Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (116)

Search Parameters:
Keywords = nanostructured titanium dioxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 499
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

23 pages, 3592 KiB  
Article
Enhancing Optical Properties and Cost-Effectiveness of Sol–Gel TiO2 Nanomaterials Through Experimental Design
by Felipe Anchieta e Silva, Timóteo Adorno de Almeida, Argimiro R. Secchi, José Carlos Pinto and Thenner Silva Rodrigues
Processes 2025, 13(7), 1988; https://doi.org/10.3390/pr13071988 - 24 Jun 2025
Viewed by 484
Abstract
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental [...] Read more.
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental applications due to its high stability, tunable band gap, and strong light absorption. The sol–gel method offers a scalable, cost-effective route for producing nanostructured TiO2, although the precise control over particle morphology remains challenging. For this reason, in the present work, a statistical design of experiments (DOE) approach is employed to systematically refine reaction conditions through the manipulation of precursor concentrations, solvent ratios, and reaction volume. The experimental results obtained indicate that acetic acid is a key catalyst and stabilizing agent, significantly improving nucleation control and particle formation. Moreover, it is also shown that solvent dilution, particularly with acetic acid, leads to the formation of TiO2 nanorods with enhanced optical properties. Additionally, scanning electron micrographs revealed that controlled synthesis conditions can reduce the particle size distribution and improve structural uniformity. Moreover, X-ray diffraction analyses confirmed the formation of a pure anatase crystalline phase, while ultraviolet–visible spectroscopy analyses indicated the existence of an optimal band gap for photocatalytic applications. Finally, the cost analysis showed that acetic acid-assisted synthesis can reduce production costs and simultaneously maintain high optical properties. Therefore, the present study highlights that proper manipulation and control of reaction conditions during sol–gel syntheses can allow the manufacture of high-performance TiO2 nanomaterials for advanced technological applications, also providing a foundation for the development of cost-effective materials. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Figure 1

20 pages, 34413 KiB  
Article
Fabrication of a Novel Silica–Alumina-Based Photocatalyst Incorporating Carbon Nanotubes and Nanofiber Nanostructures Using an Unconventional Technique for Light-Driven Water Purification
by Osama Saber, Abdullah Alshehab, Nagih M. Shaalan, Asmaa M. Hegazy, Fatimah K. Aljasem and Aya Osama
Catalysts 2025, 15(5), 452; https://doi.org/10.3390/catal15050452 - 6 May 2025
Viewed by 518
Abstract
The advancement of optical materials has garnered significant interest from the global scientific community in the pursuit of efficient photocatalysts for the purification of water using light. This challenge, which cannot be addressed using traditional methods, is tackled in the present study utilizing [...] Read more.
The advancement of optical materials has garnered significant interest from the global scientific community in the pursuit of efficient photocatalysts for the purification of water using light. This challenge, which cannot be addressed using traditional methods, is tackled in the present study utilizing unconventional approaches. This study presents the fabrication of an effective photocatalyst using an unconventional approach that employs explosive reactions. This method successfully produces 3D nanostructures composed of carbon nanotubes (CNTs), carbon nanofibers (CNFs), and silica–alumina nanoparticles at temperatures below 270 °C. Gold-supported silica–alumina–CNT–CNF nanostructures were synthesized and characterized using XRD, TEM, SEM, and EDX, in addition to mapping images. To study and determine the photoactivity of these produced nanostructures, two well-known photocatalysts—titanium dioxide and zinc oxide—were synthesized at the nanoscale for comparison. The results showed that the presence of CNTs and CNFs significantly reduced the band gap energy from 5.5 eV to 1.65 eV and 3.65 eV, respectively, after modifying the silica–alumina structure. In addition, complete degradation of green dye was achieved after 35 min of light exposure using the modified silica–alumina structure. Additionally, the surface properties of the modified silica–alumina had a positive role in accelerating the photocatalytic decomposition of the green dye NGB. A kinetic study confirmed that the modified silica–alumina functions as a promising additive for optical applications, accelerating the photocatalytic degradation of NGB to a rate three times faster than that of the prepared titanium dioxide and six times that of the prepared zinc oxide. Full article
Show Figures

Figure 1

21 pages, 6037 KiB  
Article
Structural and Spectroscopic Characterization of TiO2 Nanocrystalline Materials Synthesized by Different Methods
by Alise Podelinska, Elina Neilande, Viktorija Pankratova, Vera Serga, Hanna Bandarenka, Aliaksandr Burko, Sergei Piskunov, Vladimir A. Pankratov, Anatolijs Sarakovskis, Anatoli I. Popov and Dmitry V. Bocharov
Nanomaterials 2025, 15(7), 498; https://doi.org/10.3390/nano15070498 - 26 Mar 2025
Cited by 2 | Viewed by 797
Abstract
Nanocrystalline materials based on titanium dioxide possess unique properties, including photocatalytic and antibacterial activities. Despite many approaches have already been utilized to fabricate and characterize pure and doped TiO2, a systematic description of its nanostructured samples depending on the synthesis method [...] Read more.
Nanocrystalline materials based on titanium dioxide possess unique properties, including photocatalytic and antibacterial activities. Despite many approaches have already been utilized to fabricate and characterize pure and doped TiO2, a systematic description of its nanostructured samples depending on the synthesis method has not been presented yet. In this study, we shed new light on the process–structure relationships of nanocrystalline TiO2-based powders fabricated by extraction–pyrolytic, hydrothermal, and sol–gel techniques. The comprehensive analysis of the fabricated nanocrystalline TiO2-based powders with different anatase/rutile phase content is performed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The hydrothermal and sol–gel methods are also used to grow TiO2 particles doped with Cu and Er-Yb. The correlation between synthesis parameters (pyrolysis and annealing temperature) and properties of the produced materials is studied. Particular attention is paid to Raman spectroscopy and the detailed comparison of our obtained data with existing experimental and theoretical studies. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 8542 KiB  
Article
Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior
by Essam M. Abdel-Fattah and Ali A. Azab
J. Compos. Sci. 2025, 9(4), 156; https://doi.org/10.3390/jcs9040156 - 25 Mar 2025
Viewed by 532
Abstract
In this study, silver nanoparticles (Ag NPs) were synthesized on the surface of rutile-phase titanium dioxide (R-TiO2) using a plasma-assisted technique. Comprehensive analyses were conducted to investigate the structural, morphological, optical, and electrical properties of the synthesized nanocomposites. Transmission electron microscopy [...] Read more.
In this study, silver nanoparticles (Ag NPs) were synthesized on the surface of rutile-phase titanium dioxide (R-TiO2) using a plasma-assisted technique. Comprehensive analyses were conducted to investigate the structural, morphological, optical, and electrical properties of the synthesized nanocomposites. Transmission electron microscopy (TEM) images revealed the uniform decoration of Ag NPs (average size: 29.8 nm) on the R-TiO2 surface. X-ray diffraction (XRD) confirmed the polycrystalline nature of the samples, with decreased diffraction peak intensity indicating reduced crystallinity due to Ag decoration. The Williamson–Hall analysis showed increased crystallite size and reduced tensile strain, suggesting grain growth and stress relief. Raman spectroscopy revealed quenching and broadening of R-TiO2 vibrational modes, likely due to increased oxygen vacancies. X-ray photoelectron spectroscopy (XPS) confirmed successful plasma-assisted deposition and the coexistence of Ag0 and Ag+ states, enhancing surface reactivity. UV-Vis spectroscopy demonstrated enhanced light absorption across the spectral range, attributed to localized surface plasmon resonance (LSPR), and a reduced optical bandgap. Dielectric properties, including dielectric constants, loss factor, and AC conductivity, were evaluated across frequencies (4–8 MHz) and temperatures (20–240 °C). The AC conductivity results indicated correlated barrier hopping (CBH) and overlapping large polaron tunneling (OLPT) as the primary conduction mechanisms. Composition-dependent dielectric behavior was interpreted through the Coulomb blockade effect. These findings suggest the potential of plasma assisted Ag NP-decorated R-TiO2 nanostructures for photocatalysis, sensor and specific electro electrochemical systems applications. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

36 pages, 2131 KiB  
Review
Catalytic Properties and Structural Optimization of Solid Transesterification Catalysts to Enhance the Efficiency of Biodiesel Synthesis
by Xiangyang Li, Siwei Zhang, Xunxiang Jia, Weiji Li and Jiliang Song
Catalysts 2025, 15(3), 239; https://doi.org/10.3390/catal15030239 - 1 Mar 2025
Viewed by 2505
Abstract
The transition to sustainable energy has given biodiesel prominence as a renewable alternative to diesel. This review highlights the development and optimization of solid transesterification catalysts, contributing greatly to the efficiency of biodiesel synthesis. These heterogeneous catalysts are constituted of titanium-, zinc-, and [...] Read more.
The transition to sustainable energy has given biodiesel prominence as a renewable alternative to diesel. This review highlights the development and optimization of solid transesterification catalysts, contributing greatly to the efficiency of biodiesel synthesis. These heterogeneous catalysts are constituted of titanium-, zinc-, and bio-based systems and significant advantages such as reusability, thermal stability, and the ability to be synthesized from low-grade feedstocks. Recent advancements in structural optimization, with nano-structured titanium dioxide having the potential of yielding higher biodiesel production up to a yield of 96–98% within 5–7 cycles, render improved stability and catalytic performance. Several characterization techniques, such as the Brunauer–Emmett–Teller method, X-ray diffraction, and temperature-programmed desorption, are instrumental in the characterization of these catalysts and their effective design. However, despite their substantial promise, there are still problems to be dealt with in the large-scale production, regeneration, and service life stability of these catalysts. This account collates recent innovations, analytical mechanisms, and prospective directions which elucidate the potential of solid transesterification catalysts in furthering biodiesel technology and the sustainable production of chemicals. Full article
Show Figures

Figure 1

17 pages, 5708 KiB  
Article
Boosting the Optical Activity of Titanium Oxide Through Conversion from Nanoplates to Nanotubes and Nanoparticle-Supported Nanolayers
by Adil Alshoaibi
Crystals 2025, 15(2), 187; https://doi.org/10.3390/cryst15020187 - 16 Feb 2025
Viewed by 650
Abstract
The nano-architecture of titanium oxide is a key element of a wide range of applications, mainly optical and catalytic activities. Therefore, the current study focuses on engineering and designing three interesting nanostructures of titanium oxides: nanoplates, nanotubes, and nanoparticle-supported nanolayers. The nanoplates of [...] Read more.
The nano-architecture of titanium oxide is a key element of a wide range of applications, mainly optical and catalytic activities. Therefore, the current study focuses on engineering and designing three interesting nanostructures of titanium oxides: nanoplates, nanotubes, and nanoparticle-supported nanolayers. The nanoplates of titanium oxides were prepared and confirmed by TEM images, X-ray diffraction, and EDX analysis. These nanoplates have an anatase phase, with the distance across the corners in the range of 15 nm. These nanoplates were modified and developed through a rolling process with sodium doping to generate the Na-doped TiO2 nanotubes. These nanotubes were observed by TEM images and X-ray diffraction. In addition, the doping process of titanium oxides with sodium was confirmed by EDX analysis. A novel nano-architecture of titanium oxide was designed by supporting titanium oxide nanoparticles over Zn/Al nanolayers. The optical properties and activity of titanium oxides with the different morphologies indicated that titanium oxides became a highly photo-active photocatalyst after conversion to nanotubes. This finding was observed through the reduction in the band gap energy to 2.7 eV. Additionally, after 37 min of exposure to UV light, the titanium oxide nanotubes totally broke down and transformed the green dye of NGB into carbon dioxide and water. Furthermore, the kinetic analysis verified that the green dyes’ degradation was expedited by the high activity of nanotubes. Ultimately, based on these findings, it was possible to design an efficient photocatalyst for water purification by converting nanoplates into nanotubes, doping titanium sites with sodium ions, and creating new active sites for titanium oxides through defect-induced super radical formation. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

12 pages, 2708 KiB  
Article
TiO2 Nanosphere/MoSe2 Nanosheet-Based Heterojunction Gas Sensor for High-Sensitivity Sulfur Dioxide Detection
by Lanjuan Zhou, Chang Niu, Tian Wang, Hao Zhang, Gongao Jiao and Dongzhi Zhang
Nanomaterials 2025, 15(1), 25; https://doi.org/10.3390/nano15010025 - 27 Dec 2024
Cited by 2 | Viewed by 1158
Abstract
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO2) demonstrates significant potential for application in SO2 gas detection. [...] Read more.
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO2) demonstrates significant potential for application in SO2 gas detection. However, the performance of pure TiO2 is limited. In this study, TiO2 nanospheres and MoSe2 nanosheets were synthesized using a hydrothermal method, and the gas-sensing properties of TiO2/MoSe2 nanostructures for SO2 detection were investigated. The TiO2/MoSe2 composites (with a TiO2-to-MoSe2 volume ratio of 2:1) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The TiO2/MoSe2 sensor exhibited high sensitivity to SO2; the response to 100 ppm of SO2 reached as high as 59.3, with a significantly shorter response and recovery time (15 s/13 s), as well as excellent repeatability, selectivity, and long-term stability. The experimental results suggest that the enhanced SO2 adsorption capacity of the TiO2/MoSe2 composite can be attributed to the formation of an n-n heterojunction and the unique microstructural features of TiO2/MoSe2. Therefore, the TiO2/MoSe2 sensor represents a promising candidate for rapid SO2 detection, providing a theoretical foundation for the development and application of high-performance SO2 sensors. Full article
Show Figures

Figure 1

13 pages, 2646 KiB  
Article
UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures
by Yongqiang Fu and Marcin Janczarek
Molecules 2025, 30(1), 23; https://doi.org/10.3390/molecules30010023 - 25 Dec 2024
Cited by 2 | Viewed by 1135
Abstract
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO2 ratios on photocatalytic activity under UV and visible light [...] Read more.
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO2 ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity. Therefore, colorless phenol was used instead of dyes in this study to clarify the real visible light-induced photocatalytic activity of polyaniline/TiO2 composites. This publication also includes a discussion of whether materials derived from bulk (non-nanostructured) polyaniline and TiO2 by the standard in situ oxidative polymerization method are suitable candidates for promising photocatalytic materials. The evaluation of photocatalytic activity was performed in both UV and visible light systems. X-ray diffraction and UV-Vis diffuse reflectance spectroscopy methods were applied to characterize the obtained samples. Obtained polyaniline (pure and in composites) was identified as emeraldine salt. In the UV system, none of the prepared samples with different polyaniline–titania ratios had activity better than reference P25 titania. It has been observed that the presence of polyaniline adversely affects the photocatalytic properties, as the polyaniline layer covering the titania surface can shield the UV light transmission by blocking the contact between the TiO2 surface and organic molecules. In the case of using visible light, no synergies have been observed between polyaniline and titania either. The photodegradation efficiencies of the most active samples were similar to those of pure polyaniline. In conclusion, in order to obtain efficient polyaniline/titania photocatalysts active in UV and/or visible light, it is necessary to take into account the morphological and surface properties of both components. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry, 2nd Edition)
Show Figures

Figure 1

20 pages, 12643 KiB  
Article
Titanium Dioxide 1D Nanostructures as Photocatalysts for Degradation and Removal of Pollutants in Water
by Dora María Frías Márquez, José Ángel Méndez González, Rosendo López González, Cinthia García Mendoza, Francisco Javier Tzompantzi Morales, Patricia Quintana Owen and Mayra Angélica Alvarez Lemus
Catalysts 2024, 14(12), 896; https://doi.org/10.3390/catal14120896 - 6 Dec 2024
Cited by 1 | Viewed by 1311
Abstract
The oxidation of organic pollutants in water is the most reported application of a Titanium dioxide (TiO2) photocatalyst. During the last decade, photoreduction with TiO2 has also been explored but simultaneous capabilities for unmodified TiO2 have not been reported [...] Read more.
The oxidation of organic pollutants in water is the most reported application of a Titanium dioxide (TiO2) photocatalyst. During the last decade, photoreduction with TiO2 has also been explored but simultaneous capabilities for unmodified TiO2 have not been reported yet. Here, we reported on the fabrication of TiO2 nanorods using hydrothermal treatment and compared the effect of two different TiO2 powders as the starting material: P-25 and TiO2 sol–gel (N-P25 and N-TiO2, respectively) which were further calcined at 400 °C (N-P25-400 and N-TiO2-400). XPS and XRD analyses confirmed the presence of sodium and hydrogen titanates in N-P25, but also an anatase structure for N-TiO2. The specific surface area of the calcined samples decreased compared to the dried samples. Photocatalytic activity was evaluated using phenol and methyl orange for degradation, whereas 4-nitrophenol was used for photoreduction. Irradiation of the suspension was performed under UV light (λ = 254 nm). The results demonstrated that the nanorods calcined at 400 °C were more photoactive since methyl orange (20 ppm) degradation reached 86% after 2 h, when N-TiO2-400 was used. On the other hand, phenol (20 ppm) was completely degraded by the presence of N-P25-400 after 2 h. Photoreduction of 4-nitrophenol (5 ppm) was achieved by the N-TiO2-400 during the same period. These results demonstrate that the presence of Ti3+ and the source of TiO2 have a significant effect on the photocatalytic activity of TiO2 nanorods. Additionally, the removal of methylene blue (20 ppm) was performed, demonstrating that N-TiO2 exhibited a high adsorption capacity for this dye. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

24 pages, 1639 KiB  
Review
Titanium Dioxide Nanomaterials: Progress in Synthesis and Application in Drug Delivery
by Fanjiao Zuo, Yameng Zhu, Tiantian Wu, Caixia Li, Yang Liu, Xiwei Wu, Jinyue Ma, Kaili Zhang, Huizi Ouyang, Xilong Qiu and Jun He
Pharmaceutics 2024, 16(9), 1214; https://doi.org/10.3390/pharmaceutics16091214 - 16 Sep 2024
Cited by 5 | Viewed by 3323
Abstract
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and [...] Read more.
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and easy functionalization. TiO2 with special nanostructures can be used as delivery vehicles for drugs, genes and antigens for various therapeutic options. The exploration of TiO2-based drug delivery systems shows great promise for translating nanotechnology into clinical applications; Methods: Comprehensive data on titanium dioxide were collected from reputable online databases including PubMed, GreenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration; Results: In this review, we discuss the synthesis pathways and functionalization strategies of TiO2. Recent advances of TiO2 as a drug delivery system, including sustained and controlled drug release delivery systems were introduced. Rigorous long-term systematic toxicity assessment is an extremely critical step in application to the clinic, and toxicity is still a problem that needs to be closely monitored; Conclusions: Despite the great progress made in TiO2-based smart systems, there is still a great potential for development. Future research may focus on developing dual-reaction delivery systems and single-reaction delivery systems like redox and enzyme reactions. Undertaking thorough in vivo investigations is necessary prior to initiating human clinical trials. The high versatility of these smart drug delivery systems will drive the development of novel nanomedicines for personalized treatment and diagnosis of many diseases with poor prognosis. Full article
Show Figures

Figure 1

14 pages, 2360 KiB  
Article
Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing
by Mutcha Shanmukha Rao, Benadict Rakesh, Gunendra Prasad Ojha, Ramasamy Sakthivel, Bishweshwar Pant and Kamatchi Jothiramalingam Sankaran
Molecules 2024, 29(17), 4063; https://doi.org/10.3390/molecules29174063 - 27 Aug 2024
Cited by 4 | Viewed by 1438
Abstract
The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as [...] Read more.
The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as promising candidates for effective photocatalytic dye degradation and gas sensing applications owing to their unique physicochemical properties. This study investigates the development of a photocatalyst and a liquefied petroleum gas (LPG) sensor using hydrothermally synthesized globosa-like TiO2 nanostructures (GTNs). The synthesized GTNs are then evaluated to photocatalytically degrade methylene blue dye, resulting in an outstanding photocatalytic activity of 91% degradation within 160 min under UV light irradiation. Furthermore, these nanostructures are utilized to sense liquefied petroleum gas, which attains a superior sensitivity of 7.3% with high response and recovery times and good reproducibility. This facile and cost-effective hydrothermal method of fabricating TiO2 nanostructures opens a new avenue in photocatalytic dye degradation and gas sensing applications. Full article
Show Figures

Graphical abstract

22 pages, 12391 KiB  
Article
Laser-Assisted Preparation of TiO2/Carbon/Ag Nanocomposite for Degradation of Organic Pollutants
by Shahin Almasi Nezhad, Babak Jaleh, Elham Darabi and Davoud Dorranian
Materials 2024, 17(16), 4118; https://doi.org/10.3390/ma17164118 - 20 Aug 2024
Cited by 3 | Viewed by 1629
Abstract
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective [...] Read more.
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective method for the production of a novel nanocatalyst based on lignin-derived carbon, titanium dioxide nanoparticles, and Ag particles (TiO2/C/Ag) is described. The preparation of carbon and Ag particles (in sub-micro and nano size) was carried out by laser ablation in air. The nanocomposite was synthesized using a facile magnetic stirrer of TiO2, C, and Ag. According to characterization methods, a carbon nanostructure was successfully synthesized through the laser irradiation of lignin. According to scanning electron microscope images, spherical Ag particles were agglomerated over the nanocomposite. The catalytic activities of the TiO2/C/Ag nanocomposite were tested for the decolorization of methylene blue (MB) and Congo red (CR), employing NaBH4 in a water-based solution at 25 °C. After adding fresh NaBH4 to the mixture of nanocomposite and dyes, both UV absorption peaks of MB and CR completely disappeared after 10 s and 4 min, respectively. The catalytic activity of the TiO2/C/Ag nanocomposite was also examined for the reduction of 4-nitrophenol (4-NP) using a NaBH4 reducing agent, suggesting the complete reduction of 4-NP to 4-aminophenol (4-AP) after 2.30 min. This shows excellent catalytic behavior of the prepared nanocomposite in the reduction of organic pollutants. Full article
Show Figures

Figure 1

22 pages, 4842 KiB  
Article
Morphology-Dependent Photocatalytic Activity of Nanostructured Titanium Dioxide Coatings with Silver Nanoparticles
by Nasir Shakeel, Ireneusz Piwoński, Aneta Kisielewska, Maciej Krzywiecki, Damian Batory and Michał Cichomski
Int. J. Mol. Sci. 2024, 25(16), 8824; https://doi.org/10.3390/ijms25168824 - 13 Aug 2024
Viewed by 1583
Abstract
This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol–gel dip-coating deposition [...] Read more.
This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol–gel dip-coating deposition combined with hydrothermal crystal growth. Further modification with AgNPs was achieved through the photoreduction of Ag+ ions under UV illumination. The investigation explores the impact of different growth factors on the morphological development of TiO2 nanostructures by modulating (i) the chemical composition, the water:acid ratio, (ii) the precursor concentration involved in the hydrothermal process, and (iii) the duration of the hydrothermal reaction. Morphological characteristics, including the length, diameter, and nanorod density of the nanostructures, were analyzed using scanning electron microscope (SEM). The chemical states were determined through use of the X-ray photoelectron spectroscopy (XPS) technique, while phase composition and crystalline structure analysis was performed using the Grazing Incidence X-ray Diffraction (GIXRD) method. The results indicate that various nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) can be obtained by modifying these parameters. The photocatalytic efficiency of these nanostructures and Ag-coated nanostructures was assessed by measuring the degradation of the organic dye rhodamine B (RhB) under both ultraviolet (UV) irradiation and visible light. The results clearly show that UV light causes the RhB solution to lose its color, whereas under visible light RhB changes into rhodamine 110, indicating a successful photocatalytic transformation. The nanoball-like structures’ modification with the active metal silver (TNRs 4 Ag) exhibited high photocatalytic efficiency under both ultraviolet (UV) and visible light for different chemical composition parameters. The nanorod structure (TNRs 2 Ag) is more efficient under UV, but under visible-light photocatalyst, the TNRs 6 Ag (dense nanorods) sample is more effective. Full article
(This article belongs to the Special Issue Nanomaterials in Novel Thin Films and Coatings)
Show Figures

Figure 1

10 pages, 274 KiB  
Article
Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications
by Nefeli Lagopati, Georgios P. Trachanas and Haris Doukas
Molecules 2024, 29(16), 3726; https://doi.org/10.3390/molecules29163726 - 6 Aug 2024
Cited by 3 | Viewed by 1201
Abstract
Nanomaterials are widely used in several biomedical and environmental applications, due to their ideal properties. However, the synthetic and characterization procedure requires significant costs and has a negative environmental impact. Various methods are available in order to control the pre-synthesis design of the [...] Read more.
Nanomaterials are widely used in several biomedical and environmental applications, due to their ideal properties. However, the synthetic and characterization procedure requires significant costs and has a negative environmental impact. Various methods are available in order to control the pre-synthesis design of the produced materials, predicting their behavior and minimizing the series of experiments. Multi-Criteria Decision-Making is proposed in this study in order to determine the best combination of the physicochemical parameters and to define the best alternative among fifteen different samples of nanostructured titanium dioxide. In particular, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method was applied to achieve a final ranking of the available alternatives by avoiding several of the trials that would follow testing the biological effect and the photocatalytic degradation of organic pollutants. Thus, this approach helps us to stay environmentally and ethically correct, saving time, money, and energy and also providing an optimization of the nanomaterials that are developed. Full article
Back to TopTop