Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (743)

Search Parameters:
Keywords = nanowire (NW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3014 KB  
Article
The Application of High-Performance Silver Nanowire and Metal Oxide Composite Electrodes as Window Electrodes in Electroluminescent Devices
by Xingzhen Yan, Ziyao Niu, Mengying Lyu, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2026, 17(1), 141; https://doi.org/10.3390/mi17010141 - 22 Jan 2026
Viewed by 41
Abstract
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local [...] Read more.
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local medium environment surrounding the AgNW meshes. The randomly distributed AgNW meshes fabricated via drop-coating were treated with plasma to remove surface organic residues and reduce the inter-nanowire contact resistance. Subsequently, a zinc oxide (ZnO) coating was applied to further decrease the sheet resistance (Rsheet) value. The pristine AgNW mesh exhibits an Rsheet of 17.4 ohm/sq and an optical transmittance of 93.06% at a wavelength of 550 nm. After treatment, the composite structure achieves a reduced Rsheet of 8.7 ohm/sq while maintaining a high optical transmittance of 92.20%. The use of AgNW meshes as window electrodes enhances electron injection efficiency and facilitates the coupling mechanism between localized surface plasmon resonances and excitons. Compared with conventional ITO transparent electrodes, the incorporation of the AgNW mesh leads to a 17-fold enhancement in ZnO emission intensity under identical injection current conditions. Moreover, the unique scattering characteristics of the AgNW and metal oxide composite structure effectively reduce photon reflection at the device interface, thereby broadening the angular distribution of emitted light in electroluminescent devices. Full article
Show Figures

Figure 1

14 pages, 61684 KB  
Article
A CMOS-Compatible Silicon Nanowire Array Natural Light Photodetector with On-Chip Temperature Compensation Using a PSO-BP Neural Network
by Mingbin Liu, Xin Chen, Jiaye Zeng, Jintao Yi, Wenhe Liu, Xinjian Qu, Junsong Zhang, Haiyan Liu, Chaoran Liu, Xun Yang and Kai Huang
Micromachines 2026, 17(1), 23; https://doi.org/10.3390/mi17010023 - 25 Dec 2025
Viewed by 303
Abstract
Silicon nanowire (SiNW) photodetectors exhibit high sensitivity for natural light detection but suffer from significant performance degradation due to thermal interference. To overcome this limitation, this paper presents a high-performance, CMOS-compatible SiNW array natural light photodetector with monolithic integration of an on-chip temperature [...] Read more.
Silicon nanowire (SiNW) photodetectors exhibit high sensitivity for natural light detection but suffer from significant performance degradation due to thermal interference. To overcome this limitation, this paper presents a high-performance, CMOS-compatible SiNW array natural light photodetector with monolithic integration of an on-chip temperature sensor and an embedded intelligent compensation system. The device, fabricated via microfabrication techniques, features a dual-array architecture that enables simultaneous acquisition of optical and thermal signals, thereby simplifying peripheral circuitry. To achieve high-precision decoupling of the optical and thermal signals, we propose a hybrid temperature compensation algorithm that combines Particle Swarm Optimization (PSO) with a Back Propagation (BP) neural network. The PSO algorithm optimizes the initial weights and thresholds of the BP network, effectively preventing the network from getting trapped in local minima and accelerating the training process. Experimental results demonstrate that the proposed PSO-BP model achieves superior compensation accuracy and a significantly faster convergence rate compared to the traditional BP network. Furthermore, the optimized model was successfully implemented on an STM32 microcontroller. This embedded implementation validates the feasibility of real-time, high-accuracy temperature compensation, significantly enhancing the stability and reliability of the photodetector across a wide temperature range. This work provides a viable strategy for developing highly stable and integrated optical sensing systems. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering, 2nd Edition)
Show Figures

Figure 1

34 pages, 1667 KB  
Review
Enhancing the Performance of Materials in Ballistic Protection Using Coatings—A Review
by Georgiana Ghisman Alexe, Gabriel Bogdan Carp, Tudor Viorel Tiganescu and Daniela Laura Buruiana
Technologies 2026, 14(1), 13; https://doi.org/10.3390/technologies14010013 - 24 Dec 2025
Viewed by 1170
Abstract
The continuous advancement of modern weaponry has intensified the pursuit of next-generation ballistic protection systems that integrate lightweight architectures, superior flexibility, and high energy absorption efficiency. This review provides a technological overview of current trends in the design, processing, and performance optimization of [...] Read more.
The continuous advancement of modern weaponry has intensified the pursuit of next-generation ballistic protection systems that integrate lightweight architectures, superior flexibility, and high energy absorption efficiency. This review provides a technological overview of current trends in the design, processing, and performance optimization of metallic, ceramic, polymeric, and composite materials for ballistic applications. Particular emphasis is placed on the role of advanced surface coatings and nanostructured interfaces as enabling technologies for improved impact resistance and multifunctionality. Conventional materials such as high-strength steels, alumina, silicon carbide, boron carbide, Kevlar®, and ultra-high-molecular-weight polyethylene (UHMWPE) continue to dominate the field due to their outstanding mechanical properties; however, their intrinsic limitations have prompted a transition toward nanotechnology-assisted solutions. Functional coatings incorporating nanosilica, graphene and graphene oxide, carbon nanotubes (CNTs), and zinc oxide nanowires (ZnO NWs) have demonstrated significant enhancement in interfacial adhesion, inter-yarn friction, and energy dissipation. Moreover, multifunctional coatings such as CNT- and laser-induced graphene (LIG)-based layers integrate sensing capability, electromagnetic interference (EMI) shielding, and thermal stability, supporting the development of smart and adaptive protection platforms. By combining experimental evidence with computational modeling and materials informatics, this review highlights the technological impact of coating-assisted strategies in the evolution of lightweight, high-performance, and multifunctional ballistic armor systems for defense and civil protection. Full article
Show Figures

Figure 1

10 pages, 2927 KB  
Article
Highly Stretchable and Free-Standing AgNWs/PDMS Three-Dimensional Structure Transparent Conductive Films for Nanoimprint Lithography
by Yuanxun Cao, Xiaohua Zhao, Xuetao Zhang, Zhiwei Yang and Dayong Ma
Coatings 2026, 16(1), 21; https://doi.org/10.3390/coatings16010021 - 24 Dec 2025
Viewed by 486
Abstract
This article proposes a novel transparent conductive film structure to solve the problem of electrostatic accumulation in traditional nanoimprint lithography processes. This structure is formed by spin-coating a layer of silver nanowire (AgNWs) transparent conductive films on a graphic substrate, followed by coating [...] Read more.
This article proposes a novel transparent conductive film structure to solve the problem of electrostatic accumulation in traditional nanoimprint lithography processes. This structure is formed by spin-coating a layer of silver nanowire (AgNWs) transparent conductive films on a graphic substrate, followed by coating a layer of polydimethylsiloxane (PDMS) on the surface of the film. After the PDMS is cured, it is peeled off from the substrate to form a free-standing elastic three-dimensional structured surface. These transparent conductive films are not only designed to mitigate static electricity generated during the nanoimprint lithography process, but also have excellent UV transparency, with a 325 nm UV transmittance of up to 90%. At the same time, it exhibits good conductivity with a sheet resistance of 20 Ω/sq. In addition, the films have excellent elasticity and can maintain stable conductivity during repeated stretching, providing a novel solution for flexible optoelectronic devices and nanoimprint technology. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 3254 KB  
Article
Ultra-Long Carbon Nanotubes-Based Flexible Transparent Heaters
by Nov Dubnov, Shahar Artzi, Yousef Farraj, Ronen Gottesman, Shuki Yeshurun and Shlomo Magdassi
Coatings 2025, 15(12), 1487; https://doi.org/10.3390/coatings15121487 - 16 Dec 2025
Viewed by 497
Abstract
Transparent conductive materials (TCMs) are essential for optoelectrical devices ranging from smart windows and defogging films to soft sensors, display technologies, and flexible electronics. Materials, such as indium tin oxide (ITO) and silver nanowires (AgNWs), are commonly used and offer high optical transmittance [...] Read more.
Transparent conductive materials (TCMs) are essential for optoelectrical devices ranging from smart windows and defogging films to soft sensors, display technologies, and flexible electronics. Materials, such as indium tin oxide (ITO) and silver nanowires (AgNWs), are commonly used and offer high optical transmittance and electrical conductivity, but suffer from brittleness, oxidation susceptibility, and require high-cost materials, greatly limiting their use. Carbon nanotube (CNT) networks provide a promising alternative, featuring mechanical compliance, chemical robustness, and scalable processing. This study reports an aqueous ink formulation composed of ultra-long mix-walled carbon nanotubes (UL-CNTs), compatible with the flow coating process, yielding uniform transparent conductive films (TCFs) on polyethylene terephthalate (PET), glass, and polycarbonate (PC). The resulting films exhibit tunable transmittance (85%–88% for single layers; ~57% for three layers at 550 nm) and sheet resistance of 7.5 kΩ/□ to 1.5 kΩ/□ accordingly. These TCFs maintain stable sheet resistance for over 5000 bending cycles and show excellent mechanical durability with negligible effects on heating performance. Post-deposition treatments, including nitric acid vapor doping or flash photonic heating (FPH), further reduce sheet resistance by up to 80% (7.5 kΩ/□ to 1.2 kΩ/□). X-ray photoelectron spectroscopy (XPS) results in reduced surface oxygen content after FPH. The photonic-treated heaters attain ~100 °C within 20 s at 100 V. This scalable, water-based process provides a pathway toward low-cost, flexible, and stretchable devices in a variety of fields, including printed electronics, optoelectronics, and thermal actuators. Full article
Show Figures

Figure 1

9 pages, 3088 KB  
Communication
Hollow Protein Fibers Templated Synthesis of Pt/Pd Nanostructures with Peroxidase-like Activity
by Beizhe Huang, Mengting Fan, Yuhan Li, Ting Zhang and Jianting Zhang
Viruses 2025, 17(12), 1627; https://doi.org/10.3390/v17121627 - 16 Dec 2025
Viewed by 387
Abstract
Supramolecular proteins have emerged as promising templates for guiding metal ion mineralization into well-defined nanomaterials because of their structural versatility and chemical diversity. However, the precise control of metal ion nucleation on the different reactive sites of protein templates remains challenging. In this [...] Read more.
Supramolecular proteins have emerged as promising templates for guiding metal ion mineralization into well-defined nanomaterials because of their structural versatility and chemical diversity. However, the precise control of metal ion nucleation on the different reactive sites of protein templates remains challenging. In this study, a genetically engineered hollow tobacco mosaic virus protein fiber (TMVF) with excellent structural stability was employed to achieve selective mineralization of noble metal nanostructures either on its external surface or within its internal channel. Moreover, the Pt/Pd bimetallic nanowire (NW) was also successfully prepared by co-depositing Pt and Pd on the TMVF. The bimetallic NWs demonstrated a peroxidase-like activity, which enabled their application for cholesterol detection by cooperating with cholesterol oxidase. Full article
(This article belongs to the Special Issue Application of Genetically Engineered Plant Viruses)
Show Figures

Figure 1

12 pages, 17680 KB  
Article
Silver Nanowire-Amorphous Indium Zinc Oxide Composite Electrodes for Transparent Film Heaters
by Xingzhen Yan, Mengying Lyu and Ziyao Niu
Nanomaterials 2025, 15(24), 1883; https://doi.org/10.3390/nano15241883 - 15 Dec 2025
Viewed by 423
Abstract
Transparent conductive films based on silver nanowire meshes have demonstrated significant potential as alternatives to conventional tin-doped indium oxide and fluorine-doped tin oxide thin films. However, these materials feature high junction resistance, poor damp heat (DH) stability, and weak mechanical adhesion to substrates, [...] Read more.
Transparent conductive films based on silver nanowire meshes have demonstrated significant potential as alternatives to conventional tin-doped indium oxide and fluorine-doped tin oxide thin films. However, these materials feature high junction resistance, poor damp heat (DH) stability, and weak mechanical adhesion to substrates, which are critical issues that must be addressed before any practical applications. In this paper, transparent conducting films composed of silver nanowire (AgNW) frameworks and amorphous indium zinc oxide (IZO) fillers were prepared by a spin-coating method. The AgNW-IZO composite films exhibited a higher conductivity and better DH stability and adhesion to substrates than that of their constituent parts alone. The lowest sheet resistance of the composite films was 3.3 ohm/sq with approximately 70% transparency in the visible spectrum. No degradation was observed after 8 months. The excellent DH stability and mechanical adhesion might facilitate applications of these AgNW-IZO composite films in optoelectronic devices. Furthermore, the composite electrode is shown to have potential as a transparent heater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

7 pages, 3422 KB  
Proceeding Paper
Silver Nanostars Spread on Cu(OH)2 Nanowires for SERS Substrates
by José Luis Zamora Navarro, Diana Jiménez Girón, Hector Ariel Renteral Rodríguez, Yuri Okolodkov, Marcos Luna Cervantes, Guillermo Santana Rodríguez, Julián Hernández Torres and Luis Zamora Peredo
Mater. Proc. 2025, 28(1), 7; https://doi.org/10.3390/materproc2025028007 - 11 Dec 2025
Viewed by 272
Abstract
In this work, the plasmonic performance of SERS substrates fabricated by two methods was evaluated: the first method involves simultaneously reducing and depositing silver nanostars (AgNSs) onto copper hydroxide nanowires (Cu(OH)2-NWs), and the second method involves dripping a pre-synthesized and concentrated [...] Read more.
In this work, the plasmonic performance of SERS substrates fabricated by two methods was evaluated: the first method involves simultaneously reducing and depositing silver nanostars (AgNSs) onto copper hydroxide nanowires (Cu(OH)2-NWs), and the second method involves dripping a pre-synthesized and concentrated solution of AgNSs onto the surface of the Cu(OH)2-NWs. The distribution of AgNSs was characterized by SEM and compared with those deposited on glass after reaction times from 1 to 21 h. A more homogeneous AgNS distribution was observed on the nanowires. The SERS performance was evaluated using methylene blue (MB) as a probe molecule. The SERS intensity on substrates with Cu(OH)2-NWs was 10 times better than the substrates with glass. Furthermore, the SERS intensity was tripled by dripping a more concentrated solution of AgNSs. This demonstrates that Cu(OH)2-NWs significantly improve the homogeneity of SERS substrates by increasing the distribution of the metallic nanostructures. Full article
Show Figures

Figure 1

12 pages, 3512 KB  
Article
Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors
by Shubin Zhang, Xiaonan Wang, Juntong Cui, Yanfeng Jiang and Pingping Yu
Nanomaterials 2025, 15(24), 1849; https://doi.org/10.3390/nano15241849 - 10 Dec 2025
Viewed by 393
Abstract
The implementation of photoelectric conversion in photoelectric integrated systems requires the design of photodetectors (PDs) with quick response times and low power consumption. In this work, the self-powered photodetector was prepared by antimony selenide (Sb2Se3) microwires (MW)/Se microtube (MT) [...] Read more.
The implementation of photoelectric conversion in photoelectric integrated systems requires the design of photodetectors (PDs) with quick response times and low power consumption. In this work, the self-powered photodetector was prepared by antimony selenide (Sb2Se3) microwires (MW)/Se microtube (MT) heterojunction by coating Ag nanowires (NW). The incorporation of Ag-NW involves dual enhancement mechanisms. First, the surface plasmon resonance (SPR) effect amplifies the light absorption across UV–vis–NIR spectra, and the conductive networks facilitate the rapid carrier transport. Second, the type-II band alignment between Sb2Se3 and Se synergistically separates photogenerated carriers, while the Ag-NW further suppress the recombination through built-in electric field modulation. The optimized device achieves remarkable responsivity of 122 mA W−1 at 368 nm under zero bias, with a response/recovery time of 8/10 ms, outperforming most reported Sb2Se3-based detectors. The heterostructure provides an effective strategy for developing self-powered photodetectors with broadband spectral adaptability. The switching ratio, responsivity, and detectivity of the Sb2Se3-MW/Se-MT/Ag-NW device increased by 260%, 810%, and 849% at 368 nm over the Sb2Se3-MW/Se-MT device, respectively. These results show that the addition of Ag-NW effectively improves the photoelectric performance of the Sb2Se3-MW/Se-MT heterojunction, providing new possibilities for the application of self-powered optoelectronic devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 6846 KB  
Article
Comparative Role of rGO, AgNWs, and rGO–AgNWs Hybrid Structure in the EMI Shielding Performance of Polyaniline/PCL-Based Flexible Films
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(24), 4693; https://doi.org/10.3390/molecules30244693 - 8 Dec 2025
Viewed by 502
Abstract
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in [...] Read more.
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in situ oxidative polymerization of aniline in the presence of individual or hybrid fillers, followed by their dispersion in the PCL matrix and casting of the corresponding films. Morphological and structural characterization (SEM, Raman, and FTIR spectroscopy) confirmed a uniform PANI coating on both rGO sheets and AgNWs, forming hierarchical 3D conductive networks. Thermal (TGA) and thermomechanical (TMA) analyses revealed enhanced thermal stability and stiffness across all composite systems, driven by strong interfacial interactions and restricted polymer chain mobility. Tmax increased from 437.9 °C for neat PCL to 487.9 °C for PANI/PCL, 480.6 °C for PANI/rGO/PCL, 499.4 °C for PANI/AgNWs/PCL and 495.0 °C for the hybrid PANI/rGO–AgNWs/PCL film. The gradual decrease in contact angle following the order PANI/AgNWs/PCL < PANI/rGO–AgNWs/PCL < PANI/rGO/PCL < PANI/PCL < PCL clearly indicates a systematic increase in surface polarity and surface energy with the incorporation of conductive nanofillers. Electrical conductivity reached 60.8 S cm−1 for PANI/rGO/PCL, gradually decreasing to 27.4 S cm−1 for PANI/AgNWs/PCL and 22.1 S cm−1 for the quaternary hybrid film. The EMI shielding effectiveness (SET) measurements in the X-band (8–12 GHz) demonstrated that the PANI/rGO/PCL film exhibited the highest attenuation (~7.2 dB). In contrast, the incorporation of AgNWs partially disrupted the conductive network, reducing SE to ~5–6 dB. The findings highlight the distinct and synergistic roles of 1D and 2D fillers in modulating the electrical, thermal, and mechanical properties of biodegradable polymer films, offering a sustainable route toward lightweight, flexible EMI shielding materials. Full article
Show Figures

Figure 1

22 pages, 4062 KB  
Article
Laser Truncation of Silicon Nanowires Fabricated by Ag-Assisted Chemical Etching for Reliable Electrode Deposition in Solar Cells
by Grażyna Kulesza-Matlak, Ewa Sarna, Tomasz Kukulski, Anna Sypień, Mariusz Kuglarz and Kazimierz Drabczyk
Appl. Sci. 2025, 15(24), 12873; https://doi.org/10.3390/app152412873 - 5 Dec 2025
Viewed by 308
Abstract
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the [...] Read more.
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the nanowire tips, leading to delamination, inhomogeneous coverage, and high contact resistance. In this work, we introduce a maskless laser-based truncation technique that selectively shortens MACE-derived SiNWs to controlled residual heights of 300–500 nm exclusively within the regions intended for electrode formation, while preserving the full nanowire morphology in active areas. A detailed parametric study of laser power, scanning speed, and pulse repetition frequency allowed the identification of an optimal processing window enabling controlled tip melting without damaging the nanowire roots or the crystalline silicon substrate. High-resolution SEM imaging confirms uniform planarization, well-preserved structural integrity, and the absence of subsurface defects in the laser-processed tracks. Optical reflectance measurements further demonstrate that introducing 2% and 5% truncated surface fractions—corresponding to the minimum and maximum metallized front-grid coverage in industrial Si solar cells—results in only a minimal reflectance increase, preserving the advantageous the light-trapping behavior of the SiNW texture. The proposed laser truncation approach provides a clean, scalable, and industrially compatible route toward creating electrode-ready surfaces on nanostructured silicon, enabling reliable metallization while maintaining optical performance. This method offers strong potential for integration into silicon photovoltaics, photodetectors, and nanoscale electronic and sensing devices. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

15 pages, 2807 KB  
Article
Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films
by Jiaqi Shan, Ye Hong, Kaixuan Cui, Yifan Xiao and Xingzhong Guo
Materials 2025, 18(23), 5456; https://doi.org/10.3390/ma18235456 - 3 Dec 2025
Viewed by 466
Abstract
Silver nanowire transparent conductive films (AgNW TCFs), as a promising new generation of transparent electrode materials poised to replace ITO, have long been plagued by inadequate optoelectronic performance. Herein, flash lamp sintering was used to facilitate rapid welding of TCFs, and the effects [...] Read more.
Silver nanowire transparent conductive films (AgNW TCFs), as a promising new generation of transparent electrode materials poised to replace ITO, have long been plagued by inadequate optoelectronic performance. Herein, flash lamp sintering was used to facilitate rapid welding of TCFs, and the effects of process parameters and TCFs’ characteristics on the sintering outcomes were investigated. The leveraging of millisecond-scale intense light pulses of flash lamp sintering can achieve the rapid welding of AgNWs, thereby enhancing the optoelectronic performance of TCFs. The TCFs fabricated from 30 nm diameter AgNWs with an initial sheet resistance of 111 Ω/sq exhibited a reduced sheet resistance of 57 Ω/sq post-sintering, while maintaining a transmittance of 93.3%. The quality factor increased from 4.56 × 10−3 to 9.09 × 10−3 Ω−1, and the surface roughness decreased from 6.12 to 5.19 nm after sintering. This work holds significant promise for advancing the continuous production of AgNW TCFs using flash lamp sintering technology, potentially paving the way for high-quality, low-cost, and rapid manufacturing of AgNW TCFs. Full article
(This article belongs to the Special Issue Advanced Thin Films: Structural, Optical, and Electrical Properties)
Show Figures

Figure 1

34 pages, 4097 KB  
Review
Porous Silicon and Silicon Nanowires for On-Chip Supercapacitor Electrodes: A Review
by Daria M. Sedlovets
Nanomaterials 2025, 15(23), 1826; https://doi.org/10.3390/nano15231826 - 2 Dec 2025
Cited by 1 | Viewed by 697
Abstract
Finding efficient ways to store energy is a current topic both at the macro level and at the microscale. As silicon plates are the main platform for the integration of microelectronic devices, it is reasonable to use the silicon structures as the active [...] Read more.
Finding efficient ways to store energy is a current topic both at the macro level and at the microscale. As silicon plates are the main platform for the integration of microelectronic devices, it is reasonable to use the silicon structures as the active materials for on-chip microcapacitors. Porous silicon (pSi) and silicon nanowires (SiNWs) are ideal candidates for planar electrodes because these layers are directly embedded into the silicon wafer. The review contains a brief summary of the formation features of pSi/SiNW and their electrochemical performance. The structural characteristics of the silicon matrix (depth and morphology) that influence capacitive electrode properties are examined comprehensively for the first time. Particular attention is given to additional coatings on the pore/wire surface. Various ways of depositing metal, carbon, and polymer layers are considered in detail. Different approaches to filling the silicon matrix are explored. Focusing on pSi/SiNWs coatings allows us to identify the effect of the structure, crystallinity, and methods of additional layer deposition on capacitance, cycling stability, and charge transport of modified electrodes. Although fabrication processes for planar microcapacitors based on pSi/SiNWs are currently underdeveloped, the specific requirements and possible challenges of on-chip integration are discussed and proposed. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 2234 KB  
Article
Silver Nanowires with Efficient Peroxidase-Emulating Activity for Colorimetric Detection of Hydroquinone in Various Matrices
by Huda Salem AlSalem, Sara Naif Alharbi, Rabeea D. Abdel-Rahim, Adham M. Nagiub and Mohamed A. Abdel-Lateef
Chemosensors 2025, 13(12), 415; https://doi.org/10.3390/chemosensors13120415 - 1 Dec 2025
Viewed by 498
Abstract
Hydroquinone is a phenolic compound widely used in industry and cosmetics, yet its toxicity has raised global environmental and health concerns. It has been listed by both the US EPA and the European Union as a priority contaminant for monitoring in aquatic systems. [...] Read more.
Hydroquinone is a phenolic compound widely used in industry and cosmetics, yet its toxicity has raised global environmental and health concerns. It has been listed by both the US EPA and the European Union as a priority contaminant for monitoring in aquatic systems. In this proof-of-concept (PoC) study, silver nanowires (Ag-NWs) were synthesized via a modified one-pot polyol methodology and characterized by various techniques, including TEM, EDX, SEM, XRD, and UV–vis spectroscopy. The Ag-NWs exhibited peroxidase-like activity, catalyzing the oxidation of TMB/H2O2 to yield a blue product. This activity was effectively suppressed by hydroquinone, forming the basis of a simple colorimetric sensing approach. The PoC method showed linearity over 0.08–0.8 µg/mL with a LOD of 26 ng/mL. Furthermore, it was preliminarily applied to tap water, river water, and medicated cream samples, demonstrating acceptable recovery in preliminary applications. As a PoC, the study establishes the feasibility of the Ag-NWs–TMB–H2O2 system for hydroquinone detection, while recognizing that comprehensive reproducibility assessment and temporal stability evaluation are required in future work. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Figure 1

12 pages, 2727 KB  
Article
A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays
by Ke Jin, Xin Yan, Yao Li and Xia Zhang
Sensors 2025, 25(23), 7308; https://doi.org/10.3390/s25237308 - 1 Dec 2025
Viewed by 508
Abstract
A photovoltaic-integrated broadband photodetector based on vertically-stacked lateral-aligned III–V nanowire arrays is proposed and investigated. The staggered arrangement configuration drastically reduces the competition between solar cell and photodetector that is difficult to avoid in vertically-stacked planar structures, which enables broadband strong absorption. The [...] Read more.
A photovoltaic-integrated broadband photodetector based on vertically-stacked lateral-aligned III–V nanowire arrays is proposed and investigated. The staggered arrangement configuration drastically reduces the competition between solar cell and photodetector that is difficult to avoid in vertically-stacked planar structures, which enables broadband strong absorption. The lower GaAs nanowires (NWs) act as Mie scattering centers, which scatter the incident light passing through the gaps back to the upper layer, enhancing the absorption of InAs NWs over a wide wavelength range from the ultraviolet to the infrared. Meanwhile, the light trapping effect of the upper InAs nanowires improves the absorption of lower GaAs NWs. At a near-infrared wavelength of 1400 nm, the photovoltaic-integrated InAs nanowire photodetector exhibits a photocurrent density of 168.83 mA/cm2 and responsivity of 0.168 A/W, 90% and 93% higher than the single layer InAs nanowires. The conversion efficiency of the GaAs nanowire solar cell is also improved after integration. This work may pave the way for the development of self-powered miniaturized broadband photodetectors. Full article
Show Figures

Figure 1

Back to TopTop