Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = natural air-cooled

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5022 KiB  
Article
The Impact of Elevated Printing Speeds and Filament Color on the Dimensional Precision and Tensile Properties of FDM-Printed PLA Specimens
by Deian Dorel Ardeljan, Doina Frunzaverde, Vasile Cojocaru, Raul Rusalin Turiac, Nicoleta Bacescu, Costel Relu Ciubotariu and Gabriela Marginean
Polymers 2025, 17(15), 2090; https://doi.org/10.3390/polym17152090 - 30 Jul 2025
Viewed by 267
Abstract
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament [...] Read more.
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament variants—natural (unpigmented) and black PLA—were analyzed. ISO 527-2 type 1A specimens were produced and tested for dimensional deviations and ultimate tensile strength (UTS). The results indicate that printing speed has a marked impact on both geometric precision and mechanical performance. The optimal speed of 300 mm/s provided the best compromise between dimensional accuracy and tensile strength for both filaments. At speeds below 300 mm/s, under-extrusion caused weak layer bonding and air gaps, while speeds above 300 mm/s led to over-extrusion and structural defects due to thermal stress and rapid cooling. Black PLA yielded better dimensional accuracy at higher speeds, with cross-sectional deviations between 2.76% and 5.33%, while natural PLA showed larger deviations of up to 8.63%. However, natural PLA exhibited superior tensile strength, reaching up to 46.59 MPa, with black PLA showing up to 13.16% lower UTS values. The findings emphasize the importance of speed tuning and material selection for achieving high-quality, reliable, and efficient FDM prints. Full article
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 797
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 5558 KiB  
Article
Microclimate Variability in a Highly Dynamic Karstic System
by Diego Gil, Mario Sánchez-Gómez and Joaquín Tovar-Pescador
Geosciences 2025, 15(8), 280; https://doi.org/10.3390/geosciences15080280 - 24 Jul 2025
Viewed by 169
Abstract
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope [...] Read more.
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope of a mountainous area with a Mediterranean climate and strong chimney effect, resulting in an intense airflow throughout the year. The airflows modify the entrance temperatures, creating a distinctive pattern in each opening that changes with the seasons. The objective of this work is to characterise the outflows and find simple temperature-based parameters that provide information about the karst interior. The entrances were monitored for five years (2017–2022) with temperature–humidity dataloggers at different depths. Other data collected include discrete wind measurements and outside weather data. The most significant parameters identified were the characteristic temperature (Ty), recorded at the end of the outflow season, and the rate of cooling/warming, which ranges between 0.1 and 0.9 °C/month. These parameters allowed the entrances to be grouped based on the efficiency of heat exchange between the outside air and the cave walls, which depends on the rock-boundary geometry. This research demonstrates that simple temperature studies with data recorded at selected positions will allow us to understand geometric aspects of inaccessible karst systems. Dynamic high-airflow cave systems could become a natural source of evidence for climate change and its effects on the underground world. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

26 pages, 20735 KiB  
Article
The Study of the Effect of Blade Sharpening Conditions on the Lifetime of Planar Knives During Industrial Flatfish Skinning Operations
by Paweł Sutowski, Bartosz Zieliński and Krzysztof Nadolny
Materials 2025, 18(13), 3191; https://doi.org/10.3390/ma18133191 - 6 Jul 2025
Viewed by 388
Abstract
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line [...] Read more.
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line downtime due to tool replacement. Meeting these demands is particularly challenging in cutting operations involving heterogeneous materials, especially when the processed raw material contains inclusions and impurities significantly harder than the material itself. This situation occurs, among others, during flatfish skinning operations analyzed in this paper, a common process in the fish processing industry. These fish, due to their natural living environment and behavior, contain a significant proportion of hard inclusions and impurities (shell fragments, sand grains) embedded in their skin. Contact between the tool and hard inclusions causes deformation, wrapping, crushing, and even chipping of the cutting edge of planar knives, resulting in non-uniform blade wear, which manifests as areas of uncut skin on the fish fillet. This necessitates frequent tool changes, resulting in higher tooling costs and longer operating times. This study provides a unique opportunity to review the results of in-service pre-implementation tests of planar knives in the skinning operation conducted under industrial conditions. The main objective was to verify positive laboratory research results regarding the extension of technical blade tool life through optimization of sharpening conditions during grinding. Durability test results are presented for the skinning process of fillets from plaice (Pleuronectes platessa) and flounder (Platichthys flesus). The study also examined the effect of varying cooling and lubrication conditions in the grinding zone on the tool life of technical planar blades. Sharpening knives under flood cooling conditions and using the hybrid method (combining minimum quantity lubrication and cold compressed air) increased their service life in the plaice skinning process (Pleuronectes platessa) by 12.39% and 8.85%, respectively. The increase in effective working time of knives during flounder (Platichthys flesus) skinning was even greater, reaching 17.7% and 16.3% for the flood cooling and hybrid methods, respectively. Full article
Show Figures

Figure 1

20 pages, 7644 KiB  
Article
City-Scale Revegetation Strategies Impact on the Temperature-Related Long-Term Mortality: A Quantitative Assessment in Three Cities in Southern Europe
by Juan Manuel de Andrés, Ilaria D’Elia, David de la Paz, Massimo D’Isidoro, Felicita Russo, Mihaela Mircea, Maurizio Gualtieri, Sotiris Vardoulakis and Rafael Borge
Forests 2025, 16(7), 1089; https://doi.org/10.3390/f16071089 - 1 Jul 2025
Viewed by 345
Abstract
Nature-based solutions (NBS) have attracted increasing attention in local air quality and climate change adaptation plans as suitable measures to reduce health risks. Although several studies have reported health benefits from short-term urban cooling effects of NBS, medium- to long-term health benefits are [...] Read more.
Nature-based solutions (NBS) have attracted increasing attention in local air quality and climate change adaptation plans as suitable measures to reduce health risks. Although several studies have reported health benefits from short-term urban cooling effects of NBS, medium- to long-term health benefits are still poorly understood. In this study, we assess the changes in long-term mortality related to temperature fluctuations induced by city-scale vegetation actuations in three Southern European cities. We performed two annual high-resolution simulations with the Weather Research and Forecasting model to anticipate the impact of future revegetation strategies on temperature in these urban areas. Further, we assessed the impact of temperature changes on health using a country-specific minimum mortality temperature (MMT) reported in scientific literature. It was found that NBS could provide non-negligible reductions of long-term mortality related to temperature regulation (central estimate of 4.1, 1.2, and 3.4 cases avoided per year in Madrid, Milano, and Bologna, respectively). The effect of vegetation is site-dependent, and the cooling effect explains most of the benefits, especially in densely built-up areas of the cities analyzed. Future research should combine short/long-term temperature effects with other indirect implications (air quality, mental health) in the context of climate change. Full article
Show Figures

Figure 1

20 pages, 2551 KiB  
Article
Theoretical Study on Impact of Solar Radiation Heat Gain on Thermal Comfort and Energy Efficiency in Glass Curtain Wall Buildings Based on PMV Index
by Haoyu Chen, Jinzhe Nie, Yuzhe Liu and Yuelin Li
Buildings 2025, 15(13), 2228; https://doi.org/10.3390/buildings15132228 - 25 Jun 2025
Viewed by 573
Abstract
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning [...] Read more.
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning systems are typically equipped with a cooling capacity sufficient to maintain an indoor air temperature at the design values specified in the Design standard for energy efficiency of public buildings, which fails to account for the effects of radiation temperature, potentially resulting in reduced thermal comfort and energy inefficiency. By integrating the Thermal Comfort Tool to calculate the PMV index, this study evaluates the affection of solar heat gain on indoor occupants’ thermal comfort and proposes an optimized air temperature control strategy to realize thermal comfort. Based on the dynamic air temperature strategy, an energy consumption model is developed to evaluate the affection of solar radiation on energy consumption for glass curtain wall buildings based on the PMV index. The synergistic effects of shading measures are then evaluated. This study conducts simulation analysis using an office building with a glass curtain wall located in Beijing as a case study. When accounting for radiant heat gain, a significant portion of the time (53.89%) fall outside the thermal comfort range, even when the air conditioning is set to the designated temperature. To maintain thermal comfort, the air conditioning temperature must be lowered by 1.4–3.5 °C, resulting in a 28.08% increase in energy consumption. To address this issue, this study finds that installing interior shading can reduce radiant heat gain. Under the same thermal comfort conditions, the required air temperature reduction is only 0.8–2.1 °C, leading to a 24.26% reduction in energy consumption compared to the case without interior shading. Full article
Show Figures

Figure 1

61 pages, 4626 KiB  
Article
Integrating Occupant Behavior into Window Design: A Dynamic Simulation Study for Enhancing Natural Ventilation in Residential Buildings
by Mojgan Pourtangestani, Nima Izadyar, Elmira Jamei and Zora Vrcelj
Buildings 2025, 15(13), 2193; https://doi.org/10.3390/buildings15132193 - 23 Jun 2025
Viewed by 453
Abstract
Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when [...] Read more.
Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when occupant behavior is considered. Survey data from 150 Melbourne residents were converted into two window-operation schedules: Same Behavior (SB), representing average patterns, and Probable Behavior (PB), capturing stochastic responses to comfort, privacy, and climate. Both schedules were embedded in EnergyPlus and applied to over 200 annual simulations across five window-design stories that varied orientations, placements, and window-to-wall ratios (WWRs). Each story was tested across two living room wall dimensions (7 m and 4.5 m) and evaluated for air-change rate per hour (ACH) and solar gains. PB increased annual ACH by 5–12% over SB, with the greatest uplift in north-facing cross-ventilated layouts on the wider wall. Integrating probabilistic occupant behavior into window design remarkably improves NV effectiveness, with peak summer ACH reaching 4.8, indicating high ventilation rates that support thermal comfort and improved IAQ without mechanical assistance. These results highlight the potential of occupant-responsive window configurations to reduce reliance on mechanical cooling and enhance indoor air quality (IAQ). This study contributes a replicable occupant-centered workflow and ready-to-apply design rules for Australian temperate climates, adapted to different climate zones. Future research will extend the method to different climates, housing types, and user profiles and will integrate smart-sensor feedback, adaptive glazing, and hybrid ventilation strategies through multi-objective optimization. Full article
Show Figures

Figure 1

18 pages, 2519 KiB  
Article
Unsteady Natural Convection and Entropy Generation in Thermally Stratified Trapezoidal Cavities: A Comparative Study
by Md. Mahafujur Rahaman, Sidhartha Bhowmick and Suvash C. Saha
Processes 2025, 13(6), 1908; https://doi.org/10.3390/pr13061908 - 16 Jun 2025
Viewed by 460
Abstract
This study numerically investigates unsteady natural convection (NC) heat transfer (HT) and entropy generation (Egen) in trapezoidal cavities filled with two thermally stratified fluids. Both air-filled and water-filled configurations are analyzed to evaluate and compare their thermal performance under varying [...] Read more.
This study numerically investigates unsteady natural convection (NC) heat transfer (HT) and entropy generation (Egen) in trapezoidal cavities filled with two thermally stratified fluids. Both air-filled and water-filled configurations are analyzed to evaluate and compare their thermal performance under varying conditions. The cavities are characterized by a heated base, thermally stratified sloped walls, and a cooled top wall. The governing equations are numerically solved using the finite volume (FV) approach. The study considers a Prandtl number (Pr) of 0.71 for air and 7.01 for water, Rayleigh numbers (Ra) ranging from 103 to 5 × 107, and an aspect ratio (AR) of 0.5. Flow behavior is examined through various parameters, including temperature time series (TTS), average Nusselt number (Nu), average entropy generation (Eavg), average Bejan number (Beavg), and ecological coefficient of performance (ECOP). Three bifurcations are identified during the transition from steady to chaotic flow for both fluids. The first is a pitchfork bifurcation, occurring between Ra = 105 and 2 × 105 for air, and between Ra = 9 × 104 and 105 for water. The second, a Hopf bifurcation, is observed between Ra = 4.7 × 105 and 4.8 × 105 for air, and between Ra = 105 and 2 × 105 for water. The third bifurcation marks the onset of chaotic flow, occurring between Ra = 3 × 107 and 4 × 107 for air, and between Ra = 4 × 105 and 5 × 105 for water. At Ra = 106, the average HT in the air-filled cavity is 85.35% higher than in the water-filled cavity, while Eavg is 94.54% greater in the air-filled cavity compared to water-filled cavity. At Ra = 106, the thermal performance of the cavity filled with water is 4.96% better than that of the air-filled cavity. These findings provide valuable insights for optimizing thermal systems using trapezoidal cavities and varying working fluids. Full article
Show Figures

Figure 1

32 pages, 4015 KiB  
Article
Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management
by Ismail Masalha, Omar Badran and Ali Alahmer
Sustainability 2025, 17(12), 5468; https://doi.org/10.3390/su17125468 - 13 Jun 2025
Viewed by 466
Abstract
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient [...] Read more.
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency. Full article
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
Research on Energy-Saving Optimization of Green Buildings Based on BIM and Ecotect
by Mengxue Zhao, Yuetao Yang and Shan Dong
Buildings 2025, 15(11), 1819; https://doi.org/10.3390/buildings15111819 - 26 May 2025
Viewed by 477
Abstract
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level [...] Read more.
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level Revit building information model was established, and a multidisciplinary collaborative analysis was achieved through gbXML data interaction. The lighting simulation results show that the average natural lighting coefficient of the office area facing south is 2.4 (the standard 85%), while in the meeting room area, due to the optimized design of the curtain wall, the average natural lighting coefficient has increased to 2.6 (the standard 92%). In terms of energy-saving renovation, a three-dimensional collaborative design strategy was adopted. Through the optimization of the envelope structure, the cooling load of the air conditioning system was reduced by 25.3%, and the heat load was reduced by 23.6% (the u value of the exterior wall was reduced by 56.3%, the SHGC of the exterior windows was reduced by 42.9%, and the thermal resistance of the roof was increased by 150%). The ventilation optimization adopts the CFD flow field reverse design, adjusting the window opening rate of the exterior windows from 15% to 20% to form a turbulent diffusion effect. Therefore, the air change rate in the office area reached 2.5 times per hour, and the CO2 concentration decreased by up to 27.1% at most. The innovative adoption of the “composite sound insulation curtain wall” technology in acoustic environment control has increased the indoor noise compliance rate by 27 percentage points (from 65% to 92%). The above research data indicate that digital collaborative design can achieve an overall energy-saving rate of over 20% for buildings, providing a replicable technical path for enhancing the performance of green buildings. Full article
Show Figures

Figure 1

23 pages, 2294 KiB  
Article
Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Kowit Suwannahong, Surachai Wongcharee and Torpong Kreetachat
AgriEngineering 2025, 7(6), 165; https://doi.org/10.3390/agriengineering7060165 - 23 May 2025
Viewed by 1183
Abstract
This study examined the effectiveness of using Internet of Things (IoT) technology to control environmental conditions in open-air pig housing systems in Thailand. This experiment was conducted in three zones: Zone 1, with no environmental controls (natural ventilation); Zone 2, with ventilation fans [...] Read more.
This study examined the effectiveness of using Internet of Things (IoT) technology to control environmental conditions in open-air pig housing systems in Thailand. This experiment was conducted in three zones: Zone 1, with no environmental controls (natural ventilation); Zone 2, with ventilation fans but no water-spraying system; and Zone 3, equipped with both ventilation fans and a roof-mounted water-spraying system. Key parameters, such as ammonia (NH3), hydrogen sulfide (H2S), temperature, and relative humidity, were monitored all year round. Zone 1, with only natural ventilation, exhibited the highest levels of pollutants, with an average ammonia concentration of 7.1 ppm and hydrogen sulfide at 7.6 ppm. The temperature averaged 31.81 °C, and the relative humidity was 53.65%, creating unfavorable conditions for pig farming. Zone 2, featuring ventilation fans, showed improvements, with the average ammonia and hydrogen sulfide levels reduced to 3.75 ppm and 4.12 ppm, respectively, although the temperatures (29.35 °C) were still too high at times, and the relative humidity was 49.50%. Zone 3, incorporating both fans and a water-spraying system, demonstrated the most effective environmental control, achieving lower ammonia (3.0 ppm) and hydrogen sulfide (2.93 ppm) levels, with an average temperature of 28.85 °C and relative humidity of 47.15%. These results suggest that IoT technology, combined with adequate ventilation and cooling systems, significantly enhances environmental conditions, thereby promoting better pig health and growth. Full article
Show Figures

Figure 1

27 pages, 3894 KiB  
Article
The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant
by Asiye Aslan and Ali Osman Büyükköse
Sustainability 2025, 17(10), 4605; https://doi.org/10.3390/su17104605 - 17 May 2025
Viewed by 1846
Abstract
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants [...] Read more.
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants utilizing seawater cooling systems. As AT increases, air density decreases, leading to a reduction in the mass of air absorbed by the gas turbine. This change alters the fuel–air mixture in the combustion chamber, resulting in decreased turbine power. Similarly, as SST increases, cooling efficiency declines, causing a loss of vacuum in the condenser. A lower vacuum reduces the steam expansion ratio, thereby decreasing the Steam Turbine Power Output. In this study, the effects of increases in these two parameters (AT and SST) due to global warming on the PE of CCPPs are investigated using various regression analysis techniques, Artificial Neural Networks (ANNs) and a hybrid model. The target variables are condenser vacuum (V), Steam Turbine Power Output (ST Power Output), and PE. The relationship of V with three input variables—SST, AT, and ST Power Output—was examined. ST Power Output was analyzed with four input variables: V, SST, AT, and relative humidity (RH). PE was analyzed with five input variables: V, SST, AT, RH, and atmospheric pressure (AP) using regression methods on an hourly basis. These models were compared based on the Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The best results for V, ST Power Output, and PE were obtained using the hybrid (LightGBM + DNN) model, with MAE values of 0.00051, 1.0490, and 2.1942, respectively. As a result, a 1 °C increase in AT leads to a decrease of 4.04681 MWh in the total electricity production of the plant. Furthermore, it was determined that a 1 °C increase in SST leads to a vacuum loss of up to 0.001836 bara. Due to this vacuum loss, the steam turbine experiences a power loss of 0.6426 MWh. Considering other associated losses (such as generator efficiency loss due to cooling), the decreases in ST Power Output and PE are calculated as 0.7269 MWh and 0.7642 MWh, respectively. Consequently, the combined effect of a 1 °C increase in both AT and SST results in a 4.8110 MWh production loss in the CCPP. As a result of a 1 °C increase in both AT and SST due to global warming, if the lost energy is to be compensated by an average-efficiency natural gas power plant, an imported coal power plant, or a lignite power plant, then an additional 610 tCO2e, 11,184 tCO2e, and 19,913 tCO2e of greenhouse gases, respectively, would be released into the atmosphere. Full article
Show Figures

Figure 1

31 pages, 14974 KiB  
Article
3SqAir Project: A Living Lab Towards Sustainable Smart Strategy for Indoor Climate Quality Assurance in Classrooms
by James Ogundiran, Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Ruben Alexandre de Souto Santos, Luísa Dias Pereira and Manuel Gameiro da Silva
Atmosphere 2025, 16(5), 584; https://doi.org/10.3390/atmos16050584 - 13 May 2025
Viewed by 376
Abstract
The indoor climate quality in classrooms at the University of Coimbra, Portugal, was investigated as part of the 3SqAir project, supported by the Interreg SUDOE program. This research focused on two equipped classrooms with different ventilation systems: natural and mechanical ventilation. Both classrooms [...] Read more.
The indoor climate quality in classrooms at the University of Coimbra, Portugal, was investigated as part of the 3SqAir project, supported by the Interreg SUDOE program. This research focused on two equipped classrooms with different ventilation systems: natural and mechanical ventilation. Both classrooms were continuously monitored for IEQ parameters: thermal comfort, indoor air quality, noise, and lighting during heating and cooling seasons. Air temperature, relative humidity, CO2 concentration, particulate matter, nitrogen dioxide, volatile organic compounds, formaldehyde, sound pressure level, and illuminance were measured. Outdoor weather conditions were also recorded. The primary focus was on air temperature, CO2 concentrations, and relative humidity, while air change rates (ACH) were estimated using the Tracer Gas Method. The results showed inadequate thermal conditions in both classrooms, particularly during the heating season. Most weekly mean CO2 concentrations were within acceptable limits, while ACH were below standard recommendations in four CO2 decay phases. Simulations of CO2 decay revealed further air quality gaps in each room. Corrective measures within the 3SqAir project framework were suggested for approval and implementation while monitoring continues. This work represents the first phase in an evolving study towards developing sustainable strategies for improving indoor air quality in classrooms. Full article
(This article belongs to the Special Issue Modelling of Indoor Air Quality and Thermal Comfort)
Show Figures

Figure 1

24 pages, 2316 KiB  
Review
The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative
by Norman Barner, Michael Nelles and Leif-Alexander Garbe
Foods 2025, 14(9), 1635; https://doi.org/10.3390/foods14091635 - 6 May 2025
Viewed by 664
Abstract
Cold atmospheric plasma (CAP) is a novel and versatile technology, which is not yet used in the food and agricultural sector for barley processing. In lab-scale applications, the technology shows potential in extending shelf life and ensuring food safety and quality, e.g., during [...] Read more.
Cold atmospheric plasma (CAP) is a novel and versatile technology, which is not yet used in the food and agricultural sector for barley processing. In lab-scale applications, the technology shows potential in extending shelf life and ensuring food safety and quality, e.g., during storage. CAP reactive nature counteracts insect pests, fungi, and bacteria, but also improves seed germination and facilitates plant growth not only under stress conditions. Its generation does not require water, chemicals, or solvents and consumes little energy due to low operating temperatures (<60 °C) with a short time span that makes additional production steps (e.g., cooling) obsolete. Therefore, CAP is a sustainable technology capable of further optimising the use of limited resources with the potential of offering solutions for upcoming environmental challenges and political requirements for replacing existing practices and technologies due to the growing impact of climate change. This review summarises recent developments and findings concerning CAP application in barley production and processing with air as the process gas. Furthermore, this comprehensive overview could help identify further research needs to overcome its current technical limitations, e.g., efficiency, capacity, etc., that hamper the upscale and market introduction of this environmentally friendly technology. Full article
Show Figures

Figure 1

11 pages, 4276 KiB  
Article
Diurnal Variations in Greenspace Cooling Efficiency and Their Non-Linear Responses to Meteorological Change: Hourly Analysis of Air Temperature in Changsha, China
by Yang Li, Weiye Wang, Xin Li, Wei Liao and Xiaoma Li
Atmosphere 2025, 16(5), 527; https://doi.org/10.3390/atmos16050527 - 30 Apr 2025
Viewed by 350
Abstract
Enhancing greenspace cooling efficiency (GCE) is a cost-effective nature-based solution to improve the urban thermal environment. The spatiotemporal patterns of GCE and their driving factors have been investigated mainly based on land surface temperature in a spatial comparison perspective. However, the diurnal change [...] Read more.
Enhancing greenspace cooling efficiency (GCE) is a cost-effective nature-based solution to improve the urban thermal environment. The spatiotemporal patterns of GCE and their driving factors have been investigated mainly based on land surface temperature in a spatial comparison perspective. However, the diurnal change in GCE based on air temperature (AT) and its non-linear responses to meteorological factors are far from thoroughly understood. Taking the subtropical Chinese city of Changsha as an example, we quantified the hourly GCE based on AT in the hottest month of 2020, investigated its diurnal changes, and uncovered its non-linear responses to meteorological change using the Generalized Additive Model. The results showed that (1) the hourly GCE displayed a U-shaped temporal pattern with an average of 0.0128 °C%−1. The nighttime GCE (0.0134 °C%−1) was significantly higher than the daytime GCE (0.012 °C%−1). (2) Meteorological factors (i.e., temperature, relative humidity, and wind speed) significantly and non-linearly impacted GCE. (3) The responses of GCE to changes in relative humidity and wind speed followed an inverted U-shaped pattern, with the maximum values appearing at a relative humidity of 70% and a wind speed of 6m/s, respectively. GCE responded to temperature change more complexly, i.e., a negative response (<28 °C), then a positive response (30–35 °C), and finally a negative response (>35 °C). These findings extend our understanding of the diurnal variations of GCE and the non-linear responses to meteorological change and can help effective urban greenspace planning and management in Changsha, China, and other cities with similar climates in an era of rapid climate change. For example, expanding greenspace coverage as well as optimizing greenspace spatial configuration should be a priority action in areas where the AT is higher than 35 °C currently and will be in the future. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

Back to TopTop