvimento Sustentável Mamirauá Médio Rio Solimões, Período de 1990 a 2008. Uakari 2009, 5, 61–87. [Google Scholar]
- Martins-da-Silva, R.C.V. Coleta e Identificação de Espécimes Botânicos, 143rd ed.; Embrapa Amazônia Oriental: Belém, Brazil, 2002. [Google Scholar]
- Gherardi Hein, P.R.; Lima, J.T.; Chaix, G. Effects of Sample Preparation on NIR Spectroscopic Estimation of Chemical Properties of Eucalyptus urophylla S.T. Blake Wood. Holzforschung 2010, 64, 45–54. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 April 2024).
- Lê, S.; Josse, J.; Husson, F. FactoMineR R: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.5. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 15 April 2025).
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ahmad, I.; Basheri, M.; Iqbal, M.J.; Rahim, A. Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection. IEEE Access 2018, 6, 33789–33795. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab—An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Santana, F.; Souza, A.; Almeida, M.; Breitkreitz, M.; Filgueiras, P.; Sena, M.; Poppi, R. Experimento didático de quimiometria para classificação de óleos vegetais comestíveis por espectroscopia no infravermelho médio combinado com análise discriminante por mínimos quadrados parciais: Um tutorial, parte v. Quim. Nova 2020, 43, 371–381. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R.; Liland, K.H. Pls: Partial Least Squares and Principal Component Regression, R Package Version 2.7-3; RStudio: Boston, MA, USA, 2024.
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Hunt, T.; Candan, C.; et al. Caret: Classification and Regression Training. Available online: https://CRAN.R-project.org/package=caret (accessed on 15 March 2024).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Song, Y.; Liang, J.; Lu, J.; Zhao, X. An Efficient Instance Selection Algorithm for k Nearest Neighbor Regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Hechenbichler, K.; Schliep, K. Weighted K-Nearest-Neighbor Techniques and Ordinal Classification Sonderforschungsbereich. Available online: https://epub.ub.uni-muenchen.de/ (accessed on 4 March 2025).
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Optimizing the K-Nearest Neighbors Technique for Estimating Forest Aboveground Biomass Using Airborne Laser Scanning Data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Li, C.; Qiu, Z.; Liu, C. An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Positioning. Wirel Pers. Commun. 2017, 96, 2239–2251. [Google Scholar] [CrossRef]
- Gegzna, V. ManyROC: Tools for ROC Analyis. Available online: https://gegznav.github.io/manyROC (accessed on 4 March 2023).
- Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A Review of Band Assignments in near Infrared Spectra of Wood and Wood Components. J. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Soares, L.F.; da Silva, D.C.; Bergo, M.C.J.; Coradin, V.T.R.; Braga, J.W.B.; Pastore, T.C.M. Avaliação de Espectrômetro NIR Portátil e PLS-DA Para a Discriminação de Seis Espécies Similares de Madeira Amazônicas. Quim. Nova 2017, 40, 418–426. [Google Scholar] [CrossRef]
- Eugenio Da Silva, C.; Nascimento, C.S.; Freitas, J.A.; Araújo, R.D.; Durgante, F.M.; Zartman, C.E.; Nascimento, C.C.; Higuchi, N. Alternative Identification of Wood from Natural Fallen Trees of the Lecythidaceae Family in the Central Amazonian Using FT-NIR Spectroscopy. Int. For. Rev. 2024, 26, 29–44. [Google Scholar] [CrossRef]
- Gomes, J.N.N.; Medeiros, D.T.; Viana, L.C.; Hein, P.R.G. Influence of Moisture on the Identification of Tropical Wood Species by NIR Spectroscopy. Holzforschung 2025, 79, 188–201. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, T.; Kim, J.; Lee, K.; Jeong, M.K. Least Angle Sparse Principal Component Analysis for Ultrahigh Dimensional Data. Ann. Oper. Res. 2024. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Domingos, P. A Few Useful Things to Know about Machine Learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Géron, A. Mãos à Obra Aprendizado de Máquinas Com Scikt-Learn & TensorFlow: Conceitos, Ferramentas e Técnicas Para a Construção de Sistemas Inteligentes; Alta Books: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Pastore, T.C.M.; Braga, J.W.B.; Coradin, V.T.R.; Magalhães, W.L.E.; Okino, E.Y.A.; Camargos, J.A.A.; de Muñiz, G.I.B.; Bressan, O.A.; Davrieux, F. Near Infrared Spectroscopy (NIRS) as a Potential Tool for Monitoring Trade of Similar Woods: Discrimination of True Mahogany, Cedar, Andiroba, and Curupixá. Holzforschung 2011, 65, 73–80. [Google Scholar] [CrossRef]
- Bergo, M.C.J.; Pastore, T.C.M.; Coradin, V.T.R.; Wiedenhoeft, A.C.; Braga, J.W.B. NIRS identification of Swietenia macrophylla is robust across specimens from 27 countries. IAWA J. 2016, 37, 420–430. [Google Scholar] [CrossRef]
- Snel, F.A.; Braga, J.W.B.; da Silva, D.; Wiedenhoeft, A.C.; Costa, A.; Soares, R.; Coradin, V.T.R.; Pastore, T.C.M. Potential Field-Deployable NIRS Identification of Seven Dalbergia Species Listed by CITES. Wood Sci. Technol. 2018, 52, 1411–1427. [Google Scholar] [CrossRef]
Algorithm | Hyperparameter Variants | Method/Package | Reference |
---|---|---|---|
SVM | C = 2c(−2, 0, 2, 4, 6, 7, 8, 9, 10, 11, 12) Sigma = c(0.005, 0.01, 0.02, 0.03, 0.05) | svmRadial/kernlab | Karatzoglou et al. [18] |
PLS-DA | ncomp = seq(1:30) | pls/pls | Mevik et al. [21] |
k-NN | k = seq(2, 25, 1) | knn/caret | Kuhn et al. [22] |
Parameter | 2 × 25 Cross-Validation Partitions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PLS-DA | SVM | k-NN | ||||||||
HT | Accuracy (%) | F1-Score (%) | HT | Accuracy (%) | F1-Score (%) | Recall (%) | HT | Accuracy (%) | F1-Score (%) | |
Mean | ncomp = 29 | 98.46 | 98.46 | sigma = 0.005 C = 64 | 62.77 | 62.74 | 62.77 | k = 5 | 57.14 | 56.79 |
SD | 0.55 | 0.55 | 2.79 | 2.55 | 2.79 | 2.75 | 2.66 | |||
Minimum | 97.19 | 97.19 | 57.50 | 57.71 | 57.50 | 50.31 | 49.91 | |||
Maximum | 99.38 | 99.38 | 69.69 | 68.86 | 69.69 | 63.44 | 62.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva da Silva, W.D.; Santos, J.X.d.; Naide Acosta, T.L.; Souza, D.V.; Ferreira, A.P.S.; Reis, P.C.M.d.R.; Reis, L.P.; Vieira, H.C.; Muñiz, G.I.B.d.; Nisgoski, S. Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area. Forests 2025, 16, 984. https://doi.org/10.3390/f16060984
Silva da Silva WD, Santos JXd, Naide Acosta TL, Souza DV, Ferreira APS, Reis PCMdR, Reis LP, Vieira HC, Muñiz GIBd, Nisgoski S. Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area. Forests. 2025; 16(6):984. https://doi.org/10.3390/f16060984
Chicago/Turabian StyleSilva da Silva, Washington Duarte, Joielan Xipaia dos Santos, Tawani Lorena Naide Acosta, Deivison Venicio Souza, Ana Paula Souza Ferreira, Pamella Carolline Marques dos Reis Reis, Leonardo Pequeno Reis, Helena Cristina Vieira, Graciela Inés Bolzon de Muñiz, and Silvana Nisgoski. 2025. "Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area" Forests 16, no. 6: 984. https://doi.org/10.3390/f16060984
APA StyleSilva da Silva, W. D., Santos, J. X. d., Naide Acosta, T. L., Souza, D. V., Ferreira, A. P. S., Reis, P. C. M. d. R., Reis, L. P., Vieira, H. C., Muñiz, G. I. B. d., & Nisgoski, S. (2025). Near-Infrared Spectroscopy and Machine Learning for Wood Species Discrimination in an Amazon Floodplain Forest Management Area. Forests, 16(6), 984. https://doi.org/10.3390/f16060984