Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = natural polyketides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2330 KB  
Article
Total Syntheses of Marine Natural Products Lyngbyabellin O and Lyngbyabellin P
by Jing Chen, Shiyu Li, Chao Xu and Tao Ye
Mar. Drugs 2025, 23(9), 340; https://doi.org/10.3390/md23090340 - 26 Aug 2025
Viewed by 891
Abstract
Lyngbyabellins O and P are complex natural products derived from non-ribosomal peptide synthetase/polyketide synthase (NRPS/PKS) biosynthetic pathways and have been isolated from marine cyanobacterial sources. Both metabolites are characterized by the presence of two thiazole rings and a distinctive dichlorinated β-hydroxy acid [...] Read more.
Lyngbyabellins O and P are complex natural products derived from non-ribosomal peptide synthetase/polyketide synthase (NRPS/PKS) biosynthetic pathways and have been isolated from marine cyanobacterial sources. Both metabolites are characterized by the presence of two thiazole rings and a distinctive dichlorinated β-hydroxy acid side chain. Notably, lyngbyabellin P is further distinguished by the incorporation of a (3R,4S)-statine moiety. Herein, we report the first total syntheses of lyngbyabellins O and P, which are achieved through the convergent coupling of three key synthetic fragments, namely, two enantiomerically enriched thiazole subunits and a hydroxycarboxylic acid derivative, the latter constructed via a stereoselective aldol reaction. The total syntheses were completed in 12 and 13 longest linear steps (LLSs) for lyngbyabellins O and P, respectively, furnishing the natural products in overall yields of 5.6% and 2.5%. Full article
Show Figures

Figure 1

11 pages, 1103 KB  
Article
Discovery of Tricyclic Aromatic Polyketides Reveals Hidden Chain-Length Flexibility in Type II Polyketide Synthases
by Yao Liu, Lijun Wang, Haiyan Wang, Yuchen Zhu, Jianing Sun, Boyang Ma, Lin Liu, Xunrui Bao, Jinwei Ren, Keqiang Fan, Liyan Wang, Xiao Li and Guohui Pan
Int. J. Mol. Sci. 2025, 26(16), 7801; https://doi.org/10.3390/ijms26167801 - 13 Aug 2025
Viewed by 531
Abstract
Type II polyketide synthases (PKSs) collectively generate polyketide intermediates of varying chain lengths, which undergo cyclization and further tailoring to produce structurally diverse aromatic polyketides. The length of the polyketide chain is a critical factor shaping the core scaffold of the final product. [...] Read more.
Type II polyketide synthases (PKSs) collectively generate polyketide intermediates of varying chain lengths, which undergo cyclization and further tailoring to produce structurally diverse aromatic polyketides. The length of the polyketide chain is a critical factor shaping the core scaffold of the final product. However, individual type II PKSs typically produce intermediates with a fixed chain length, thereby limiting the structural diversity accessible from a single biosynthetic system. In this study, we report the discovery of two pairs of novel tricyclic aromatic polyketides, varsomycin C/C′ and oxtamycin A/A′, along with two known analogues. These compounds are derived from the var and oxt gene clusters in Streptomyces varsoviensis/varR1, which primarily produce decaketide-derived tetracycline natural products, varsomycin A-B and oxytetracycline. Bioinformatic analysis combined with metabolite profiling of gene-disrupted mutants indicated that varsomycin C and C′ are co-produced by enzymes encoded in the var cluster, with contributions from oxtJ and oxtF in the oxt cluster, resulting in nonaketide-derived tricyclic scaffolds. Oxtamycin A and A′, along with the two analogues, are predicted to be biosynthesized by the oxt cluster. These results suggest that the minimal PKSs from both clusters possess intrinsic flexibility in controlling polyketide chain length, enabling the production of both decaketide and nonaketide intermediates, which represents a rare example of dual chain-length programming in type II PKSs. This flexibility reveals new natural sources of nonaketide biosynthetic enzymes and enriches the chemical diversity of tricyclic aromatic polyketides. Our findings deepen the understanding of type II PKS chain-length regulation and provide a foundation for future engineering of PKSs to produce customized bioactive aromatic polyketides. Full article
(This article belongs to the Special Issue Molecular Research on Microbial Natural Products)
Show Figures

Figure 1

20 pages, 2567 KB  
Article
Optimization and Characterization of Bioactive Metabolites from Cave-Derived Rhodococcus jialingiae C1
by Muhammad Rafiq, Umaira Bugti, Muhammad Hayat, Wasim Sajjad, Imran Ali Sani, Nazeer Ahmed, Noor Hassan, Yanyan Wang and Yingqian Kang
Biomolecules 2025, 15(8), 1071; https://doi.org/10.3390/biom15081071 - 24 Jul 2025
Viewed by 515
Abstract
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits [...] Read more.
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits prominent antibacterial activity against multidrug-resistant pathogens (MDR), including Escherichia coli, Staphylococcus aureus, and Micrococcus luteus. It also demonstrates substantial antioxidant activity, with 71% and 58.39% DPPH radical scavenging. Optimization of physicochemical conditions, such as media, pH, temperature, and nitrogen and carbon sources and concentrations substantially enhanced both biomass and metabolite yields. Optimal conditions comprise specialized media, a pH of 7, a temperature of 30 °C, peptone (1.0 g/L) as the nitrogen source, and glucose (0.5 g/L) as the carbon source. HPLC and QTOF-MS analyses uncovered numerous metabolites, including a phenolic compound, 2-[(E)-3-hydroxy-3-(4-methoxyphenyl) prop-2-enoyl]-4-methoxyphenolate, Streptolactam C, Puromycin, and a putative aromatic polyketide highlighting the C1 isolate chemical. Remarkably, one compound (C14H36N7) demonstrated a special molecular profile, signifying structural novelty and warranting further characterization by techniques such as 1H and 13C NMR. These findings highlight the biotechnological capacity of the C1 isolate as a source of novel antimicrobials and antioxidants, linking environmental adaptation to metabolic potential and supporting natural product discovery pipelines against antibiotic resistance. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 838 KB  
Review
Recent Advances in Heterologous Protein Expression and Natural Product Synthesis by Aspergillus
by Yuyang Sheng, Shangkun Qiu, Yaoming Deng and Bin Zeng
J. Fungi 2025, 11(7), 534; https://doi.org/10.3390/jof11070534 - 17 Jul 2025
Viewed by 2124
Abstract
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the [...] Read more.
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the rapid advancement of synthetic biology, Aspergillus has been extensively exploited as a heterologous chassis for the production of heterologous proteins (e.g., sweet proteins and antibodies) and the synthesis of natural products (e.g., terpenoids and polyketides) due to its distinct advantages, such as superior protein secretion capacity, robust precursor supply, and efficient eukaryotic post-translational modifications. In this review, we provide a comprehensive summary of the advancements in the successful expression of heterologous proteins and the biosynthesis of natural products using Aspergillus platforms (including Aspergillus niger, Aspergillus nidulans, and Aspergillus oryzae) in recent years. Emphasis is placed on the applications of A. oryzae in the heterologous biosynthesis of terpenoids. More importantly, we thoroughly examine the current state of the art in utilizing CRISPR-Cas9 for genetic modifications in A. oryzae and A. niger. In addition, future perspectives on developing Aspergillus expression systems are discussed in this article, along with an exploration of their potential applications in natural product biosynthesis. Full article
Show Figures

Graphical abstract

11 pages, 2714 KB  
Article
Total Synthesis of (+)-Penicyclone A and Evaluation of Biological Activity Including Intermediate Compounds
by Mirko Duvnjak, Gregor Talajić, Jurica Baranašić, Nea Baus Topić, Hana Čipčić Paljetak and Nikola Cindro
Int. J. Mol. Sci. 2025, 26(14), 6643; https://doi.org/10.3390/ijms26146643 - 11 Jul 2025
Viewed by 396
Abstract
Penicyclone A is a polyketide compound with a unique and intriguing structure recently isolated from the fungus Penicillium sp. F23-2 during an OSMAC (one-strain-many-compounds) campaign. The compound demonstrated significant antimicrobial activity without exhibiting any cytotoxic effects, which prompted us to pursue total synthesis [...] Read more.
Penicyclone A is a polyketide compound with a unique and intriguing structure recently isolated from the fungus Penicillium sp. F23-2 during an OSMAC (one-strain-many-compounds) campaign. The compound demonstrated significant antimicrobial activity without exhibiting any cytotoxic effects, which prompted us to pursue total synthesis of the reported enantiomer. Upon completion of the synthesis, we observed that our synthetic compound lacked antimicrobial activity. Further analysis suggested that the natural product may have, in fact, been the opposite enantiomer to that reported. This observation led us to synthesize the antipodal enantiomer using our previously developed synthetic sequence and to evaluate the biological activity (via antibacterial and cytotoxicity assays) of both the final compound and the selected intermediates from both enantiomeric series. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

23 pages, 3606 KB  
Article
Complementary Synthesis of Anti- and Syn-Hydroxymethyl 1,3-Diols via Regioselective Ring Opening of TIPS-Protected 2,3-Epoxy Alcohols: Toward Polypropionate Fragments
by Raúl R. Rodríguez-Berríos and José A. Prieto
Organics 2025, 6(3), 29; https://doi.org/10.3390/org6030029 - 10 Jul 2025
Viewed by 1334
Abstract
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage [...] Read more.
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage of TIPS-monoprotected cis- and trans-2,3-epoxy alcohols using alkenyl Grignard reagents. Regioselective ring opening of cis-epoxides provided anti-1,3-diols, while trans-epoxides afforded the corresponding syn-1,3-diols. The use of cis-propenylmagnesium bromide and vinyl Grignard reagents enabled direct access to cis- and terminal homoallylic 1,3-diols, respectively, with moderate to good yields (46–88%) and excellent regioselectivities (95:5). In contrast, reactions with trans-propenyl Grignard reagent led to partial alkene isomerization, limiting their synthetic utility. To address this, a complementary two-step approach employing propynyl alanate addition followed by sodium/ammonia reduction was incorporated, providing access to trans-homoallylic 1,3-diols with high diastereoselectivity. All 1,3-diols were characterized by NMR spectroscopy, confirming regioselective epoxide opening. These combined strategies offer a practical and modular platform for the synthesis of syn- and anti-hydroxymethylated 1,3-diols and their application to the construction of polypropionate-type fragments, supporting future efforts in the total synthesis of polyketide natural products. Full article
Show Figures

Figure 1

27 pages, 3604 KB  
Review
Bioactive Polyketides from Amphidinium spp.: An In-Depth Review of Biosynthesis, Applications, and Current Research Trends
by Noemi Russo, Giulia Quaini, Marcello Ziaco, Daniela Castiglia, Alessandra Ruggiero, Vincenzo D’Amelia, Concetta Di Napoli, Sergio Esposito, Angelo Fontana, Genoveffa Nuzzo and Simone Landi
Mar. Drugs 2025, 23(6), 255; https://doi.org/10.3390/md23060255 - 16 Jun 2025
Viewed by 1419
Abstract
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is [...] Read more.
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is driven by a conserved enzymatic process involving polyketide synthase complexes. Different genera of dinoflagellates produce PKs. Among them, dinoflagellates of the genus Amphidinium are of particular interest due to its ability to produce the following two major families of PKs: amphidinolides and amphidinols. These compounds display remarkable biological activities, including anticancer, antimicrobial, and antifungal effects, making them attractive targets for pharmaceutical research and development. However, the natural yield of Amphidinium-derived polyketides (APKs) is generally low, limiting their potential for sustainable molecular farming. This challenge has prompted interest in developing biotechnological strategies to enhance their production. This review aims to define the current state of studies about APKs, starting from their initial discoveries to the recent understanding of their biosynthetic pathways. Additionally, it summarizes the structures of compounds discovered, highlights their biotechnological potential, and discusses novel trends in their production. Full article
Show Figures

Figure 1

14 pages, 3874 KB  
Article
Anti-Inflammatory Effect of Pestalotic Acid A Derived from Pestalotiopsis vismiae, an Endophytic Fungus of Ilex prenatal, in Lipopolysaccharide-Stimulated RAW264.7 Cells
by Da Young Hwang, Dae-Won Ki, Dae-Cheol Choi, Bong-Sik Yun and Yoon Hee Kim
Biomedicines 2025, 13(6), 1445; https://doi.org/10.3390/biomedicines13061445 - 12 Jun 2025
Viewed by 618
Abstract
Background/Objectives: Pestalotic acid A (PAA), a polyketide derived from Pestalotiopsis vismiae, an endophyte of the Japanese holly (Ilex crenata), is known to exhibit known antimicrobial activity, but its anti-inflammatory properties remain uncharacterized. This study aimed to investigate the anti-inflammatory effects [...] Read more.
Background/Objectives: Pestalotic acid A (PAA), a polyketide derived from Pestalotiopsis vismiae, an endophyte of the Japanese holly (Ilex crenata), is known to exhibit known antimicrobial activity, but its anti-inflammatory properties remain uncharacterized. This study aimed to investigate the anti-inflammatory effects of PAA in lipopolysaccharide (LPS)-stimulated murine macrophages, RAW264.7 cells. Methods: PAA was isolated from P. vismiae endophytes of Ilex crenata, and its structure was confirmed. RAW264.7 macrophages were treated with 0–50 μM of PAA in the presence of 100 ng/mL LPS. Cell viability was assessed by MTS assay; nitric oxide (NO) production was measured via Griess reagent; interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF) were quantified by enzyme-linked immunosorbent assay. Protein expression of inducible NO synthase (iNOS), nuclear factor (NF)-κB p65 phosphorylation, and related signaling proteins was evaluated by Western blot analysis and immunofluorescence staining. Results: PAA significantly increased macrophage viability and dose-dependently inhibited the release of NO by alleviating the protein expression of iNOS in LPS-treated RAW264.7 cells. Furthermore, PAA suppressed the release of IL-6, IL-1β, and TNF induced by LPS. Western blot and immunofluorescence results also indicated that PAA blocked the p65 subunit phosphorylation of NF-κB, which is one of the underlying mechanisms of the anti-inflammatory action of pestalotic acid A. Conclusions: PAA exerts potent anti-inflammatory effects in LPS-stimulated macrophages via inhibition of the NF-κB pathway, highlighting its potential as a natural therapeutic agent for inflammatory diseases. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

14 pages, 492 KB  
Article
Preclinical Pharmacokinetic Evaluation of Mithramycin and Mithramycin SA Tryptophan-Conjugated Analog
by Kumar Kulldeep Niloy, Jamie Horn, Nazmul H. Bhuiyan, Khaled A. Shaaban, Suhas S. Bhosale, Thomas E. Prisinzano, Jon S. Thorson, Jurgen Rohr and Markos Leggas
Pharmaceutics 2025, 17(6), 765; https://doi.org/10.3390/pharmaceutics17060765 - 10 Jun 2025
Viewed by 870
Abstract
Background: Mithramycin (MTM) is a polyketide anti-cancer natural product previously identified as an EWS-FLI1 inhibitor. This oncogenic transcription factor is a canonical target for drug development in Ewing sarcoma. However, poor pharmacokinetics have been identified as a critical liability of MTM, preventing [...] Read more.
Background: Mithramycin (MTM) is a polyketide anti-cancer natural product previously identified as an EWS-FLI1 inhibitor. This oncogenic transcription factor is a canonical target for drug development in Ewing sarcoma. However, poor pharmacokinetics have been identified as a critical liability of MTM, preventing its further development. Through semisynthetic chemical modifications, we identified mithramycin SA-Trp (MTMSA-Trp) as being a pharmacologically superior congener. To explore their pharmacokinetic (PK) differences, this study examined the plasma PKs and plasma protein binding (PPB) of MTM and MTMSA-Trp in mice, rats, and monkeys. Methods: Protein binding was investigated by rapid equilibrium dialysis in plasma from mice, rats, monkeys, and humans. The pharmacokinetics were investigated at milligram- and microgram-level doses in mice and rats. The pharmacokinetics in monkeys were investigated using the cassette dosing approach at two microgram-level doses. The MTMSA-Trp pharmacokinetic linearity was evaluated in mice at 0.3, 1, 3, and 10 mg/kg doses. All samples were analyzed using LC-MS/MS. Results: Plasma protein binding was higher for MTMSA-Trp (1–4% unbound) than for MTM (10–30% unbound) across species, except in athymic nude mice (1–4% unbound and <1% for mithramycin and MTMSA-Trp, respectively). In mice and rats, MTMSA-Trp had significantly lower clearance than MTM at both milligram and microgram doses; however, the difference in plasma exposure was more pronounced at milligram doses. Consistent with the rodent PK results, cassette microdosing in monkeys showed that the clearance of MTMSA-Trp was lower than that of MTM, but the differences were less pronounced. In the dose proportionality study, MTMSA-Trp showed linear pharmacokinetics at 1, 3, and 10 mg/kg doses. Conclusions: MTMSA-Trp has significantly lower clearance than MTM in rodent models. This is a significant improvement compared to the parent drug, MTM, and warrants further evaluation of PKs in non-rodent models to enable the prediction of MTMSA-Trp PK in humans. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

18 pages, 5463 KB  
Article
Metabolomic Investigations Reveal Properties of Natural Low-Temperature Adaptation Strategies in Five Evergreen Trees
by Bin Liu, Tao Li, Xuting Zhang, Yanxia Zhang, Zhenping He, Xiaorui Shang, Guojing Li and Ruigang Wang
Forests 2025, 16(6), 886; https://doi.org/10.3390/f16060886 - 24 May 2025
Viewed by 561
Abstract
In northern China’s arid and semi-arid regions, evergreen trees demonstrate significant cold tolerance to natural low-temperature stress during winter. However, the metabolic strategies and their associated properties underlying their overwintering adaptation remain incompletely elucidated. This study aims to reveal the metabolic properties of [...] Read more.
In northern China’s arid and semi-arid regions, evergreen trees demonstrate significant cold tolerance to natural low-temperature stress during winter. However, the metabolic strategies and their associated properties underlying their overwintering adaptation remain incompletely elucidated. This study aims to reveal the metabolic properties of natural low-temperature adaptation strategies in five evergreen trees through metabolomic analysis and to identify key metabolites and their dynamic variation patterns. The GC-TOF-MS platform was used to investigate seasonal differential metabolites in five evergreen trees across January, April, July, and October and further explore core differentially expressed metabolites responsive to low-temperature stress. The results demonstrated that the seasonal changes in the chlorophyll content of five evergreens exhibited distinct patterns, that significant differences were observed between Juniperus sabina L. and Picea meyeri R., Ammopiptanthus mongolicus M., Buxus sinica var. parvifolia M.Cheng, and Pinus tabuliformis C., and that no significant differences were found among the other tree species. A total of 427 metabolites were detected in the metabolome; when assessing seasonal dynamics, it was found that the types of differentially expressed metabolites in the five evergreens underwent significant changes. In spring, the differentially expressed metabolites included some carbohydrates, alcohols, organic acids, and lipids. During summer and autumn, the largest number of differentially expressed metabolites accumulated, mainly including carbohydrates, organic acids, and amino acid compounds. In winter, while Picea meyeri primarily accumulated carbohydrates, the remaining four species mainly accumulated organic acids, along with a small number of alcohols, phenylpropanoids, and polyketides. Three shared carbohydrate metabolites, L-threose, galactinol, and gluconic lactone, were commonly downregulated across all species. Additionally, coniferous trees collectively accumulated 3,6-anhydro-D-galactose, showing downregulation. The KEGG enrichment analysis of winter-accumulated metabolites revealed significant associations with the pentose phosphate pathway, amino acid metabolism, phenylpropanoid biosynthesis, the tricarboxylic acid cycle, and ascorbate–aldarate metabolism pathways. Through comparative analysis with the summer growth season, we ultimately identified the core differentially expressed metabolites of the five evergreens, providing potential metabolic markers for the breeding of cold-tolerant species. In summary, these findings provide critical metabolomic insights into how plants adapt to low temperatures, significantly enhancing our understanding of the metabolic foundations of cold tolerance in evergreen species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

11 pages, 1800 KB  
Communication
The α-Glucosidase Inhibition Activities of Phaeochromycins D and E Isolated from Marine Streptomyces sp. FJ0218
by Pingfa Lin, Mianmian Shi, Feifei Wang, Yong Lin and Yongbiao Zheng
Molecules 2025, 30(9), 1993; https://doi.org/10.3390/molecules30091993 - 30 Apr 2025
Viewed by 674
Abstract
Marine Streptomyces are an important source of naturally occurring active compounds. Out of 23 marine Streptomyces strains, 1 strain of Streptomyces sp. FJ0218 was selected for its high activity in inhibiting α-glucosidase. Two polyketides, phaeochromycins D (2) and E (1 [...] Read more.
Marine Streptomyces are an important source of naturally occurring active compounds. Out of 23 marine Streptomyces strains, 1 strain of Streptomyces sp. FJ0218 was selected for its high activity in inhibiting α-glucosidase. Two polyketides, phaeochromycins D (2) and E (1), were isolated from the fermentation broth of this strain using bioactivity-guided column chromatography over RP-18, Sephadex LH-20, and silica gel. Their structures were determined using NMR data, HR-EI-MS, and single-crystal X-ray crystallography. Phaeochromycins D (2) and E (1) exhibited inhibitory activity against α-glucosidase, with IC50 values of 10 mM and 25 mM, respectively. Lineweaver–Burk plots revealed that phaeochromycin E (1) acts as an uncompetitive inhibitor, while phaeochromycin D (2) acts as a non-competitive inhibitor. These findings suggest that there is potential for the pharmacological regulation of glucose levels through the use of polyketide phaeochromycins, emphasizing their significant impact on glucose management. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

15 pages, 3992 KB  
Article
The Mediterranean Sea on the Bench: Unveiling the Marine Invertebrate Sidnyum elegans as a Source of Novel Promising Therapeutic Tools Against Triple-Negative Breast Cancer
by Marcello Casertano, Camilla Esposito, Ivana Bello, Martina Barile, Luana Izzo, Emma Mitidieri, Raffaella Sorrentino, Marialuisa Menna, Elisabetta Panza, Concetta Imperatore and Roberta d’Emmanuele di Villa Bianca
Mar. Drugs 2025, 23(5), 195; https://doi.org/10.3390/md23050195 - 29 Apr 2025
Viewed by 999
Abstract
This study aims to unveil the marine invertebrate Sidnyum elegans, a Mediterranean ascidian, as a natural resource for the early development of new treatments for triple-negative breast cancer (TNBC). Nine different fractions obtained via medium-pressure liquid chromatography (MPLC) of the butanol-soluble [...] Read more.
This study aims to unveil the marine invertebrate Sidnyum elegans, a Mediterranean ascidian, as a natural resource for the early development of new treatments for triple-negative breast cancer (TNBC). Nine different fractions obtained via medium-pressure liquid chromatography (MPLC) of the butanol-soluble material of the ascidian were evaluated in proliferating MDA-MB-231 cells in a range of 10–50 µg/mL. Among them, the SEB-5 fraction was found to be the most effective in reducing cell proliferation and concomitantly inducing apoptosis, revealed via MTT assay and FACS analysis using Annexin V/PI dual staining. Furthermore, we investigated the effect of this fraction on cell cycle phases, revealing that SEB-5 can arrest the cells in the G0/G1 phase. This latter effect was then confirmed via transcriptomic analysis, showing that treatment with SEB-5 reduced the expression of cyclinB1, CDC25a, and CDK1. Finally, to evaluate the potential antimetastatic effect of SEB-5, a wound-healing assay was performed showing the ability of SEB-5 to reduce MDA-MB-231 cell migration. The chemical characterization of SEB-5 components was performed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS/MS) and nuclear magnetic resonance (NMR) spectroscopy. This analysis revealed the presence of a terpenoid and polyketide-like compounds, including the alkyl sulfate 1 and phosphoeleganin 2, along with three novel phosphoeleganin-related products 35. Full article
(This article belongs to the Special Issue Perspectives for the Development of New Multitarget Marine Drugs)
Show Figures

Figure 1

16 pages, 3945 KB  
Article
Deletion of the Class 1 Histone Deacetylase PsHos2 Induces Secondary Metabolic Perturbations in the Sea Cucumber-Associated Penicillium sclerotiorum
by Peipei Zhao, Jiaying Lin, Qingqing Zhang, Tanghui Zhang, Guoliang Zhu, Chengwei Liu, Qinghua Wu, Jianzhao Qi, Minglei Li, Lixin Zhang and Xuekui Xia
Fermentation 2025, 11(4), 230; https://doi.org/10.3390/fermentation11040230 - 21 Apr 2025
Viewed by 786
Abstract
The long-term coexistence of sea cucumber-associated microorganisms with their host enables them to jointly withstand the unique marine ecological environment, and possess great potential for producing various natural products. However, under conventional laboratory conditions, most biosynthetic gene clusters (BGCs) in these microorganisms remain [...] Read more.
The long-term coexistence of sea cucumber-associated microorganisms with their host enables them to jointly withstand the unique marine ecological environment, and possess great potential for producing various natural products. However, under conventional laboratory conditions, most biosynthetic gene clusters (BGCs) in these microorganisms remain silent, necessitating the establishment of effective activation strategies for exploring bioactive secondary metabolites (SMs). Histone acetylation status regulates chromatin structure and plays a crucial role in cellular physiology and fungal secondary metabolism. Penicillium sclerotiorum SD-36 was isolated from sea cucumbers in our previous study. Genome sequencing results indicate that this strain harbors as many as 52 BGCs, suggesting it holds a wealth of genetic resources essential for synthesizing diverse SMs. Here, we describe the impact of a class 1 histone deacetylase (HDAC), PsHos2, on secondary metabolism of sea cucumber-associated Penicillium sclerotiorum SD-36. The colony morphology and SM profile of ΔPsHos2 exhibited significant changes, with the emergence of multiple new compound peaks. Six compounds, including five azaphilones, which are characterized by a pyranoquinone core structure, were isolated from ΔPsHos2, and seventeen unreported potential azaphilone-related nodes were obtained using molecular networking based on LC-MS/MS. Transcriptome analysis revealed that PsHos2 influenced the expression of 44 BGC core genes. Specifically, seven genes within cluster 86.1, the putative BGC for azaphilones, were upregulated, including two polyketide synthase (PKS) genes. The results indicate that regulation based on class 1 HDACs is an important strategy for enhancing SM synthesis in sea cucumber-associated fungi and expanding the resources of marine natural products. Full article
(This article belongs to the Special Issue New Research on Fungal Secondary Metabolites, 3rd Edition)
Show Figures

Figure 1

21 pages, 5316 KB  
Article
Total Synthesis and Stereochemical Assignment of Alternapyrone
by Hui Zhang, Jiaxuan Feng, Di Wang, Bencan Tang, Chao Xu and Tao Ye
Molecules 2025, 30(7), 1597; https://doi.org/10.3390/molecules30071597 - 3 Apr 2025
Viewed by 1108
Abstract
Alternapyrone, a bioactive polyketide produced by the fungal host Aspergillus oryzae, is biosynthesized by a polyketide synthase encoded by the alt1-5 gene cluster. Despite its known bioactivity, the stereochemical configuration of the three stereogenic centers in its polyketide backbone has remained unresolved. [...] Read more.
Alternapyrone, a bioactive polyketide produced by the fungal host Aspergillus oryzae, is biosynthesized by a polyketide synthase encoded by the alt1-5 gene cluster. Despite its known bioactivity, the stereochemical configuration of the three stereogenic centers in its polyketide backbone has remained unresolved. In this study, we determined the complete stereostructure of alternapyrone using an integrative approach that combines predictive, rule-based stereochemical analysis with experimental validation through total synthesis. The efficient total synthesis enabled the precise assignment of the hypothesized stereochemistry by matching the synthetic product to the natural compound. This comprehensive study conclusively established the absolute configuration of alternapyrone. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

12 pages, 2686 KB  
Article
Genome Mining-Guided Discovery of Two New Depsides from Talaromyces sp. HDN1820200
by Xiao Zhang, Luyang Liu, Jiani Huang, Xingtao Ren, Guojian Zhang, Qian Che, Dehai Li and Tianjiao Zhu
Mar. Drugs 2025, 23(3), 130; https://doi.org/10.3390/md23030130 - 18 Mar 2025
Cited by 1 | Viewed by 1110
Abstract
Depsides and their derivatives are a class of polyketides predominantly found in fungal extracts. Herein, a silent nonreducing polyketide synthase (TalsA)-containing gene cluster, which was identified from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200, was successfully activated through heterologous expression in Aspergillus nidulans [...] Read more.
Depsides and their derivatives are a class of polyketides predominantly found in fungal extracts. Herein, a silent nonreducing polyketide synthase (TalsA)-containing gene cluster, which was identified from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200, was successfully activated through heterologous expression in Aspergillus nidulans. This activation led to the production of two novel depsides, talaronic acid A (1) and B (2), alongside three known compounds (35). The further co-expression of TalsA with the decarboxylase (TalsF) demonstrated that it could convert 2 into its decarboxylated derivative 1. The structural elucidation of these compounds was achieved using comprehensive 1D and 2D-NMR spectroscopy, which was complemented by HR-MS analysis. Talaronic acids A and B were firstly reported heterodimers of 3-methylorsellinic acid (3-MOA) and 5-methylorsellinic acid (5-MOA). All isolated compounds (15) were tested for their anti-inflammatory potential. Notably, compounds 1 and 2 exhibited anti-inflammatory activity comparable to that of the positive control. These results further enrich the structural class of depside natural products. Full article
(This article belongs to the Special Issue Marine Microorganisms Bioprospecting)
Show Figures

Graphical abstract

Back to TopTop