Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,576)

Search Parameters:
Keywords = nature habitats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 778 KiB  
Article
Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA
by Jameson Mori, Nelda A. Rivera, William Brown, Daniel Skinner, Peter Schlichting, Jan Novakofski and Nohra Mateus-Pinilla
Pathogens 2025, 14(8), 786; https://doi.org/10.3390/pathogens14080786 - 7 Aug 2025
Abstract
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment [...] Read more.
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment rates. White-tailed deer have a variable reproductive capacity, with age, health, and habitat influencing this variability. However, it is unknown whether chronic wasting disease (CWD) impacts reproduction and, more specifically, if CWD infection alters a female deer’s probability of pregnancy. Our study addressed this question using data from 9783 female deer culled in northern Illinois between 2003 and 2023 as part of the Illinois Department of Natural Resources’ ongoing CWD management program. Multilevel Bayesian logistic regression was employed to quantify the relationship between pregnancy probability and covariates like maternal age, deer population density, and date of culling. Maternal infection with CWD was found to have no significant effect on pregnancy probability, raising concerns that the equal ability of infected and non-infected females to reproduce could make breeding, which inherently involves close physical contact, an important source of disease transmission between males and females and females and their fawns. The results also identified that female fawns (<1 year old) are sensitive to county-level deer land cover utility (LCU) and deer population density, and that there was no significant difference in how yearlings (1–2 years old) and adult (2+ years old) responded to these variables. Full article
Show Figures

Figure 1

30 pages, 2190 KiB  
Review
Systematic Review of the State of Knowledge About Açaí-Do-Amazonas (Euterpe precatoria Mart., Arecaceae)
by Sabrina Yasmin Nunes da Rocha, Maria Julia Ferreira, Charles R. Clement and Ricardo Lopes
Plants 2025, 14(15), 2439; https://doi.org/10.3390/plants14152439 - 6 Aug 2025
Abstract
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge [...] Read more.
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge on its systematics, ecology, fruit production in natural populations, fruit quality, uses, population management, and related areas, identifying critical research gaps. A systematic literature survey was conducted across databases including Web of Science, Scopus, Scielo, CAPES, and Embrapa. Of 1568 studies referencing Euterpe, 273 focused on E. precatoria, with 90 addressing priority themes. Genetic diversity studies suggest the E. precatoria may represent a complex of species. Its population abundance varies across habitats: the highest variability occurs in terra firme, followed by baixios and várzeas. Várzeas exhibit greater productivity potential, with more bunches per plant and higher fruit weight than baixios; no production data exist for terra firme. Additionally, E. precatoria has higher anthocyanin content than E. oleracea, the primary commercial açaí species. Management of natural populations and cultivation practices are essential for sustainable production; however, studies in these fields are still limited. The information is crucial to inform strategies aiming to promote the sustainable production of the species. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

20 pages, 2960 KiB  
Article
Effectiveness of Kaolinite with and Without Polyaluminum Chloride (PAC) in Removing Toxic Alexandrium minutum
by Cherono Sheilah Kwambai, Houda Ennaceri, Alan J. Lymbery, Damian W. Laird, Jeff Cosgrove and Navid Reza Moheimani
Toxins 2025, 17(8), 395; https://doi.org/10.3390/toxins17080395 - 6 Aug 2025
Abstract
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, [...] Read more.
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, and 0.3 g L−1), two pH levels (7 and 8), and two cell densities (1.0 and 2.0 × 107 cells L−1) in seawater. PAC significantly enhanced removal, achieving up to 100% efficiency within two hours. Zeta potential analysis showed that PAC imparted positive surface charges to the clay, promoting electrostatic interactions with negatively charged algal cells and enhancing flocculation through Van der Waals attractions. In addition, the study conducted a cost estimate analysis and found that treating one hectare at 0.1 g L−1 would cost approximately USD 31.75. The low KPAC application rate also suggests minimal environmental impact on benthic habitats. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

14 pages, 5479 KiB  
Article
Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
by Jorge-Luis Ramírez-López, Mario Añazco, Hugo Vallejos, Carlos Arcos and Kelly Estrada
Int. J. Plant Biol. 2025, 16(3), 87; https://doi.org/10.3390/ijpb16030087 (registering DOI) - 6 Aug 2025
Abstract
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from [...] Read more.
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from three ecologically distinct provenances: a natural regeneration site (Cuyuja), a pure plantation (Natabuela), and an agroforestry system (Pimampiro). Five phenotypically superior trees were selected from each site, and germination was assessed under controlled nursery conditions over a 150-day period using a completely randomized design. Initial viability tests confirmed the physiological integrity of the seeds across all provenances. Germination onset ranged from day 55 to day 73, with significant differences in germination percentage, speed, and uniformity. The agroforestry provenance showed the highest germination rate (69%) and superior performance in all physiological indices, while natural regeneration had the lowest (15%). Post-trial viability assessments indicated that a substantial proportion of non-germinated seeds from Cuyuja remained dormant or deteriorated. These findings underscore the role of agroforestry systems in enhancing seed physiological quality and support their prioritization for large-scale propagation and ecological restoration initiatives involving Juglans neotropica. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Graphical abstract

17 pages, 11387 KiB  
Review
Exploring Early Human Presence in West Central Africa’s Rainforests: Archeo-Paleontological Surveys, Taphonomy, and Insights from Living Primates in Equatorial Guinea
by Antonio Rosas, Antonio Garcia-Tabernero, Darío Fidalgo, Juan Ignacio Morales, Palmira Saladié, Maximiliano Fero Meñe and Cayetano Ebana Ebana
Quaternary 2025, 8(3), 45; https://doi.org/10.3390/quat8030045 - 5 Aug 2025
Abstract
Since 2014, the Paleoanthropology Group of the National Museum of Natural Sciences (CSIC), in collaboration with Equatoguinean researchers, has been conducting archeo-paleontological fieldwork in Equatorial Guinea, continuing a longstanding Spanish naturalist tradition in this region of West Central Africa. These multidisciplinary investigations, framed [...] Read more.
Since 2014, the Paleoanthropology Group of the National Museum of Natural Sciences (CSIC), in collaboration with Equatoguinean researchers, has been conducting archeo-paleontological fieldwork in Equatorial Guinea, continuing a longstanding Spanish naturalist tradition in this region of West Central Africa. These multidisciplinary investigations, framed within an archeo-paleo-anthropological approach, aim primarily to identify early human occupation in the Central African rainforests. To date, robust evidence of Pleistocene human presence has been documented, particularly through lithic assemblages. Although the scarcity and fragmentation of well-dated sites in Central Africa complicate chronological placement, technological traits observed in the lithic industries recorded in Equatorial Guinea show clear affinities with the African Middle Stone Age (MSA). Complementary taphonomic analyses of faunal remains have been undertaken to better understand bone preservation and fossilization processes under tropical rainforest conditions, thereby contributing to the interpretation of archeological contexts. In parallel, ongoing primatological research within the project—focused on extant primates in their natural habitats—seeks to provide ethological models relevant to the study of hominin locomotor evolution. Notably, the project has led to the ecogeographic characterization of the Engong chimpanzee group in Monte Alén National Park, one of the country’s most pristine protected areas. Full article
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

20 pages, 4386 KiB  
Article
Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb
by Daniil N. Olennikov, Nina I. Kashchenko and Nadezhda K. Chirikova
Horticulturae 2025, 11(8), 895; https://doi.org/10.3390/horticulturae11080895 (registering DOI) - 2 Aug 2025
Viewed by 234
Abstract
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb [...] Read more.
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb may serve as a valuable source of bioactive phenolic compounds, which can potentially be influenced by salicylic acid (SA) elicitation—a practical method to increase the concentration of valuable substances in plants. A field study showed that foliar application of SA on one-year-old S. divaricata positively influenced the total phenolic content in the herb, with the highest increase observed at 1.0 mM SA. Liquid chromatography–mass spectrometry (LC–MS) data became increasingly complex with rising SA levels, identifying up to 48 compounds, including cinnamoyl quinic acids (CQAs), dihydrofurochromones (DFCs), and flavonol O-glycosides (FOGs), most reported for the first time in this species. The highest concentrations of CQAs, DFCs, and FOGs in plants treated with 1.0 mM SA were 83.14, 3.75, and 60.53 mg/g, respectively, compared to 42.76, 0.95, and 40.73 mg/g in untreated (0.0 mM SA) plants. Nine in vitro antioxidant assays revealed strong radical-scavenging and nitric oxide (NO)- and Fe2+-chelating activities in 1.0 mM SA-treated plants, indicating robust antioxidative properties of the S. divaricata herb. Thus, foliar application of SA considerably enriches the herb with target antioxidants, increasing its medicinal value, which is reflected in the plant’s biological response. This could potentially reduce the overexploitation of natural populations of S. divaricata, helping to preserve this valuable plant. Full article
Show Figures

Figure 1

14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 152
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

13 pages, 2629 KiB  
Article
Seed Germination Requirements of the Threatened Local Greek Endemic Campanula pangea Hartvig Facilitating Species-Specific Conservation Efforts
by Margarita Paradisiotis, Elias Pipinis, Stefanos Kostas, Georgios Tsoktouridis, Stefanos Hatzilazarou, Anna Mastrogianni, Ioannis Tsiripidis and Nikos Krigas
Conservation 2025, 5(3), 39; https://doi.org/10.3390/conservation5030039 - 1 Aug 2025
Viewed by 456
Abstract
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the [...] Read more.
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the lack of knowledge about its biology. This study focused on the germination behaviour of C. pangea stored seeds by assessing their germination success under the effects of incubation temperature and gibberellic acid (GA3). To contextualize the experimental conditions, a bioclimatic profile of the species was developed using open-access temperature and precipitation data that characterize its natural habitat. The results showed that the optimal germination temperature range for C. pangea is 15–20 °C. Pre-treatment of seeds with GA3 solution (1000 mg L−1) widened the germination range of the seeds only at the low temperature of 10 °C. The experimentation results showed that the seeds of C. pangea exhibit dormancy. These findings contribute to the development of a species-specific germination protocol for ex situ propagation and conservation, enhance understanding of the species’ germination requirements, and thus support future conservation efforts and assessments of extinction risk, or other ornamental applications and/or targeted medicinal research. Full article
Show Figures

Figure 1

21 pages, 1379 KiB  
Article
Stream Temperature, Density Dependence, Catchment Size, and Physical Habitat: Understanding Salmonid Size Variation Across Small Streams
by Kyle D. Martens and Warren D. Devine
Fishes 2025, 10(8), 368; https://doi.org/10.3390/fishes10080368 - 1 Aug 2025
Viewed by 252
Abstract
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four [...] Read more.
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four potentially influencing indicators for three species/age classes to assess the relative importance of their influences on body size. The global model containing all indicators was the most parsimonious model for juvenile coho salmon (Oncorhynchus kisutch; R2m = 0.4581, R2c = 0.5859), age-0 trout (R2m = 0.4117, R2c = 0.5968), and age-1 or older coastal cutthroat trout (O. clarkii; R2m = 0.2407, R2c = 0.5188). Contrary to expectations, salmonid density, catchment size, and physical habitat metrics contributed more to the top models for both coho salmon and age-1 or older cutthroat trout than stream temperature metrics. However, a stream temperature metric, accumulated degree days, had the only significant relationship (positive) of the indicators with body size in age-0 trout (95% CI 1.58 to 23.04). Our analysis identifies complex relationships between salmonid body size and environmental influences, such as the importance of physical habitat such as pool size and boulders. However, management or restoration actions aimed at improving or preventing anticipated declines in physical habitat such as adding instream wood or actions that may lead to increasing pool area have potential to ensure a natural range of salmonid body sizes across watersheds. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 143
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

23 pages, 4161 KiB  
Article
Scenario-Based Assessment of Urbanization-Induced Land-Use Changes and Regional Habitat Quality Dynamics in Chengdu (1990–2030): Insights from FLUS-InVEST Modeling
by Zhenyu Li, Yuanting Luo, Yuqi Yang, Yuxuan Qing, Yuxin Sun and Cunjian Yang
Land 2025, 14(8), 1568; https://doi.org/10.3390/land14081568 - 31 Jul 2025
Viewed by 302
Abstract
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. [...] Read more.
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. Therefore, integrated modeling approaches are required to balance development and conservation. This study responds to this need by conducting a scenario-based assessment of urbanization-induced land-use changes and regional habitat quality dynamics in Chengdu (1990–2030), using the FLUS-InVEST model. By integrating remote sensing-derived land-use data from 1990, 1995, 2000, 2005, 2010, 2015, and 2020, we simulate future regional habitat quality under three policy scenarios: natural development, ecological priority, and cropland protection. Key findings include the following: (1) From 1990 to 2020, cropland decreased by 1917.78 km2, while forestland and built-up areas increased by 509.91 km2 and 1436.52 km2, respectively. Under the 2030 natural development scenario, built-up expansion and cropland reduction are projected. Ecological priority policies would enhance forestland (+4.2%) but slightly reduce cropland. (2) Regional habitat quality declined overall (1990–2020), with the sharpest drop (ΔHQ = −0.063) occurring between 2000 and 2010 due to accelerated urbanization. (3) Scenario analysis reveals that the ecological priority strategy yields the highest regional habitat quality (HQmean = 0.499), while natural development results in the lowest (HQmean = 0.444). This study demonstrates how the FLUS-InVEST model can quantify the trade-offs between urbanization and regional habitat quality, offering a scientific framework for balancing development and ecological conservation in rapidly urbanizing regions. The findings highlight the effectiveness of ecological priority policies in mitigating habitat degradation, with implications for similar cities seeking sustainable land-use strategies that integrate farmland protection and forest restoration. Full article
Show Figures

Figure 1

11 pages, 736 KiB  
Article
Size Structure of Hawksbill Turtles (Eretmochelys imbricata) from Taxidermied Specimens in Private Collections Captured Along the Western Coast of the Gulf of California
by Francisco Omar López-Fuerte, Roberto Carmona, Sergio Flores-Ramírez and Melania C. López-Castro
J. Mar. Sci. Eng. 2025, 13(8), 1473; https://doi.org/10.3390/jmse13081473 - 31 Jul 2025
Viewed by 182
Abstract
Human exploitation has been a major driver of marine turtle population declines, particularly affecting naturally scarce species such as the pantropical hawksbill turtle. Although hawksbill sea turtles have been documented in the Gulf of California since the early 20th century, data on their [...] Read more.
Human exploitation has been a major driver of marine turtle population declines, particularly affecting naturally scarce species such as the pantropical hawksbill turtle. Although hawksbill sea turtles have been documented in the Gulf of California since the early 20th century, data on their historical demography during periods of high exploitation in this region are nonexistent. We investigated the size structure of hawksbill turtles from the Western Central Gulf of California by examining a unique sample of decorative taxidermies, corresponding to 31 specimens captured during fishing operations near Santa Rosalía, Baja California Sur, Mexico, between 1980 and 1990. An analysis of the curved carapace measures revealed a length range (nuchal notch to posterior of supracaudals) of 29.5–59.5 cm (mean = 38.75 ± 6.67 cm) and a width range of 25.0–51.5 cm (mean = 33.63 ± 5.66 cm), with 87% of specimens having lengths between 30 and 45 cm. Based on the carapace length measurements, we estimated the ages to be between 7 and 20 years, indicating that the population included juveniles. Our findings provide baseline data for an understudied period and region, suggesting that this area previously served as an important juvenile habitat. These results contribute essential historical demographic information for conservation planning. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 193
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

Back to TopTop