Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications
Abstract
:1. Introduction
2. Results
Data Numerical Results
3. Discussion
4. Materials and Methods
4.1. Data
Nanoparticle Type | Size (nm) | Rh (nm) | Zeta Potential (mV) | Crystal Phase | SSA (m2/g) | Refs. |
---|---|---|---|---|---|---|
NP1 | 10 | 669 | 16.9 | anatase | 154 | [38] |
NP2 | 20 | 307 | 32.3 | anatase/rutile (80/20) | 73 | [38] |
NP3 | 100 | 349 | 19.1 | anatase | 15 | [38] |
NP4 | 15 | 211.4 | 13.2 | anatase | 146 | [39] |
NP5 | 30 | 969.3 | 13.8 | anatase | 61 | [39] |
NP6 | 30 | 1049 | 12.3 | anatase | 61 | [39] |
NP7 | 21 | 256 | 15.2 | anatase/rutile (80/20) | 55 | [39] |
NP8 | 20 | 165 | 18.7 | anatase/rutile (80/20) | 50 | [40] |
NP9 | 6 | 67 | 16 | anatase | 125 | [41] |
NP10 | 16 | 150 | 18 | anatase/rutile (80/20) | 55 | [41] |
NP11 | 26 | 190 | 30 | anatase/rutile (80/20) | 30 | [41] |
NP12 | 38 | 200 | 35 | anatase/rutile (80/20) | 22 | [41] |
NP13 | 53 | 220 | 28 | anatase/rutile (80/20) | 18 | [41] |
NP14 | 104 | 490 | 40 | rutile | 12 | [41] |
NP15 | 25 | 111.3 | 16.7 | anatase | 220 | [1] |
4.2. Methodological Framework
- Decision table normalization, according to Equation (1):
- 2.
- Decision table weighting, based on Equation (2):
- 3.
- Determination of the positive and the negative ideal solution:
- 4.
- Calculate the distance from the positive and the negative ideal solution, defined as follows through Equations (3) and (4):
- 5.
- Relative closeness calculation, based on Equation (5):
- 6.
- Rank the alternatives based on values (the higher the better).
- Definition of the criteria that are included in the study and the alternatives of the decision-making problem.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lagopati, N.; Tsilibary, E.P.; Falaras, P.; Papazafiri, P.; Pavlatou, E.A.; Kotsopoulou, E.; Kitsiou, P. Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int. J. Nanomed. 2014, 9, 3219–3230. [Google Scholar] [CrossRef]
- Papadopoulou-Fermeli, N.; Lagopati, N.; Gatou, M.-A.; Pavlatou, E.A. Biocompatible PANI-Encapsulated Chemically Modified Nano-TiO2 Particles for Visible-Light Photocatalytic Applications. Nanomaterials 2024, 14, 642. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.M.; Hassan, A.I. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023, 15, 10891. [Google Scholar] [CrossRef]
- Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- Palmieri, M.; Lasserre, B.; Marino, D.; Quaranta, L.; Raffi, M.; Ranalli, G. The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability 2023, 15, 5616. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Schröder, S.K.; Buhl, E.M.; Weiskirchen, R. A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells 2023, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In Vitro Methods for Assessing Nanoparticle Toxicity. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1894, pp. 1–29. [Google Scholar] [CrossRef]
- Krauss, A. Redefining the scientific method: As the use of sophisticated scientific methods that extend our mind. PNAS Nexus 2024, 3, 112. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Infectious Diseases Society of America (IDSA). Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57 (Suppl. 3), S139–S170. [Google Scholar] [CrossRef] [PubMed]
- Tsoukleris, D.S.; Gatou, M.-A.; Lagopati, N.; Sygellou, L.; Christodouleas, D.C.; Falaras, P.; Pavlatou, E.A. Chemically Modified TiO2 Photocatalysts as an Alternative Disinfection Approach for Municipal Wastewater Treatment Plant Effluents. Water 2023, 15, 2052. [Google Scholar] [CrossRef]
- Lagopati, N.; Kotsinas, A.; Veroutis, D.; Evangelou, K.; Papaspyropoulos, A.; Arfanis, M.; Falaras, P.; Kitsiou, P.V.; Pateras, I.; Bergonzini, A.; et al. Biological Effect of Silver-modified Nanostructured Titanium Dioxide in Cancer. Cancer Genom. Proteom. 2021, 18 (Suppl. 3), 425–439. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Maertens, A.; Piras, A.; Aprile, C.; Liotta, L.F. Novel Sol-Gel Synthesis of TiO2 Spherical Porous Nanoparticles Assemblies with Photocatalytic Activity. Nanomaterials 2023, 13, 1928. [Google Scholar] [CrossRef] [PubMed]
- Bellè, U.; Spini, D.; Del Curto, B.; Pedeferri, M.; Diamanti, M.V. Water-Based Photocatalytic Sol–Gel TiO2 Coatings: Synthesis and Durability. Catalysts 2023, 13, 494. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C. Pure Anatase Phase Titanium Dioxide Films Prepared by Mist Chemical Vapor Deposition. Nanomaterials 2018, 8, 827. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Taleb, A. Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and TiO2 Aggregates as Precursor. Nanomaterials 2021, 11, 365. [Google Scholar] [CrossRef]
- Uyen, N.N.; Tuyen, L.T.C.; Hieu, L.T.; Nguyen, T.T.T.; Thao, H.P.; Do, T.C.M.V.; Nguyen, K.T.; Hang, N.T.N.; Jian, S.-R.; Tu, L.A.; et al. TiO2 Nanowires on TiO2 Nanotubes Arrays (TNWs/TNAs) Decorated with Au Nanoparticles and Au Nanorods for Efficient Photoelectrochemical Water Splitting and Photocatalytic Degradation of Methylene Blue. Coatings 2022, 12, 1957. [Google Scholar] [CrossRef]
- Adochițe, C.-Ș.; Vițelaru, C.; Parau, A.C.; Kiss, A.E.; Pană, I.; Vlădescu, A.; Costinaș, S.; Moga, M.; Muntean, R.; Badea, M.; et al. Synthesis and Investigation of Antibacterial Activity of Thin Films Based on TiO2-Ag and SiO2-Ag with Potential Applications in Medical Environment. Nanomaterials 2022, 12, 902. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Forte Tavčer, P.; Tomšič, B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef] [PubMed]
- Bertel, L.; Miranda, D.A.; García-Martín, J.M. Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. Sensors 2021, 21, 6167. [Google Scholar] [CrossRef] [PubMed]
- Kassalia, M.-E.; Nikolaou, Z.; Pavlatou, E.A. Photocatalytic Testing Protocol for N-Doped TiO2 Nanostructured Particles under Visible Light Irradiation Using the Statistical Taguchi Experimental Design. Appl. Sci. 2023, 13, 774. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Kontoliou, K.; Volla, E.; Karachalios, K.; Raptopoulos, G.; Paraskevopoulou, P.; Lagopati, N.; Pavlatou, E.A. Optimization of ZnO Nanoparticles’ Synthesis via Precipitation Method Applying Taguchi Robust Design. Catalysts 2023, 13, 1367. [Google Scholar] [CrossRef]
- Bakator, M.; Cockalo, D.; Kavalić, M.; Terek Stojanović, E.; Gluvakov, V. An Application of Statistical Methods in Data Mining Techniques to Predict ICT Implementation of Enterprises. Appl. Sci. 2023, 13, 4055. [Google Scholar] [CrossRef]
- Nandipati, M.; Fatoki, O.; Desai, S. Bridging Nanomanufacturing and Artificial Intelligence—A Comprehensive Review. Materials 2024, 17, 1621. [Google Scholar] [CrossRef] [PubMed]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Zakeri, S.; Chatterjee, P.; Konstantas, D.; Ecer, F. A decision analysis model for material selection using simple ranking process. Sci. Rep. 2023, 13, 8631. [Google Scholar] [CrossRef] [PubMed]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Yin, H.; Casey, P.S. Effects of aspect ratio (AR) and specific surface area (SSA) on cytotoxicity and phototoxicity of ZnO nanomaterials. Chemosphere 2015, 124, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Akurati, K.K.; Vital, A.; Fortunato, G.; Hany, R.; Nueesch, F.; Graule, T. Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Sci. 2007, 9, 247–257. [Google Scholar] [CrossRef]
- Niu, R.L.; Sheng, Z.M.; Xu, Q.M.; Chang, C.K.; Huang, Y.S.; Han, S. Small anatase TiO2 nanoparticles grown on carbon nanocages as anodes for high performance sodium and lithium ion batteries. Chem. Phys. Lett. 2022, 790, 139350. [Google Scholar] [CrossRef]
- Racovita, A.D. Titanium Dioxide: Structure, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2022, 19, 5681. [Google Scholar] [CrossRef] [PubMed]
- Brzicova, T.; Sikorova, J.; Milcova, A.; Vrbova, K.; Klema, J.; Pikal, P.; Lubovska, Z.; Philimonenko, V.; Franco, F.; Topinka, J.; et al. Nano-TiO2 stability in medium and size as important factors of toxicity in macrophage-like cells. Toxicol. Vitr. 2019, 54, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.L.; Wu, G.S.; Liao, B.Q. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 270–275. [Google Scholar] [CrossRef]
- Allen, N.S.; Mahdjoub, N.; Vishnyakov, V.; Kelly, P.J.; Kriek, R.J. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. 2018, 150, 31–36. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.K.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mat. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; George, S.; Ji, Z.; Lin, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, S.C. Size of TiO(2) nanoparticles influences their phototoxicity: An in vitro investigation. Arch. Toxicol. 2013, 87, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kose, O.; Tomatis, M.; Leclerc, L.; Belblidia, N.B.; Hochepied, J.F.; Turci, F.; Pourchez, J.; Forest, V. Impact of the Physicochemical Features of TiO2 Nanoparticles on Their In Vitro Toxicity. Chem. Res. Toxicol. 2020, 33, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Tedja, R.; Marquis, C.; Lim, M.; Amal, R. Biological impacts of TiO2 on human lung cell lines A549 and H1299: Particle size distribution effects. J. Nanoparticle Res. 2011, 13, 3801–3813. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Regier, D.A.; Peacock, S. Theoretical Foundations of MCDA. In Multi-Criteria Decision Analysis to Support Healthcare Decisions, 1st ed.; Marsh, K., Goetghebeur, M., Thokala, P., Baltussen, R., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 10, pp. 9–29. [Google Scholar]
- Aragon, T.J. Deriving Criteria Weights for Health Decision Making: A Brief Tutorial; California Digital Library University of California: San Francisco, CA, USA, 2017. [Google Scholar]
- Oubahman, L.; Duleba, S. A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model. Sustainability 2022, 14, 5980. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Canco, I.; Kruja, D.; Iancu, T. AHP, a Reliable Method for Quality Decision Making: A Case Study in Business. Sustainability 2021, 13, 13932. [Google Scholar] [CrossRef]
- Stofkova, J.; Krejnus, M.; Stofkova, K.R.; Malega, P.; Binasova, V. Use of the Analytic Hierarchy Process and Selected Methods in the Managerial Decision-Making Process in the Context of Sustainable Development. Sustainability 2022, 14, 11546. [Google Scholar] [CrossRef]
- Huang, J.-J.; Chen, C.-Y. Using Markov Random Field and Analytic Hierarchy Process to Account for Interdependent Criteria. Algorithms 2024, 17, 1. [Google Scholar] [CrossRef]
Criterion | Weight () |
---|---|
Size | 0.252 |
Rh (nm) | 0.197 |
Zeta Potential (mV) | 0.181 |
Crystal Phase | 0.164 |
SSA () | 0.201 |
Nanoparticle Type | Size (nm) | Rh (nm) | Zeta Potential (mV) | Crystal Phase | SSA () |
---|---|---|---|---|---|
NP1 | 0.01 | 0.074 | 0.034 | 0.019 | 0.085 |
NP2 | 0.021 | 0.034 | 0.065 | 0.057 | 0.041 |
NP3 | 0.207 | 0.038 | 0.038 | 0.019 | 0.008 |
NP4 | 0.016 | 0.023 | 0.027 | 0.019 | 0.081 |
NP5 | 0.031 | 0.107 | 0.028 | 0.019 | 0.034 |
NP6 | 0.031 | 0.115 | 0.025 | 0.019 | 0.034 |
NP7 | 0.022 | 0.028 | 0.031 | 0.057 | 0.031 |
NP8 | 0.021 | 0.018 | 0.038 | 0.057 | 0.028 |
NP9 | 0.006 | 0.007 | 0.032 | 0.019 | 0.069 |
NP10 | 0.017 | 0.017 | 0.036 | 0.057 | 0.031 |
NP11 | 0.027 | 0.021 | 0.06 | 0.057 | 0.017 |
NP12 | 0.039 | 0.022 | 0.07 | 0.057 | 0.012 |
NP13 | 0.055 | 0.022 | 0.056 | 0.057 | 0.01 |
NP14 | 0.108 | 0.054 | 0.081 | 0.038 | 0.007 |
NP15 | 0.026 | 0.012 | 0.034 | 0.019 | 0.122 |
Nanoparticle Type | |||
---|---|---|---|
NP1 | 0.089 | 0.219 | 0.711 |
NP2 | 0.096 | 0.21 | 0.686 |
NP3 | 0.236 | 0.087 | 0.269 |
NP4 | 0.07 | 0.228 | 0.765 |
NP5 | 0.145 | 0.182 | 0.557 |
NP6 | 0.152 | 0.182 | 0.544 |
NP7 | 0.114 | 0.206 | 0.644 |
NP8 | 0.112 | 0.211 | 0.654 |
NP9 | 0.072 | 0.239 | 0.77 |
NP10 | 0.11 | 0.216 | 0.663 |
NP11 | 0.117 | 0.207 | 0.639 |
NP12 | 0.122 | 0.197 | 0.617 |
NP13 | 0.131 | 0.181 | 0.58 |
NP14 | 0.162 | 0.131 | 0.447 |
NP15 | 0.051 | 0.241 | 0.825 |
Intensity | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective. |
3 | Moderate importance | Experience and judgment slightly favor one activity over another. |
5 | Strong importance | Experience and judgment strongly favor one activity over another. |
7 | Very strong importance | An activity is strongly favored, and its dominance is demonstrated in practice. |
9 | Extreme importance | Evidence favoring one activity over another is of the highest possible order of affirmation. |
2, 4, 6, 8 | Intermediate values | When compromise is needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagopati, N.; Trachanas, G.P.; Doukas, H. Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules 2024, 29, 3726. https://doi.org/10.3390/molecules29163726
Lagopati N, Trachanas GP, Doukas H. Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules. 2024; 29(16):3726. https://doi.org/10.3390/molecules29163726
Chicago/Turabian StyleLagopati, Nefeli, Georgios P. Trachanas, and Haris Doukas. 2024. "Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications" Molecules 29, no. 16: 3726. https://doi.org/10.3390/molecules29163726
APA StyleLagopati, N., Trachanas, G. P., & Doukas, H. (2024). Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules, 29(16), 3726. https://doi.org/10.3390/molecules29163726