Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand
Abstract
:1. Introduction
1.1. Ammonia
1.2. Hydrogen Sulfide
1.3. Temperature
1.4. Humidity
2. Materials and Methods
2.1. Study Area and Environmental Control
2.2. Environmental Measurement Parameters
2.3. Measurement Equipment
3. Results
3.1. Ammonia
3.2. Hydrogen Sulfide
3.3. Temperature
3.4. Humidity
4. Discussion
4.1. Monitoring of Ammonia Concentration
4.2. Monitoring of Hydrogen Sulfide Concentration
4.3. Monitoring of Temperature
4.4. Monitoring of Relative Humidity
4.5. Significance of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chantziaras, I.; De Meyer, D.; Vrielinck, L.; Van Limbergen, T.; Pineiro, C.; Dewulf, J.; Kyriazakis, I.; Maes, D. Environment-, health-, performance- and welfare-related parameters in pig barns with natural and mechanical ventilation. Prev. Vet. Med. 2020, 183, 105150. [Google Scholar] [CrossRef] [PubMed]
- Ignatkin, I.; Kazantsev, S.; Shevkun, N.; Skorokhodov, D.; Serov, N.; Alipichev, A.; Panchenko, V. Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming. Agriculture 2023, 13, 334. [Google Scholar] [CrossRef]
- Gautam, K.R.; Rong, L.; Zhang, G.; Bjerg, B.S. Temperature distribution in a finisher pig building with hybrid ventilation. Biosyst. Eng. 2020, 200, 123–137. [Google Scholar] [CrossRef]
- Collins, L.M.; Smith, L.M. Review: Smart agri-systems for the pig industry. Animal 2022, 16, 100518. [Google Scholar] [CrossRef]
- University, C.M. Pig Sensing Technology Aids Farmers in Thailand. Available online: https://engineering.cmu.edu/news-events/news/2019/08/05-pig-sensing.html (accessed on 22 February 2025).
- Vitawat, S.; Gridsada, P.; Lunchakorn, W.; Widhyakorn, A.; Chairat, P. Development Project of Smart Pig Farm Using LoRaWAN. NBTC J. 2021, 5, 215–236. Available online: https://so04.tci-thaijo.org/index.php/NBTC_Journal/article/view/238421 (accessed on 22 February 2025).
- Sena, P.; Kaiwman, B. The Use of Internet of Things technology to develop a smart farm prototype for pig farming. SNRU J. Sci. Technol. 2022, 14, 245673. [Google Scholar] [CrossRef]
- United Nations. Transforming our world: The 2030 Agenda for Sustainable Development (A/RES/70/1). 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 22 February 2025).
- Meechoovet, Y.; Siriwato, S. Thailand’s smart agriculture and its impacts on Thai farmers: A case study of smart agriculture in Ayutthaya, Thailand. Asian Political Sci. Rev. 2023, 7, 1–17. [Google Scholar] [CrossRef]
- Heederik, D.; Sigsgaard, T.; Thorne Peter, S.; Kline Joel, N.; Avery, R.; Bønløkke Jakob, H.; Chrischilles Elizabeth, A.; Dosman James, A.; Duchaine, C.; Kirkhorn Steven, R.; et al. Health Effects of Airborne Exposures from Concentrated Animal Feeding Operations. Environ. Health Perspect. 2007, 115, 298–302. [Google Scholar] [CrossRef]
- Vitali, M.; Santolini, E.; Bovo, M.; Tassinari, P.; Torreggiani, D.; Trevisi, P. Behavior and Welfare of Undocked Heavy Pigs Raised in Buildings with Different Ventilation Systems. Animals 2021, 11, 2338. [Google Scholar] [CrossRef]
- Hossain, M.M.; Cho, S.B.; Kim, I.H. Strategies for reducing noxious gas emissions in pig production: A comprehensive review on the role of feed additives. J. Anim. Sci. Technol. 2024, 66, 237–250. [Google Scholar] [CrossRef]
- Lee, C.; Giles, L.R.; Bryden, W.L.; Downing, J.L.; Owens, P.C.; Kirby, A.C.; Wynn, P.C. Performance and endocrine responses of group housed weaner pigs exposed to the air quality of a commercial environment. Livest. Prod. Sci. 2005, 93, 255–262. [Google Scholar] [CrossRef]
- Buoio, E.; Cialini, C.; Costa, A. Air Quality Assessment in Pig Farming: The Italian Classyfarm. Animals 2023, 13, 2297. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Domeneghini, C. Pollutants in Livestock Buildings. In Ammonia and Dust Interplay with the Respiratory Tract; CRC Press: Boca Raton, FL, USA, 2018; pp. 49–58, Chapter 44. [Google Scholar]
- Wathes, C.; Demmers, T.; Xin, H. Ammonia Concentrations and Emissions in Livestock Production Facilities: Guidelines and Limits in the USA and UK. Am. Soc. Agric. Biol. Eng. 2003, 034112. [Google Scholar]
- Health and Safety Authority (HSA). Chemical Agents and Carcinogens CoP 2024. Available online: https://shorturl.asia/0hztm (accessed on 22 February 2025).
- Banhazi, T.; Seedorf, J.; Rutley, D.; Pitchford, W. Identification of Risk Factors for Sub-Optimal Housing Conditions in Australian Piggeries: Part 3. Environmental Parameters. J. Agric. Saf. Health 2008, 14, 41–52. [Google Scholar] [CrossRef]
- Groot Koerkamp, P.W.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Drummond, J.G.; Curtis, S.E.; Simon, J.; Norton, H.W. Effects of Aerial Ammonia on Growth and Health of Young Pigs1. J. Anim. Sci. 1980, 50, 1085–1091. [Google Scholar] [CrossRef]
- De Boer, S.; Morrison, W.D. The Effects of the Quality of the Environment in Livestock Buildings on the Productivity of Swine and Safety of Humans; University of Guelph: Guelph, ON, Canada, 1988. [Google Scholar]
- Smith, J.H.; Wathes, C.M.; Baldwin, B.A. The preference of pigs for fresh air over ammoniated air. Appl. Anim. Behav. Sci. 1996, 49, 417–424. [Google Scholar] [CrossRef]
- Jones, J.B.; Burgess, L.R.; Webster, A.J.F.; Wathes, C.M. Behavioural responses of pigs to atmospheric ammonia in a chronic choice test. Anim. Sci. 1996, 63, 437–445. [Google Scholar] [CrossRef]
- Gustafsson, G.; Nimmermark, S.; Jeppsson, K.H. Control of Emissions from Livestock Buildings and the Impact of Aerial Environment on Health, Welfare and Performance of Animals-a Review. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Oxford University Press: Oxford, UK, 2013; pp. 261–280. [Google Scholar]
- Zhang, X.; Wang, A.; Chen, Y.; Bao, J.; Xing, H. Intestinal barrier dysfunction induced by ammonia exposure in pigs in vivo and in vitro: The protective role of L-selenomethionine. Ecotoxicol. Environ. Saf. 2022, 248, 114325. [Google Scholar] [CrossRef]
- Wiepkema, P.R.; Koolhaas, J.M. Stress and Animal Welfare. Anim. Welf. 1993, 2, 195–218. [Google Scholar] [CrossRef]
- Brglez, Š. Risk assessment of toxic hydrogen sulfide concentrations on swine farms. J. Clean. Prod. 2021, 312, 127746. [Google Scholar] [CrossRef]
- ClassyFarm. IZSLER and Italian Ministry of Health. 2023. Available online: https://www.classyfarm.it/ (accessed on 30 November 2024).
- Donham, K.J. The Concentration of Swine Production: Effects on Swine Health, Productivity, Human Health, and the Environment. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 559–597. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Q.; Erasmus, M.A.; Croney, C.C.; Li, C.; Li, Y. A critical review of advancement in scientific research on food animal welfare-related air pollution. J. Hazard Mater. 2021, 408, 124468. [Google Scholar] [CrossRef] [PubMed]
- Hoff, S.J.; Bundy, D.S.; Nelson, M.A.; Zelle, B.C.; Jacobson, L.D.; Heber, A.J.; Ni, J.; Zhang, Y.; Koziel, J.A.; Beasley, D.B. Emissions of Ammonia, Hydrogen Sulfide, and Odor before, during, and after Slurry Removal from a Deep-Pit Swine Finisher. J. Air Waste Manag. Assoc. 2006, 56, 581–590. [Google Scholar] [CrossRef]
- Ferrari, S.; Costa, A.; Guarino, M. Heat stress assessment by swine related vocalizations. Livest. Sci. 2013, 151, 29–34. [Google Scholar] [CrossRef]
- Mount, L.E. The assessment of thermal environment in relation to pig production. Livest. Prod. Sci. 1975, 2, 381–392. [Google Scholar] [CrossRef]
- Jeffrey, J.Z.; Locke, A.K.; Alejandro, R.; Kent, J.S.; Gregory, W.S.; Jianqiang, Z. Diseases of Swine, 11th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Michael, R.M.; Thomas, J.L.A.; John, C. Managing Pig Health: A Reference for the Farm (2nd Edition); 5m Books: Essex, UK, 2013. [Google Scholar]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring Indoor Air Quality to Improve Occupational Health. In New Advances in Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–21. [Google Scholar]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Al-Turjman, F.; Treiblmaier, H. The Interplay between the Internet of Things and Agriculture: A Bibliometric Analysis and Research Agenda. Internet Things 2022, 19, 100580. [Google Scholar] [CrossRef]
- Angrecka, S.; Herbut, P.; Nawalany, G. Influence of wind on air movement in a free-stall barn during the summer period. Ann. Anim. Sci. 2013, 13, 109–119. [Google Scholar]
- Jairo Alexander, O.; Ilda Ferreira, T.; Hector Jose, C. Ammonia: A review of concentration and emission models in livestock structures. Dyna 2009, 76, 88–99. [Google Scholar]
- Zahner, M.; Schrader, L.; Hauser, R.; Keck, M.; Langhans, W.; Wechsler, B. The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Anim. Sci. 2004, 78, 139–147. [Google Scholar] [CrossRef]
- Farooq, M.S.; Sohail, O.O.; Abid, A.; Rasheed, S. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Livestock Environment. IEEE Access 2022, 10, 9483–9505. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, S.K. Advanced contribution of IoT in agricultural production for the development of smart livestock environments. Internet Things 2023, 22, 100724. [Google Scholar] [CrossRef]
- Provolo, G.; Brandolese, C.; Grotto, M.; Marinucci, A.; Fossati, N.; Ferrari, O.; Beretta, E.; Riva, E. An Internet of Things Framework for Monitoring Environmental Conditions in Livestock Housing to Improve Animal Welfare and Assess Environmental Impact. Animals 2025, 15, 644. [Google Scholar] [CrossRef]
- Oliveira, C.E.A.; Avelar, T.A.; Tinôco, I.d.F.F.; Coelho, A.L.d.F.; Sousa, F.C.d.; Barbari, M. Development and Validation of Data Acquisition System for Real-Time Thermal Environment Monitoring in Animal Facilities. AgriEngineering 2025, 7, 45. [Google Scholar] [CrossRef]
- Mahfuz, S.; Mun, H.-S.; Dilawar, M.A.; Yang, C.-J. Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming. Sustainability 2022, 14, 2607. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Bhujel, A.; Deb, N.C.; Tamrakar, N.; Kang, M.Y.; Kook, J.; Kang, D.Y.; Seo, E.W.; Kim, H.T. Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings. Sensors 2024, 24, 3468. [Google Scholar] [CrossRef]
- Pu, S.; Rong, X.; Zhu, J.; Zeng, Y.; Yue, J.; Lim, T.; Long, D. Short-Term Aerial Pollutant Concentrations in a Southwestern China Pig-Fattening House. Atmosphere 2021, 12, 103. [Google Scholar] [CrossRef]
- Pedersen, S.; Blanes-Vidal, V.; Jørgensen, H.; Chwalibog, A.; Haeussermann, A.; Heetkamp, M.J.W.; Aarnink, A. Carbon Dioxide Production in Animal Houses: A literature review. Agric. Eng. Int. 2008, 10, 1–9. [Google Scholar]
- Blunden, J.; Aneja, V.P.; Westerman, P.W. Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina. Atmos. Environ. 2008, 42, 3315–3331. [Google Scholar] [CrossRef]
- Konapathri, R.; Azimov, U. Assessment of ammonia distribution in a livestock farm using CFD simulations. Smart Agric. Technol. 2024, 7, 100376. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, J.; Liu, Z.; Hu, B.; Wang, M.; Pu, S. Prediction of Ammonia Concentration in a Pig House Based on Machine Learning Models and Environmental Parameters. Animals 2022, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Vitaliano, S.; D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review. Agriculture 2024, 14, 1148. [Google Scholar] [CrossRef]
- Oliveira, M.D.; Sousa, F.C.; Saraz, J.O.; Calderano, A.A.; Tinôco, I.F.F.; Carneiro, A.P.S. Ammonia Emission in Poultry Facilities: A Review for Tropical Climate Areas. Atmosphere 2021, 12, 1091. [Google Scholar] [CrossRef]
- Singh, R.; Kim, K.; Park, G.; Kang, S.; Park, T.; Ban, J.; Choi, S.; Song, J.; Yu, D.-G.; Woo, J.-H.; et al. Seasonal and Spatial Variations of Atmospheric Ammonia in the Urban and Suburban Environments of Seoul, Korea. Atmosphere 2021, 12, 1607. [Google Scholar] [CrossRef]
- Saha, C.K.; Ammon, C.; Berg, W.; Fiedler, M.; Loebsin, C.; Sanftleben, P.; Brunsch, R.; Amon, T. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci. Total Environ. 2014, 468, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.; Ha, T.; Jang, Y.; Hwang, O.; Seo, S.; Woo, S.; Lee, S.; Kim, D.; Jung, M. Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea. Atmosphere 2020, 11, 1088. [Google Scholar] [CrossRef]
- Kaasik, A.; Maasikmets, M. Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosyst. Eng. 2013, 114, 223–231. [Google Scholar] [CrossRef]
- Bluteau, C.; Massé, D.; Leduc, R. Ammonia emission rates from dairy livestock buildings in Eastern Canada. Biosyst. Eng. 2009, 103, 480–488. [Google Scholar] [CrossRef]
- Ni, J.-Q. Factors affecting toxic hydrogen sulfide concentrations on swine farms ― sulfur source, release mechanism, and ventilation. J. Clean. Prod. 2021, 322, 129126. [Google Scholar] [CrossRef]
- Godyń, D.; Herbut, P.; Angrecka, S.; Corrêa Vieira, F.M. Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress—A Review. Animals 2020, 10, 1459. [Google Scholar] [CrossRef]
- Popa, R.A.; Popa, D.C.; Mărginean, G.E.; Suciu, G.; Bălănescu, M.; Paștea, D.; Vulpe, A.; Vochin, M.; Drăgulinescu, A.M. Hybrid Platform for Assessing Air Pollutants Released from Animal Husbandry Activities for Sustainable Livestock Agriculture. Sustainability 2021, 13, 9633. [Google Scholar] [CrossRef]
Pollutant | Effect |
---|---|
Ammonia (NH3) | Negative effects on pig health include eye and/or respiratory tract inflammation, loss of appetite (anorexia), irritation of the respiratory mucous membranes, weakened immune function, and susceptibility to specific diseases. |
Hydrogen sulfide (H2S) | Negative effects on pig health include eye and/or respiratory system inflammation, smell disturbances, loss of appetite (anorexia), nausea, and diarrhea. |
Weight | Temperature Range |
---|---|
5–14 kg | 24–29 °C |
14–23 kg | 21–27 °C |
23–34 kg | 16–21 °C |
34–82 kg | 13–21 °C |
>82 kg | 10–21 °C |
Condition | Acceptable Concentration | Reference |
---|---|---|
NH3 (Ammonia) | 5–10 ppm | [14] |
H2S (Hydrogen Sulfide) | 0.5–5 ppm | [14] |
T (Temperature) | <29 °C | [34] |
RH (Humidity) | 50–75% | [35] |
Parameter | Measuring Range | Resolution | Accuracy | Sensor Model and Manufacturer |
---|---|---|---|---|
NH3 | 5–500 ppm | 1 ppm | ±5%ppm | MQ137 Ammonia NH3 Gas Sensor Module |
H2S | 1–200 ppm | 1 ppm | ±5%ppm | Module sensor MQ-136 (Hydrogen sulfide gas sensor) |
T | −40~125 °C | 0.1 °C | ±0.3 °C | AM2305 Original High-Quality Temperature and Humidity Sensor |
RH | 0~99.9%RH | 0.1%RH | ±2%RH | AM2305 Original High-Quality Temperature and Humidity Sensor |
Differences Gas Concentration Zone | Comparison Zone | p-Values |
---|---|---|
NH3 concentration between zones | Zone 1 > Zone 2 > Zone 3 | <0.05 |
H2S concentration between zones | Zone 1 > Zone 2 > Zone 3 | <0.05 |
(NH3 + H2S) between zones | Significant multivariate difference across zones | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaowdang, S.; Suriyachai, N.; Imman, S.; Suwannahong, K.; Wongcharee, S.; Kreetachat, T. Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand. AgriEngineering 2025, 7, 165. https://doi.org/10.3390/agriengineering7060165
Khaowdang S, Suriyachai N, Imman S, Suwannahong K, Wongcharee S, Kreetachat T. Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand. AgriEngineering. 2025; 7(6):165. https://doi.org/10.3390/agriengineering7060165
Chicago/Turabian StyleKhaowdang, Suphalerk, Nopparat Suriyachai, Saksit Imman, Kowit Suwannahong, Surachai Wongcharee, and Torpong Kreetachat. 2025. "Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand" AgriEngineering 7, no. 6: 165. https://doi.org/10.3390/agriengineering7060165
APA StyleKhaowdang, S., Suriyachai, N., Imman, S., Suwannahong, K., Wongcharee, S., & Kreetachat, T. (2025). Application of Internet of Things Technology for Ventilation and Environmental Control in Conventional Open-Air Pig Housing Systems in Thailand. AgriEngineering, 7(6), 165. https://doi.org/10.3390/agriengineering7060165