Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = nanoscale filler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 9683 KB  
Review
Towards Fire-Safe Polymer Electrolytes for Lithium-Ion Batteries: Strategies for Electrolyte Design and Structural Design
by Khang Le Truong and Joonho Bae
Polymers 2025, 17(21), 2828; https://doi.org/10.3390/polym17212828 - 23 Oct 2025
Cited by 1 | Viewed by 2784
Abstract
Lithium-ion batteries, widely used in phones and electric vehicles, pose safety concerns due to the flammability of conventional liquid electrolytes, which are prone to ignition under elevated temperatures and mechanical stress, increasing the risk of fire. Polymer electrolytes have been employed as a [...] Read more.
Lithium-ion batteries, widely used in phones and electric vehicles, pose safety concerns due to the flammability of conventional liquid electrolytes, which are prone to ignition under elevated temperatures and mechanical stress, increasing the risk of fire. Polymer electrolytes have been employed as a safer solution thanks to their superior thermal stability and mechanical strength. However, despite these advantages, many polymer matrices pose a fire hazard, limiting their potential. This review assesses recent advances in enhancing the flame retardancy of polymer electrolytes through a variety of strategies, namely the incorporation of flame-retardant additives, the addition of nanoscale fillers to improve thermal resistance, and the design of layered or hybrid polymer membrane structures that function as thermal barriers. This review evaluates the effectiveness of these methods, examining their flame-retardancy as well as their influences on ionic conductivity and overall battery performance. By highlighting recent progress and enduring safety challenges in solid-state batteries, it aims to offer insights for developing lithium batteries with enhanced safety and high performance. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Graphical abstract

18 pages, 1637 KB  
Article
Exploiting the Applicative Potential of Hydroxyethyl Cellulose-Based Composites by Composition-Tailoring of the Optical and Dielectric Features
by Andreea Irina Barzic, Iuliana Stoica, Raluca Marinica Albu, Igori Belotercovschii, Victor Suman, Victor V. Zalamai and Victor Cojocaru
Polymers 2025, 17(17), 2315; https://doi.org/10.3390/polym17172315 - 27 Aug 2025
Viewed by 975
Abstract
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples [...] Read more.
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples are investigated from morphological, optical, and electrical points of view to explore the applicative potential as LED encapsulants or flexible dielectric layers for capacitors. Morphological analyses at micro- and nanoscale evidence the level of distribution of the fillers blended within the matrix. UV-VIS spectroscopy and refractometry emphasize that at 0.5 wt% the samples display the best balance between transparency and high refractive index, which matches the applicative criteria for LED encapsulation. The electrical testing with broadband dielectric spectrometer proves that the dielectric constant at 1 kHz of the composite with 4 wt% fillers is enhanced by about 6.63 times in comparison to the neat polymer. This is beneficial for designing eco-friendly and flexible dielectrics for capacitor devices. Full article
Show Figures

Figure 1

16 pages, 8464 KB  
Article
Characterization of PVC/CaCO3 Nanocomposites Aged Under the Combined Effects of Temperature and UV-Radiation
by Soraya Nait Larbi, Mustapha Moudoud, Abdallah Hedir, Omar Lamrous, Ali Durmus, David Clark and Ferhat Slimani
Materials 2025, 18(17), 4001; https://doi.org/10.3390/ma18174001 - 27 Aug 2025
Cited by 2 | Viewed by 1270
Abstract
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected [...] Read more.
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected to accelerated aging through prolonged ultraviolet (UV) exposure and thermal stress for up to 1248 h. The evolution of dielectric properties was characterized by impedance spectroscopy, while structural modifications were analyzed using Fourier-transform infrared (FTIR) spectroscopy. Additionally, changes in surface morphology, internal homogeneity (related to particle size, shape, and distribution), and chemical composition were investigated using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX), to evaluate the effects of irradiation and variations in the material’s surface composition and morphology. The results reveal a significant correlation between filler concentration and dielectric stability, highlighting the potential of CaCO3 reinforcement to improve the long-term reliability of polymeric insulating materials. The results further highlight that beyond the amount of filler used, the fine-scale feature of CaCO3, particularly its particle size and how well it is dispersed, has a significant impact on how the material responds to aging and maintains its dielectric properties. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 9186 KB  
Article
Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
by Guofeng Zhao and Shifan Zhu
Lubricants 2025, 13(9), 377; https://doi.org/10.3390/lubricants13090377 - 23 Aug 2025
Cited by 1 | Viewed by 1159
Abstract
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear [...] Read more.
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear resistance of bearing materials. However, traditional PTFE materials struggle to meet the performance requirements for long-term stable operation in modern marine environments. To improve the wear resistance of PTFE, this study used alumina (Al2O3) particles with three different particle sizes (50 nm, 3 μm, and 80 μm) as fillers and prepared Al2O3/PTFE composites via the cold pressing and sintering process. Tribological performance tests were conducted using a ball-on-disk reciprocating friction and wear tester, with Cr12 steel balls as counterparts, under an artificial seawater lubrication environment, applying a normal load of 10 N for 40 min. The microstructure and wear scar morphology were characterized by scanning electron microscopy (SEM), and mechanical properties were measured using a Shore hardness tester. A systematic study was carried out on the microstructure, mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The results show that the particle size of Al2O3 particles significantly affects the mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The 50 nm Al2O3/PTFE formed a uniformly spread friction film and transfer film during the friction process, which has better friction and wear reduction performance and load bearing capacity. The 80 μm Al2O3 group exhibited poor friction properties despite higher hardness. The nanoscale Al2O3 filler was superior in improving the wear resistance, stabilizing the coefficient of friction, and prolonging the service life of the material, and demonstrated good seawater lubrication bearing suitability. This study provides theoretical support and an experimental basis for the design optimization and engineering application of PTFE-based composites in harsh marine environments. Full article
Show Figures

Figure 1

20 pages, 3903 KB  
Article
High-Performance Barium Titanate, Carbon Nanotube, and Styrene–Butadiene Rubber-Based Single Composite TENG for Energy Harvesting and Handwriting Recognition
by Md Najib Alam, Vineet Kumar, Youjung Kim, Dong-Joo Lee and Sang-Shin Park
Polymers 2025, 17(15), 2016; https://doi.org/10.3390/polym17152016 - 23 Jul 2025
Cited by 2 | Viewed by 1085
Abstract
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. [...] Read more.
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. The energy harvesting efficiency depends on the type and amount of fillers, as well as their dispersion within the matrix. Stearic acid modification of BT enables near-nanoscale filler distribution, resulting in high energy conversion efficiencies. The composite achieved power efficiency, power density, charge efficiency, and charge density values of 1.127 nW/N, 8.258 mW/m3, 0.146 nC/N, and 1.072 mC/m3, respectively, under only 2% cyclic compressive strain at 0.85 Hz. The material performs better at low stress–strain ranges, exhibiting higher charge efficiency. The generated charge in the TENG composite is well correlated with the compressive stress, which provides a minimum activation pressure of 0.144 kPa, making it suitable for low-pressure sensing applications. A flat composite with dimensions of 0.02 × 6 × 5 cm3 can produce a power density of 26.04 W/m3, a charge density of 0.205 mC/m3, and an output voltage of 10 V from a single hand pat. The rubber composite also demonstrates high accuracy in handwriting recognition across different individuals, with clear differences in sensitivity curves. Repeated attempts by the same person show minimal deviation (<5%) in writing time. Additionally, the presence of reinforcing fillers enhances mechanical strength and durability, making the composite suitable for long-term cyclic energy harvesting and wearable sensor applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2316 KB  
Article
Enhancement of Ethylene-Butene Terpolymer Performance via Carbon Nanotube-Induced Nanodispersion of Montmorillonite Layers
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Yuansi Wei, Pengxiang Bai and Yuqi Wang
Crystals 2025, 15(7), 612; https://doi.org/10.3390/cryst15070612 - 30 Jun 2025
Viewed by 583
Abstract
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed [...] Read more.
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed that SMMT achieved homogeneous nanoscale dispersion after CNT addition, and the size of aggregates was greatly reduced. Four-cycle strain-scanning analysis revealed a 200% increase in rubber–filler (R-F) interaction strength due to CNT incorporation. At the optimal CNT/SMMT ratio of 1:5, the EBT composites exhibited a 40.4% increase in Young’s modulus, 71.4% enhancement in tensile strength, and maintained 250% elongation at break, effectively addressing the strength–toughness trade-off of traditional rigid fillers. Thermogravimetric analysis (TGA) showed near 20 °C elevation in EBT composites’ maximum decomposition temperature, while water contact angle measurements indicated a hydrophobicity increase to 117.5° and water absorption rate below 0.2%. The quantitative improvement in thermal oxidation stability and hydrophobic barrier performance was achieved simultaneously. Full article
Show Figures

Figure 1

23 pages, 7395 KB  
Article
Enhanced Mechanical and Thermal Performance of Sustainable RPET/PA-11/Joncryl® Nanocomposites Reinforced with Halloysite Nanotubes
by Zahid Iqbal Khan, Mohammed E. Ali Mohsin, Unsia Habib, Suleiman Mousa, SK Safdar Hossain, Syed Sadiq Ali, Zurina Mohamad and Norhayani Othman
Polymers 2025, 17(11), 1433; https://doi.org/10.3390/polym17111433 - 22 May 2025
Cited by 2 | Viewed by 1547
Abstract
The rapid advancement of sustainable materials has driven the need for high-performance polymer nanocomposites with superior mechanical, thermal, and structural properties. In this study, a novel RPET/PA-11/Joncryl® nanocomposite reinforced with halloysite nanotubes (HNTs) is developed for the first time, marking a significant [...] Read more.
The rapid advancement of sustainable materials has driven the need for high-performance polymer nanocomposites with superior mechanical, thermal, and structural properties. In this study, a novel RPET/PA-11/Joncryl® nanocomposite reinforced with halloysite nanotubes (HNTs) is developed for the first time, marking a significant breakthrough in polymer engineering. Six different proportions of HNT (0, 1, 2, 3, 4, and 5 phr) are introduced to the blend of rPET/PA-11/Joncryl® through a twin-screw extruder and injection moulding machine. The incorporation of HNTs into the RPET/PA-11 matrix, coupled with Joncryl® as a compatibilizer, results in a synergistic enhancement of material properties through improved interfacial adhesion, load transfer efficiency, and nanoscale reinforcement. Comprehensive characterization reveals that the optimal formulation with 2 phr HNT (NCS-H2) achieves remarkable improvements in tensile strength (56.14 MPa), flexural strength (68.34 MPa), and Young’s modulus (895 MPa), far exceeding conventional polymer blends. Impact resistance reaches 243.46 J/m, demonstrating exceptional energy absorption and fracture toughness. Thermal analysis confirms enhanced stability, with an onset degradation temperature of 370 °C, attributing the improvement to effective matrix–filler interactions and restricted chain mobility. Morphological analysis through FESEM validates uniform HNT dispersion at optimal loading, eliminating agglomeration-induced stress concentrators and reinforcing the polymer network. The pioneering integration of HNT into RPET/PA-11/Joncryl® nanocomposites not only bridges a critical gap in sustainable polymers but also establishes a new benchmark for polymer nanocomposites. This work presents an eco-friendly solution for engineering applications, offering mechanical robustness, thermal stability, and recyclability. The results form the basis for next-generation high-performance materials for industrial use in automotive, aerospace, and high-strength structural applications. Full article
Show Figures

Graphical abstract

21 pages, 7002 KB  
Article
The Effect of Nano-Biochar Derived from Olive Waste on the Thermal and Mechanical Properties of Epoxy Composites
by Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci and Fatih Erci
Polymers 2025, 17(10), 1337; https://doi.org/10.3390/polym17101337 - 14 May 2025
Cited by 2 | Viewed by 1314
Abstract
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties [...] Read more.
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product. Full article
Show Figures

Figure 1

24 pages, 8896 KB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 944
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 3328 KB  
Article
Effect of Acid Concentration on Structural, Thermal, and Morphological Properties of Cellulose Nanocrystals from Sugarcane Bagasse and Their Reinforcement in Poly(Furfuryl) Alcohol Composites
by Nduduzo L. Khumalo, Samson M. Mohomane, Thembinkosi D. Malevu, Setumo V. Motloung, Lehlohonolo F. Koao and Tshwafo E. Motaung
Crystals 2025, 15(5), 403; https://doi.org/10.3390/cryst15050403 - 25 Apr 2025
Cited by 3 | Viewed by 1161
Abstract
This study investigates the impact of sulphuric acid concentration (40% vs. 60%) on the extraction of cellulose nanocrystals (CNCs) from alkali-treated sugarcane bagasse (SCB) and their reinforcement in poly(furfuryl) alcohol (PFA) composites. Probing into the physicochemical changes through scanning electron microscopy (SEM) displayed [...] Read more.
This study investigates the impact of sulphuric acid concentration (40% vs. 60%) on the extraction of cellulose nanocrystals (CNCs) from alkali-treated sugarcane bagasse (SCB) and their reinforcement in poly(furfuryl) alcohol (PFA) composites. Probing into the physicochemical changes through scanning electron microscopy (SEM) displayed drastic morphological changes, alkali removal of noncellulosic components followed by sulphuric acid hydrolysis further refined cellulose to nanoscale morphologies. The X-ray diffraction (XRD) study showed that after alkali treatment, the crystallinity was significantly higher (65%), and the crystallinity index of CNCs prepared from 40% H2SO4 was greater than the CNCs prepared from 60% H2SO4 (61%). Fourier transform infrared spectral and thermogravimetric analysis (TGA) suggested that improving the polymeric performance by the incorporation of a CNC resulted in a decrease in the thermal stability of the modified polyelectrolyte, which was largely attributed to higher sulphate esterification achieved at higher acid concentrations. It is possible to use CNCs to achieve higher mechanical performance while also indicating that optimizing thermal properties and mechanical performance of high-performance materials will require an improved understanding of the microstructural parameters governing the polymer–filler interface. This work demonstrates that acid concentration critically balances CNC crystallinity and thermal performance, offering insights for optimizing sustainable nanocomposites. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

11 pages, 3283 KB  
Article
Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating
by Dongfang Wang, Yabin Ma, Yingjie Ma, Baolei Liu, Dewen Sun and Qianping Ran
Nanomaterials 2025, 15(2), 135; https://doi.org/10.3390/nano15020135 - 17 Jan 2025
Cited by 1 | Viewed by 1892
Abstract
A novel class of SiO2 aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by [...] Read more.
A novel class of SiO2 aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO2 aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N2 adsorption–desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer. A combination of multiscale pores imbues the aerogel-based foamy coating with a low thermal conductivity, as well as a high cohesive strength. For the foamy coating studied, with variable emulsion/foaming agent/aerogel ratios of 1/2/x, the thermal conductivity decreases from 0.141 to 0.031 W/m·K, and the cohesive strength increases from being non-detectable to 0.41 MPa. The temperature difference, which is a direct indicator of the thermal insulation behavior of the foamy coating, can increase from 12.1 °C to 48.6 °C under an 80 °C hot plate. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 2713 KB  
Article
Thermally Conductive Shape-Stabilized Phase Change Materials Enabled by Paraffin Wax and Nanoporous Structural Expanded Graphite
by Yilin Zhao, Shuhui Huang, Zhaoguo Jin, Zhongnan Xie, Hong Guo and Haofeng Xie
Nanomaterials 2025, 15(2), 110; https://doi.org/10.3390/nano15020110 - 12 Jan 2025
Cited by 9 | Viewed by 4262
Abstract
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate [...] Read more.
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem. Two preparations of thermally conductive shape-stabilized PW/EG composites, using the pressure-induced method and prefabricated skeleton method, were designed in this paper. The expanded graphite formed a nanoscale porous structure by different methods, which enhanced the capillary action between the graphite flake layers, improved the adsorption and encapsulation of EG, and alleviated the leakage problem. The thermal conductivity and the latent heat of the phase-change materials (PCM) prepared by the two methods mentioned above are 9.99 W/(m·K), 10.70 W/(m·K) and 240.06 J/g, 231.67 J/g, respectively, at EG loading by 10 wt.%, and the residual mass fraction was greater than 99% after 50 cycles of high and low temperature. In addition, due to the excellent thermal management capability of PW/EG, the operating temperature of electronic components can be stably maintained at 68–71 °C for about 15 min and the peak temperature can be reduced by at least 23 °C when the heating power of the electronic components is 10 w. These provide novel and cost-effective methods to further improve the management capability of spacecraft thermal control systems. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

31 pages, 28991 KB  
Review
Advances in Electrically and Thermally Conductive Functional Nanocomposites Based on Carbon Nanotubes
by Alexandr V. Shchegolkov, Aleksei V. Shchegolkov, Vladimir V. Kaminskii, Pablo Iturralde and Maxim A. Chumak
Polymers 2025, 17(1), 71; https://doi.org/10.3390/polym17010071 - 30 Dec 2024
Cited by 17 | Viewed by 4046
Abstract
The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology [...] Read more.
The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as ‘shape memory’ and self-repair of mechanical defects. Different combinations of polymers and dispersed fillers influence the change in electrical and thermal conductivity, as well as the positive temperature coefficient of resistance, which makes it possible to achieve the effect of temperature self-regulation during electrical heating. CNTs make it possible to form PTCR (positive temperature coefficient of resistance) in elastomers at lower concentrations, which makes it possible to preserve mechanical strength and use more efficient modes of heat generation. For strain gauges, CNTs improve sensitivity to mechanical effects and extend the measurement range. The use of thermoplastic elastomers provides the temperature of PTCR operation for electric heating at the level of 200 °C (voltage 240 V), which allows such heaters to operate at a power supply from a household electrical network. CNTs-based strain gauges can provide structural condition monitoring of composite materials. Full article
Show Figures

Figure 1

15 pages, 9452 KB  
Article
Preparation of Robust Superhydrophobic Coatings Using Hydrophobic and Tough Micro/Nano Particles
by Tianyi Feng, Yifan Liu, Siyan Ye, Liping Sheng, Binrui Wu and Lingcai Huang
Coatings 2024, 14(9), 1156; https://doi.org/10.3390/coatings14091156 - 8 Sep 2024
Cited by 5 | Viewed by 3282
Abstract
Superhydrophobic nanocomposite coatings, prepared using adhesive and fillers, offer advantages including ease of fabrication and suitability for large-scale applications, but compared with other types of artificial superhydrophobic surfaces, poor durability still limits these surfaces from practical applications. The utilization of micro/nanoscale particles with [...] Read more.
Superhydrophobic nanocomposite coatings, prepared using adhesive and fillers, offer advantages including ease of fabrication and suitability for large-scale applications, but compared with other types of artificial superhydrophobic surfaces, poor durability still limits these surfaces from practical applications. The utilization of micro/nanoscale particles with both intrinsic hydrophobicity and robust mechanical properties to prepare coatings should significantly contribute to enhanced durability. Herein, rough and hydrophobic particles with micro/nano hierarchical structures were prepared at first, and robust superhydrophobic surfaces were fabricated using the prepared particles and additional nanoparticles. The initially prepared particles formed a rough framework of the coating, while additional nanoparticles provided inevitable nanoscale structures. A series of mechanical tests were carried out to validate the durability, and the surface with 20 wt.% NPs exhibited the best performance, withstanding 30 tape peeling tests, a 2.47 m sandpaper rubbing test (at a pressure of 5 kPa), the impact of 200 g of grit dropped from a height of 20 cm, and a 2 h acidic immersion. These appealing materials may attract attention for self-cleaning, high-speed water impact resistance, anti-icing, and anti-fouling applications in the coatings industry. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces and Coatings)
Show Figures

Figure 1

15 pages, 6149 KB  
Article
Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites
by Denis Petrukhin, Vitalii Salnikov, Aleksey Nikitin, Ibtissame Sidane, Sawssen Slimani, Stefano Alberti, Davide Peddis, Alexander Omelyanchik and Valeria Rodionova
J. Compos. Sci. 2024, 8(8), 329; https://doi.org/10.3390/jcs8080329 - 20 Aug 2024
Cited by 5 | Viewed by 3403
Abstract
Bismuth ferrite (BiFeO3, BFO) is one of the few single-phase crystalline compounds exhibiting strong multiferroic properties at room temperature, which makes it promising for use in various fields of science and technology. The remarkable characteristics of BFO at the nanoscale position [...] Read more.
Bismuth ferrite (BiFeO3, BFO) is one of the few single-phase crystalline compounds exhibiting strong multiferroic properties at room temperature, which makes it promising for use in various fields of science and technology. The remarkable characteristics of BFO at the nanoscale position it as a compelling candidate for enhancing the functionalities of polymeric nanocomposite materials. In this study, we explore the fabrication of polyvinylidene fluoride (PVDF) nanocomposites with a variable content of BFO nanopowders (0, 5, 10, 15, 20, and 25 wt%) by solution casting in the form of thin films with the thickness of ~60 µm. Our findings reveal that the presence of BFO nanoparticles slightly facilitates the formation of β- and γ-phases of PVDF, known for their enhanced piezoelectric properties, thereby potentially expanding the utility of PVDF-based materials in sensors, actuators, and energy harvesting devices. On the other hand, the increase in filler concentration leads to enlarged spherulite diameter and porosity of PVDF, as well as an increase in filler content above 20 wt% resulting in a decrease in the degree of crystallinity. The structural changes in the surface were found to increase the hydrophobicity of the nanocomposite surface. Magnetometry indicates that the magnetic properties of nanocomposite are influenced by the BFO nanoparticle content with the saturation magnetization at ~295 K ranging from ~0.08 emu/g to ~0.8 emu/g for samples with the lowest and higher BFO content, respectively. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop