Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Materials
2.2. Synthesis of BFO Nanoparticles
2.3. Fabrication of BFO/PVDF Nanocomposites
3. Characterization Methods
3.1. X-ray Diffraction (XRD) Analysis
3.2. Transmission Electron Microscopy (TEM)
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Thermogravimetric Analysis (TGA)
3.6. Scanning Electron Microscopy (SEM)
3.7. Contact Angle (CA) Analysis
3.8. Vibrating-Sample Magnetometer (VSM) Analysis
4. Results and Discussion
4.1. BiFeO3 Nanoparticle Characterization
4.2. BFO/PVDF Nanocomposite Characterization
4.2.1. Structural Characterization of Nanocomposites
4.2.2. Surface Properties of Nanocomposites
4.2.3. Magnetic Properties of Nanocomposites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Kharbanda, S.; Dhanda, N.; Aidan Sun, A.C.; Thakur, A.; Thakur, P. Multiferroic Perovskite Bismuth Ferrite Nanostructures: A Review on Synthesis and Applications. J. Magn. Magn. Mater. 2023, 572, 170569. [Google Scholar] [CrossRef]
- Kotnala, R.K.; Shah, J. Ferrite Materials: Nano ToSpintronics Regime; Elsevier: Amsterdam, The Netherlands, 2015; Volume 23, ISBN 9780444635280. [Google Scholar]
- Amdouni, W.; Fricaudet, M.; Otoničar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui-Meherzi, H.; Dkhil, B. BiFeO3 Nanoparticles: The “Holy-Grail” of Piezo-Photocatalysts? Adv. Mater. 2023, 35, 2301841. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Wu, Z.; Zhang, L.; Ying, Y.; Liu, Y.; Fei, L.; Chen, X.; Jia, Y.; Wang, Y.; Wang, F.; et al. Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. Angew. Chem. 2019, 131, 11905–11910. [Google Scholar] [CrossRef]
- Hong, M.; Yao, J.; Rao, F.; Chen, Z.; Gao, N.; Zhang, Z.; Jiang, W. Insight into the Synergistic Mechanism of Sonolysis and Sono-Induced BiFeO3 Nanorods Piezocatalysis in Atenolol Degradation: Ultrasonic Parameters, ROS and Degradation Pathways. Chemosphere 2023, 335, 139084. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Chen, X.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B.J.; Pané, S. Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience 2018, 4, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Kalikeri, S.; Shetty Kodialbail, V. Auto-Combustion Synthesis of Narrow Band-Gap Bismuth Ferrite Nanoparticles for Solar Photocatalysis to Remediate Azo Dye Containing Water. Environ. Sci. Pollut. Res. 2021, 28, 12144–12152. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Zhao, Y.; Liu, Z. Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. ACS Appl. Mater. Interfaces 2016, 8, 26190–26197. [Google Scholar] [CrossRef]
- Tripathy, A.; Maria Joseph Raj, N.P.; Saravanakumar, B.; Kim, S.J.; Ramadoss, A. Tuning of Highly Piezoelectric Bismuth Ferrite/PVDF-Copolymer Flexible Films for Efficient Energy Harvesting Performance. J. Alloys Compd. 2023, 932, 167569. [Google Scholar] [CrossRef]
- Rothon, R. Sustainable and Recycled Particulate Fillers; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319281162. [Google Scholar]
- Preethi, A.J.; Ragam, M. Effect of Doping in Multiferroic BFO: A Review. J. Adv. Dielectr. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Ma, J.; Li, S.; Pan, H.; Nan, C.W.; Lin, Y.H. Controllable Electrical, Magnetoelectric and Optical Properties of BiFeO3 via Domain Engineering. Prog. Mater. Sci. 2022, 127, 100943. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, T.; Wang, Z.L.; Yang, Y. Configuration Design of BiFeO3 Photovoltaic Devices for Self-Powered Electronic Watch. Nano Energy 2019, 64, 103909. [Google Scholar] [CrossRef]
- Fahrina, A.; Yusuf, M.; Muchtar, S.; Fitriani, F.; Mulyati, S.; Aprilia, S.; Rosnelly, C.M.; Bilad, M.R.; Ismail, A.F.; Takagi, R.; et al. Development of Anti-Microbial Polyvinylidene Fluoride (PVDF) Membrane Using Bio-Based Ginger Extract-Silica Nanoparticles (GE-SiNPs) for Bovine Serum Albumin (BSA) Filtration. J. Taiwan Inst. Chem. Eng. 2021, 125, 323–331. [Google Scholar] [CrossRef]
- Vinogradov, A.; Holloway, F. Electro-Mechanical Properties of the Piezoelectric Polymer PVDF. Ferroelectrics 1999, 226, 169–181. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A Comprehensive Review on Fundamental Properties and Applications of Poly(Vinylidene Fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Wu, L.; Jin, Z.; Liu, Y.; Ning, H.; Liu, X.; Alamusi; Hu, N. Recent Advances in the Preparation of PVDF-Based Piezoelectric Materials. Nanotechnol. Rev. 2022, 11, 1386–1407. [Google Scholar] [CrossRef]
- Glass, A.M.; McFee, J.H.; Bergman, J.G. Pyroelectric Properties of Polyvinylidene Flouride and Its Use for Infrared Detection. J. Appl. Phys. 1971, 42, 5219–5222. [Google Scholar] [CrossRef]
- Sasmal, A.; Patra, A.; Devi, P.S.; Sen, S. Hydroxylated BiFeO3 as Efficient Fillers in Poly(Vinylidene Fluoride) for Flexible Dielectric, Ferroelectric, Energy Storage and Mechanical Energy Harvesting Application. Dalt. Trans. 2021, 50, 1824–1837. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, W.; Yang, R.; Su, Y.; Li, H. Microstructured PVDF Film with Improved Performance as Flexible Infrared Sensor. Sensors 2022, 22, 2730. [Google Scholar] [CrossRef] [PubMed]
- Saba, S.; Mustafa, G.M.; Saleem, M.; Ramay, S.M.; Atiq, S. Ferroelectric Polymer/Ceramic Nanocomposites with Low Energy Losses. Polym. Compos. 2020, 41, 3271–3281. [Google Scholar] [CrossRef]
- Pradhan, S.; Deshmukh, P.; Kambale, R.C.; Darvade, T.C.; Satapathy, S.; Majumder, S.K. Effect of Nano-Size on Magnetostriction of BiFeO3 and Exceptional Magnetoelectric Coupling Properties of BiFeO3_P(VDF-TrFE) Polymer Composite Films for Magnetic Field Sensor Application. Smart Mater. Struct. 2023, 32, 045017. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, J.; He, B.; Hu, Z. Solution Processable Poly(Vinylidene Fluoride)-Based Ferroelectric Polymers for Flexible Electronics. APL Mater. 2021, 9, 010902. [Google Scholar] [CrossRef]
- Orudzhev, F.; Alikhanov, N.; Amirov, A.; Rabadanova, A.; Selimov, D.; Shuaibov, A.; Gulakhmedov, R.; Abdurakhmanov, M.; Magomedova, A.; Ramazanov, S.; et al. Porous Hybrid PVDF/BiFeO3 Smart Composite with Magnetic, Piezophotocatalytic, and Light-Emission Properties. Catalysts 2023, 13, 874. [Google Scholar] [CrossRef]
- Dash, S.; Choudhary, R.N.P.; Goswami, M.N. Enhanced Dielectric and Ferroelectric Properties of PVDF-BiFeO3 Composites in 0–3 Connectivity. J. Alloys Compd. 2017, 715, 29–36. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Maiti, H.S. Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route. J. Am. Ceram. Soc. 2005, 88, 1349–1352. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. Conformational Changes and Phase Transformation Mechanisms in PVDF Solution-Cast Films. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3487–3495. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-Méndez, S. Electroactive Poly(Vinylidene Fluoride)-Based Structures for Advanced Applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Pisarenko, T.; Papež, N.; Sobola, D.; Ţălu, Ş.; Částková, K.; Škarvada, P.; Macků, R.; Ščasnovič, E.; Kaštyl, J. Comprehensive Characterization of PVDF Nanofibers at Macro-and Nanolevel. Polymers 2022, 14, 593. [Google Scholar] [CrossRef]
- Orudzhev, F.; Sobola, D.; Ramazanov, S.; Částková, K.; Papež, N.; Selimov, D.A.; Abdurakhmanov, M.; Shuaibov, A.; Rabadanova, A.; Gulakhmedov, R.; et al. Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane. Polymers 2023, 15, 246. [Google Scholar] [CrossRef] [PubMed]
- Morrish, A.H. The Physical Principles of Magnetism; IEEE Press: New York, NY, USA, 2001; ISBN 9780470546581. [Google Scholar]
- Muscas, G.; Jovanović, S.; Vukomanović, M.; Spreitzer, M.; Peddis, D. Zn-Doped Cobalt Ferrite: Tuning the Interactions by Chemical Composition. J. Alloys Compd. 2019, 796, 203–209. [Google Scholar] [CrossRef]
- Park, T.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, I.; Neumaier, T.P.; Steichele, E. Spiral Magnetic Ordering in Bismuth Ferrite. J. Phys. C Solid State Phys. 1982, 15, 4835–4846. [Google Scholar] [CrossRef]
- Carranza-Celis, D.; Cardona-Rodríguez, A.; Narváez, J.; Moscoso-Londono, O.; Muraca, D.; Knobel, M.; Ornelas-Soto, N.; Reiber, A.; Ramírez, J.G. Control of Multiferroic Properties in BiFeO3 Nanoparticles. Sci. Rep. 2019, 9, 3182. [Google Scholar] [CrossRef]
- Zeches, R.J.; Rossell, M.D.; Zhang, J.X.; Hatt, A.J.; He, Q.; Yang, C.H.; Kumar, A.; Wang, C.H.; Melville, A.; Adamo, C.; et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science 2009, 326, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, M.; Zou, X.; Zhang, J.; Zhang, J.; Huang, X. Freeze-Drying Assisted Liquid Exfoliation of BiFeO3 for Pressure Sensing. Front. Phys. 2023, 18, 63303. [Google Scholar] [CrossRef]
- Wang, X.; Mao, W.; Wang, Q.; Zhu, Y.; Min, Y.; Zhang, J.; Yang, T.; Yang, J.; Li, X.; Huang, W. Low-Temperature Fabrication of Bi25FeO40/RGO Nanocomposites with Efficient Photocatalytic Performance under Visible Light Irradiation. RSC Adv. 2017, 7, 10064–10069. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Martins, P.; Costa, C.M.; Benelmekki, M.; Botelho, G.; Lanceros-Mendez, S. On the Origin of the Electroactive Poly(Vinylidene Fluoride) β-Phase Nucleation by Ferrite Nanoparticles via Surface Electrostatic Interactions. CrystEngComm 2012, 14, 2807–2811. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Cao, Y.; Li, G.; Liao, Y. Influence of Surface Roughness on Contact Angle Hysteresis and Spreading Work. Colloid Polym. Sci. 2020, 298, 1107–1112. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Role of Surface Roughness in the Wettability, Surface Energy and Flotation Kinetics of Calcite. Powder Technol. 2020, 371, 55–63. [Google Scholar] [CrossRef]
- Antipova, V.; Omelyanchik, A.; Sobolev, K.; Pshenichnikov, S.; Vorontsov, S.; Korepanova, E.; Schitz, D.; Peddis, D.; Panina, L.; Levada, K.; et al. Enhancing Wettability and Adhesive Properties of PVDF-Based Substrates through Non-Thermal Helium Plasma Surface Modification. Polymer 2024, 290, 126567. [Google Scholar] [CrossRef]
- Gheorghiu, F.; Stanculescu, R.; Curecheriu, L.; Brunengo, E.; Stagnaro, P.; Tiron, V.; Postolache, P.; Buscaglia, M.T.; Mitoseriu, L. PVDF–Ferrite Composites with Dual Magneto-Piezoelectric Response for Flexible Electronics Applications: Synthesis and Functional Properties. J. Mater. Sci. 2020, 55, 3926–3939. [Google Scholar] [CrossRef]
- Bhadra, D.; Masud, M.G.; Sarkar, S.; Sannigrahi, J.; De, S.K.; Chaudhuri, B.K. Synthesis of PVDF/BiFeO3 Nanocomposite and Observation of Enhanced Electrical Conductivity and Low-Loss Dielectric Permittivity at Percolation Threshold. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 572–579. [Google Scholar] [CrossRef]
- Rana, D.K.; Kundu, S.K.; Choudhary, R.J.; Basu, S. Enhancement of Electrical and Magnetodielectric Properties of BiFeO3 Incorporated PVDF Flexible Nanocomposite Films. Mater. Res. Express 2019, 6, 0850d9. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, P.K.; Yadav, K.L.; Singh, Y.; Kumar, N.; Abdullah; Sharma, G.; Singh, S. Enhanced Magnetoelectric Coupling Response in Hot Pressed BiFeO3 and Polymer Composite Films: Effect of Magnetic Field on Grain Boundary and Grain Resistance. Mater. Res. Bull. 2021, 145, 111527. [Google Scholar] [CrossRef]
Sample | fBFO (wt%) | (%) | (%) | Dpore m) | Dspherulite m) |
---|---|---|---|---|---|
PVDF | 0 | 61.6 | 27 ± 3 | 7 ± 1 | 8 ± 1 |
5BFO | 5 | 61.8 | 29 ± 3 | 8 ± 1 | 11 ± 1 |
10BFO | 10 | 61.7 | 28 ± 3 | 8 ± 1 | 14 ± 1 |
15BFO | 15 | 62.2 | 29 ± 3 | 12 ± 1 | 15 ± 2 |
20BFO | 20 | 64.5 | 28 ± 3 | 14 ± 2 | 17 ± 2 |
25BFO | 25 | 64.9 | 20 ± 3 | 15 ± 2 | 17 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrukhin, D.; Salnikov, V.; Nikitin, A.; Sidane, I.; Slimani, S.; Alberti, S.; Peddis, D.; Omelyanchik, A.; Rodionova, V. Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites. J. Compos. Sci. 2024, 8, 329. https://doi.org/10.3390/jcs8080329
Petrukhin D, Salnikov V, Nikitin A, Sidane I, Slimani S, Alberti S, Peddis D, Omelyanchik A, Rodionova V. Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites. Journal of Composites Science. 2024; 8(8):329. https://doi.org/10.3390/jcs8080329
Chicago/Turabian StylePetrukhin, Denis, Vitalii Salnikov, Aleksey Nikitin, Ibtissame Sidane, Sawssen Slimani, Stefano Alberti, Davide Peddis, Alexander Omelyanchik, and Valeria Rodionova. 2024. "Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites" Journal of Composites Science 8, no. 8: 329. https://doi.org/10.3390/jcs8080329
APA StylePetrukhin, D., Salnikov, V., Nikitin, A., Sidane, I., Slimani, S., Alberti, S., Peddis, D., Omelyanchik, A., & Rodionova, V. (2024). Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites. Journal of Composites Science, 8(8), 329. https://doi.org/10.3390/jcs8080329