Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications
Abstract
1. Introduction
2. Results
Data Numerical Results
3. Discussion
4. Materials and Methods
4.1. Data
Nanoparticle Type | Size (nm) | Rh (nm) | Zeta Potential (mV) | Crystal Phase | SSA (m2/g) | Refs. |
---|---|---|---|---|---|---|
NP1 | 10 | 669 | 16.9 | anatase | 154 | [38] |
NP2 | 20 | 307 | 32.3 | anatase/rutile (80/20) | 73 | [38] |
NP3 | 100 | 349 | 19.1 | anatase | 15 | [38] |
NP4 | 15 | 211.4 | 13.2 | anatase | 146 | [39] |
NP5 | 30 | 969.3 | 13.8 | anatase | 61 | [39] |
NP6 | 30 | 1049 | 12.3 | anatase | 61 | [39] |
NP7 | 21 | 256 | 15.2 | anatase/rutile (80/20) | 55 | [39] |
NP8 | 20 | 165 | 18.7 | anatase/rutile (80/20) | 50 | [40] |
NP9 | 6 | 67 | 16 | anatase | 125 | [41] |
NP10 | 16 | 150 | 18 | anatase/rutile (80/20) | 55 | [41] |
NP11 | 26 | 190 | 30 | anatase/rutile (80/20) | 30 | [41] |
NP12 | 38 | 200 | 35 | anatase/rutile (80/20) | 22 | [41] |
NP13 | 53 | 220 | 28 | anatase/rutile (80/20) | 18 | [41] |
NP14 | 104 | 490 | 40 | rutile | 12 | [41] |
NP15 | 25 | 111.3 | 16.7 | anatase | 220 | [1] |
4.2. Methodological Framework
- Decision table normalization, according to Equation (1):
- 2.
- Decision table weighting, based on Equation (2):
- 3.
- Determination of the positive and the negative ideal solution:
- 4.
- Calculate the distance from the positive and the negative ideal solution, defined as follows through Equations (3) and (4):
- 5.
- Relative closeness calculation, based on Equation (5):
- 6.
- Rank the alternatives based on values (the higher the better).
- Definition of the criteria that are included in the study and the alternatives of the decision-making problem.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lagopati, N.; Tsilibary, E.P.; Falaras, P.; Papazafiri, P.; Pavlatou, E.A.; Kotsopoulou, E.; Kitsiou, P. Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int. J. Nanomed. 2014, 9, 3219–3230. [Google Scholar] [CrossRef]
- Papadopoulou-Fermeli, N.; Lagopati, N.; Gatou, M.-A.; Pavlatou, E.A. Biocompatible PANI-Encapsulated Chemically Modified Nano-TiO2 Particles for Visible-Light Photocatalytic Applications. Nanomaterials 2024, 14, 642. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.M.; Hassan, A.I. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023, 15, 10891. [Google Scholar] [CrossRef]
- Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- Palmieri, M.; Lasserre, B.; Marino, D.; Quaranta, L.; Raffi, M.; Ranalli, G. The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability 2023, 15, 5616. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Schröder, S.K.; Buhl, E.M.; Weiskirchen, R. A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells 2023, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In Vitro Methods for Assessing Nanoparticle Toxicity. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1894, pp. 1–29. [Google Scholar] [CrossRef]
- Krauss, A. Redefining the scientific method: As the use of sophisticated scientific methods that extend our mind. PNAS Nexus 2024, 3, 112. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Infectious Diseases Society of America (IDSA). Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57 (Suppl. 3), S139–S170. [Google Scholar] [CrossRef] [PubMed]
- Tsoukleris, D.S.; Gatou, M.-A.; Lagopati, N.; Sygellou, L.; Christodouleas, D.C.; Falaras, P.; Pavlatou, E.A. Chemically Modified TiO2 Photocatalysts as an Alternative Disinfection Approach for Municipal Wastewater Treatment Plant Effluents. Water 2023, 15, 2052. [Google Scholar] [CrossRef]
- Lagopati, N.; Kotsinas, A.; Veroutis, D.; Evangelou, K.; Papaspyropoulos, A.; Arfanis, M.; Falaras, P.; Kitsiou, P.V.; Pateras, I.; Bergonzini, A.; et al. Biological Effect of Silver-modified Nanostructured Titanium Dioxide in Cancer. Cancer Genom. Proteom. 2021, 18 (Suppl. 3), 425–439. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Maertens, A.; Piras, A.; Aprile, C.; Liotta, L.F. Novel Sol-Gel Synthesis of TiO2 Spherical Porous Nanoparticles Assemblies with Photocatalytic Activity. Nanomaterials 2023, 13, 1928. [Google Scholar] [CrossRef] [PubMed]
- Bellè, U.; Spini, D.; Del Curto, B.; Pedeferri, M.; Diamanti, M.V. Water-Based Photocatalytic Sol–Gel TiO2 Coatings: Synthesis and Durability. Catalysts 2023, 13, 494. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C. Pure Anatase Phase Titanium Dioxide Films Prepared by Mist Chemical Vapor Deposition. Nanomaterials 2018, 8, 827. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Taleb, A. Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and TiO2 Aggregates as Precursor. Nanomaterials 2021, 11, 365. [Google Scholar] [CrossRef]
- Uyen, N.N.; Tuyen, L.T.C.; Hieu, L.T.; Nguyen, T.T.T.; Thao, H.P.; Do, T.C.M.V.; Nguyen, K.T.; Hang, N.T.N.; Jian, S.-R.; Tu, L.A.; et al. TiO2 Nanowires on TiO2 Nanotubes Arrays (TNWs/TNAs) Decorated with Au Nanoparticles and Au Nanorods for Efficient Photoelectrochemical Water Splitting and Photocatalytic Degradation of Methylene Blue. Coatings 2022, 12, 1957. [Google Scholar] [CrossRef]
- Adochițe, C.-Ș.; Vițelaru, C.; Parau, A.C.; Kiss, A.E.; Pană, I.; Vlădescu, A.; Costinaș, S.; Moga, M.; Muntean, R.; Badea, M.; et al. Synthesis and Investigation of Antibacterial Activity of Thin Films Based on TiO2-Ag and SiO2-Ag with Potential Applications in Medical Environment. Nanomaterials 2022, 12, 902. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Forte Tavčer, P.; Tomšič, B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef] [PubMed]
- Bertel, L.; Miranda, D.A.; García-Martín, J.M. Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. Sensors 2021, 21, 6167. [Google Scholar] [CrossRef] [PubMed]
- Kassalia, M.-E.; Nikolaou, Z.; Pavlatou, E.A. Photocatalytic Testing Protocol for N-Doped TiO2 Nanostructured Particles under Visible Light Irradiation Using the Statistical Taguchi Experimental Design. Appl. Sci. 2023, 13, 774. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Kontoliou, K.; Volla, E.; Karachalios, K.; Raptopoulos, G.; Paraskevopoulou, P.; Lagopati, N.; Pavlatou, E.A. Optimization of ZnO Nanoparticles’ Synthesis via Precipitation Method Applying Taguchi Robust Design. Catalysts 2023, 13, 1367. [Google Scholar] [CrossRef]
- Bakator, M.; Cockalo, D.; Kavalić, M.; Terek Stojanović, E.; Gluvakov, V. An Application of Statistical Methods in Data Mining Techniques to Predict ICT Implementation of Enterprises. Appl. Sci. 2023, 13, 4055. [Google Scholar] [CrossRef]
- Nandipati, M.; Fatoki, O.; Desai, S. Bridging Nanomanufacturing and Artificial Intelligence—A Comprehensive Review. Materials 2024, 17, 1621. [Google Scholar] [CrossRef] [PubMed]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Zakeri, S.; Chatterjee, P.; Konstantas, D.; Ecer, F. A decision analysis model for material selection using simple ranking process. Sci. Rep. 2023, 13, 8631. [Google Scholar] [CrossRef] [PubMed]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Yin, H.; Casey, P.S. Effects of aspect ratio (AR) and specific surface area (SSA) on cytotoxicity and phototoxicity of ZnO nanomaterials. Chemosphere 2015, 124, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Akurati, K.K.; Vital, A.; Fortunato, G.; Hany, R.; Nueesch, F.; Graule, T. Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Sci. 2007, 9, 247–257. [Google Scholar] [CrossRef]
- Niu, R.L.; Sheng, Z.M.; Xu, Q.M.; Chang, C.K.; Huang, Y.S.; Han, S. Small anatase TiO2 nanoparticles grown on carbon nanocages as anodes for high performance sodium and lithium ion batteries. Chem. Phys. Lett. 2022, 790, 139350. [Google Scholar] [CrossRef]
- Racovita, A.D. Titanium Dioxide: Structure, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2022, 19, 5681. [Google Scholar] [CrossRef] [PubMed]
- Brzicova, T.; Sikorova, J.; Milcova, A.; Vrbova, K.; Klema, J.; Pikal, P.; Lubovska, Z.; Philimonenko, V.; Franco, F.; Topinka, J.; et al. Nano-TiO2 stability in medium and size as important factors of toxicity in macrophage-like cells. Toxicol. Vitr. 2019, 54, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.L.; Wu, G.S.; Liao, B.Q. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 270–275. [Google Scholar] [CrossRef]
- Allen, N.S.; Mahdjoub, N.; Vishnyakov, V.; Kelly, P.J.; Kriek, R.J. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. 2018, 150, 31–36. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.K.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mat. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; George, S.; Ji, Z.; Lin, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, S.C. Size of TiO(2) nanoparticles influences their phototoxicity: An in vitro investigation. Arch. Toxicol. 2013, 87, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kose, O.; Tomatis, M.; Leclerc, L.; Belblidia, N.B.; Hochepied, J.F.; Turci, F.; Pourchez, J.; Forest, V. Impact of the Physicochemical Features of TiO2 Nanoparticles on Their In Vitro Toxicity. Chem. Res. Toxicol. 2020, 33, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Tedja, R.; Marquis, C.; Lim, M.; Amal, R. Biological impacts of TiO2 on human lung cell lines A549 and H1299: Particle size distribution effects. J. Nanoparticle Res. 2011, 13, 3801–3813. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Regier, D.A.; Peacock, S. Theoretical Foundations of MCDA. In Multi-Criteria Decision Analysis to Support Healthcare Decisions, 1st ed.; Marsh, K., Goetghebeur, M., Thokala, P., Baltussen, R., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 10, pp. 9–29. [Google Scholar]
- Aragon, T.J. Deriving Criteria Weights for Health Decision Making: A Brief Tutorial; California Digital Library University of California: San Francisco, CA, USA, 2017. [Google Scholar]
- Oubahman, L.; Duleba, S. A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model. Sustainability 2022, 14, 5980. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Canco, I.; Kruja, D.; Iancu, T. AHP, a Reliable Method for Quality Decision Making: A Case Study in Business. Sustainability 2021, 13, 13932. [Google Scholar] [CrossRef]
- Stofkova, J.; Krejnus, M.; Stofkova, K.R.; Malega, P.; Binasova, V. Use of the Analytic Hierarchy Process and Selected Methods in the Managerial Decision-Making Process in the Context of Sustainable Development. Sustainability 2022, 14, 11546. [Google Scholar] [CrossRef]
- Huang, J.-J.; Chen, C.-Y. Using Markov Random Field and Analytic Hierarchy Process to Account for Interdependent Criteria. Algorithms 2024, 17, 1. [Google Scholar] [CrossRef]
Criterion | Weight () |
---|---|
Size | 0.252 |
Rh (nm) | 0.197 |
Zeta Potential (mV) | 0.181 |
Crystal Phase | 0.164 |
SSA () | 0.201 |
Nanoparticle Type | Size (nm) | Rh (nm) | Zeta Potential (mV) | Crystal Phase | SSA () |
---|---|---|---|---|---|
NP1 | 0.01 | 0.074 | 0.034 | 0.019 | 0.085 |
NP2 | 0.021 | 0.034 | 0.065 | 0.057 | 0.041 |
NP3 | 0.207 | 0.038 | 0.038 | 0.019 | 0.008 |
NP4 | 0.016 | 0.023 | 0.027 | 0.019 | 0.081 |
NP5 | 0.031 | 0.107 | 0.028 | 0.019 | 0.034 |
NP6 | 0.031 | 0.115 | 0.025 | 0.019 | 0.034 |
NP7 | 0.022 | 0.028 | 0.031 | 0.057 | 0.031 |
NP8 | 0.021 | 0.018 | 0.038 | 0.057 | 0.028 |
NP9 | 0.006 | 0.007 | 0.032 | 0.019 | 0.069 |
NP10 | 0.017 | 0.017 | 0.036 | 0.057 | 0.031 |
NP11 | 0.027 | 0.021 | 0.06 | 0.057 | 0.017 |
NP12 | 0.039 | 0.022 | 0.07 | 0.057 | 0.012 |
NP13 | 0.055 | 0.022 | 0.056 | 0.057 | 0.01 |
NP14 | 0.108 | 0.054 | 0.081 | 0.038 | 0.007 |
NP15 | 0.026 | 0.012 | 0.034 | 0.019 | 0.122 |
Nanoparticle Type | |||
---|---|---|---|
NP1 | 0.089 | 0.219 | 0.711 |
NP2 | 0.096 | 0.21 | 0.686 |
NP3 | 0.236 | 0.087 | 0.269 |
NP4 | 0.07 | 0.228 | 0.765 |
NP5 | 0.145 | 0.182 | 0.557 |
NP6 | 0.152 | 0.182 | 0.544 |
NP7 | 0.114 | 0.206 | 0.644 |
NP8 | 0.112 | 0.211 | 0.654 |
NP9 | 0.072 | 0.239 | 0.77 |
NP10 | 0.11 | 0.216 | 0.663 |
NP11 | 0.117 | 0.207 | 0.639 |
NP12 | 0.122 | 0.197 | 0.617 |
NP13 | 0.131 | 0.181 | 0.58 |
NP14 | 0.162 | 0.131 | 0.447 |
NP15 | 0.051 | 0.241 | 0.825 |
Intensity | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective. |
3 | Moderate importance | Experience and judgment slightly favor one activity over another. |
5 | Strong importance | Experience and judgment strongly favor one activity over another. |
7 | Very strong importance | An activity is strongly favored, and its dominance is demonstrated in practice. |
9 | Extreme importance | Evidence favoring one activity over another is of the highest possible order of affirmation. |
2, 4, 6, 8 | Intermediate values | When compromise is needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagopati, N.; Trachanas, G.P.; Doukas, H. Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules 2024, 29, 3726. https://doi.org/10.3390/molecules29163726
Lagopati N, Trachanas GP, Doukas H. Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules. 2024; 29(16):3726. https://doi.org/10.3390/molecules29163726
Chicago/Turabian StyleLagopati, Nefeli, Georgios P. Trachanas, and Haris Doukas. 2024. "Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications" Molecules 29, no. 16: 3726. https://doi.org/10.3390/molecules29163726
APA StyleLagopati, N., Trachanas, G. P., & Doukas, H. (2024). Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules, 29(16), 3726. https://doi.org/10.3390/molecules29163726