Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = nanopriming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

25 pages, 1258 KiB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Viewed by 241
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 249
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

19 pages, 933 KiB  
Review
Exploring Seed Priming as a Strategy for Enhancing Abiotic Stress Tolerance in Cereal Crops
by Iman Janah, Abdelhadi Elhasnaoui, Raja Ben Laouane, Mohamed Ait-El-Mokhtar and Mohamed Anli
Stresses 2025, 5(2), 39; https://doi.org/10.3390/stresses5020039 - 5 Jun 2025
Viewed by 1781
Abstract
From germination to harvest, cereal crops are constantly exposed to a broad spectrum of abiotic stresses that significantly hinder their growth and productivity, posing a serious threat to global food security. Seed resilience and performance are foundational to sustainable agriculture, making the development [...] Read more.
From germination to harvest, cereal crops are constantly exposed to a broad spectrum of abiotic stresses that significantly hinder their growth and productivity, posing a serious threat to global food security. Seed resilience and performance are foundational to sustainable agriculture, making the development of efficient, low-cost, and environmentally friendly strategies to enhance seed vigor and stress tolerance a critical priority. Seed priming has emerged as a promising pre-sowing technique that involves exposing seeds to specific organic or inorganic compounds under controlled conditions to improve their physiological and biochemical traits. Various priming techniques—including halopriming, chemical priming, osmopriming, hormonal priming, hydropriming, biopriming, and nanopriming—have been successfully applied in cereal crops to alleviate the adverse effects of environmental stressors. These treatments trigger a cascade of metabolic and molecular responses, including the modulation of hormonal signaling, enhancement of antioxidant defense systems, stabilization of cellular structures, and upregulation of stress-responsive genes. Together, these changes contribute to enhanced seed germination, improved growth and performance, and greater adaptability to abiotic stress conditions. This review provides a comprehensive overview of seed priming strategies in cereal crops, emphasizing their mechanisms of action and their impact on plant performance in challenging environments. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

24 pages, 13679 KiB  
Article
Seed Nanopriming with ZnO and SiO2 Enhances Germination, Seedling Vigor, and Antioxidant Defense Under Drought Stress
by Erick H. Ochoa-Chaparro, Juan J. Patiño-Cruz, Julio C. Anchondo-Páez, Sandra Pérez-Álvarez, Celia Chávez-Mendoza, Luis U. Castruita-Esparza, Ezequiel Muñoz Márquez and Esteban Sánchez
Plants 2025, 14(11), 1726; https://doi.org/10.3390/plants14111726 - 5 Jun 2025
Viewed by 710
Abstract
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use [...] Read more.
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use efficiency during the early stages of development. This study evaluated the effects of zinc oxide (ZnO, 100 mg·L−1), silicon dioxide (SiO2, 10 mg·L−1), and their combination (ZnO + SiO2), stabilized with chitosan, on the germination yield and drought tolerance of jalapeño seeds under mannitol-induced water stress (0%, 15%, and 30%). Compared to the hydroprimed control (T1), nanoparticle treatments consistently improved seed yield. Priming with ZnO (T2) increased the germination percentage by up to 25%, priming with SiO2 (T3) improved the germination rate by 34%, and the combined treatment (T4: ZnO + SiO2) improved the fresh weight of the seedlings by 40%. Proline accumulation increased 7.5 times, antioxidant capacity (DPPH) increased 6.5 times, and total phenol content increased 4.8 times in the combined treatment. Flavonoid levels also showed notable increases, suggesting enhanced antioxidant defense. These results clearly demonstrate the superior efficacy of nanoparticle pretreatment compared to conventional hydraulic pretreatment, especially under drought conditions. Multivariate analysis further highlighted the synergistic role of ZnO and SiO2 in improving osmolite accumulation, antioxidant activity, and water use efficiency. Nanopriming with ZnO and SiO2 offers a promising, economical, and scalable strategy to improve germination, early growth, and drought resistance in jalapeño pepper cultivation under semi-arid conditions. Full article
Show Figures

Figure 1

23 pages, 1429 KiB  
Article
The Resistance of Germinating Pea (Pisum sativum L.) Seeds to Silver Nanoparticles
by Karolina Stałanowska, Katarzyna Głowacka, Bogusław Buszewski and Lesław Bernard Lahuta
Plants 2025, 14(11), 1594; https://doi.org/10.3390/plants14111594 - 23 May 2025
Viewed by 786
Abstract
The results of our recent research revealed that biologically synthesized silver nanoparticles (bio-AgNPs) applied to several-day-old pea (Pisum sativum L.) plants or used for seed nanopriming protected pea plants against selected fungal pathogens. However, the susceptibility of pea to bio-AgNPs during seed [...] Read more.
The results of our recent research revealed that biologically synthesized silver nanoparticles (bio-AgNPs) applied to several-day-old pea (Pisum sativum L.) plants or used for seed nanopriming protected pea plants against selected fungal pathogens. However, the susceptibility of pea to bio-AgNPs during seed germination remains mostly unknown. Therefore, in this study, we investigated the cells’ viability, ROS generation, total antioxidant capacity, the activity of selected antioxidant enzymes, and changes in the polar metabolite profiles of 4-day-old pea seedlings developed in water (control) and water suspensions of bio-AgNPs (at 50 and 200 mg/L). The bio-AgNPs did not negatively affect pea seeds’ germination, early seedlings’ growth, and root tips cells’ viability (at both tested concentrations). In the root, the bio-AgNPs at a lower concentration (50 mg/L) stimulated ROS generation. Nanoparticles enhanced peroxidase activity in root and the total antioxidant capacity in epicotyl. Increased levels of malate, phosphoric acid, proline, GABA, and alanine were observed in root and epicotyl of pea seedlings developed at 50 mg/L of bio-AgNPs. A higher concentration affected the tricarboxylic acid cycle and nitrogen metabolism. Bio-AgNPs alerted oxidative homeostasis and primary metabolism of pea seedlings but did not exceed a certain threshold limit and thus did not injure pea at an early stage of seedling development. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

19 pages, 4565 KiB  
Article
Effect of Green Synthesized Fe3O4NP Priming on Alfalfa Seed Germination Under Drought Stress
by Xinyue Wang, Mengting Ge and Xueqing He
Plants 2025, 14(8), 1236; https://doi.org/10.3390/plants14081236 - 18 Apr 2025
Viewed by 632
Abstract
Drought stress is one of the key environmental factors restricting the germination of alfalfa seeds (Medicago sativa L.). Nanopriming is an innovative seed-priming technology able to meet economic, agronomic, and environmental needs in agriculture. However, the use of conventional nanomaterials is hampered [...] Read more.
Drought stress is one of the key environmental factors restricting the germination of alfalfa seeds (Medicago sativa L.). Nanopriming is an innovative seed-priming technology able to meet economic, agronomic, and environmental needs in agriculture. However, the use of conventional nanomaterials is hampered by high costs, environmental risks, and biotoxicity. In this study, we synthesized iron oxide nanoparticles (Fe3O4NPs) using seasonal Ginkgo biloba leaf extracts (collected from August to November) obtained via an enzymatic ultrasonic-assisted method. The synthesized Fe3O4NPs were characterized using SEM, EDS, DLS, FTIR, UV-Vis, and XRD. To investigate the effects of Fe3O4NP priming on alfalfa seed germination under drought stress, germination and pot experiments were conducted with five Fe3O4NP priming concentrations (unprimed, 0, 20, 40, and 60 mg/L) and three PEG-6000 concentrations (0%, 10%, and 15%) to simulate normal, moderate, and severe drought conditions. The results showed that leaf extracts collected in November exhibited the highest flavonoid content (12.8 mg/g), successfully yielding bioactive-capped spherical Fe3O4NPs with a particle size of 369.5 ± 100.6 nm. Germination experiments revealed that under severe drought stress (15% PEG-6000), the 40 mg/L Fe3O4NP treatment most effectively enhanced seed vigor, increasing the germination rate, vigor index, and α-amylase activity by 22.1%, 189.4%, and 35.5% (p < 0.05), respectively, compared to controls. Under moderate drought stress (10% PEG-6000), the 20 mg/L Fe3O4NP treatment optimally improved germination traits, increasing the germination rate by 25.5% and seedling elongation by 115.6%. The pot experiments demonstrated morphological adaptations in alfalfa seedlings: under moderate drought stress, the 40 mg/L Fe3O4NPs significantly increased lateral root numbers, while under severe drought stress, the 60 mg/L Fe3O4NPs increased the root surface area by 20.5% and preserved the roots’ structural integrity compared to controls. These findings highlight that Fe3O4NPs synthesized via Ginkgo leaf extracts and enzymatic ultrasonic methods exhibit promising agricultural potential. The optimal Fe3O4NP priming concentrations enhanced seed vigor, germination traits, and drought resistance by modulating root morphology, with concentration-specific efficacy under varying drought intensities. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 3799 KiB  
Article
Field Crop Evaluation of Polymeric Nanoparticles of Garlic Extract–Chitosan as Biostimulant Seed Nano-Priming in Cereals and Transcriptomic Insights
by María Mondéjar-López, Alberto José López-Jiménez, Lourdes Gómez-Gómez, Oussama Ahrazem, Joaquín Calixto García-Martínez and Enrique Niza
Polymers 2024, 16(23), 3385; https://doi.org/10.3390/polym16233385 - 30 Nov 2024
Cited by 1 | Viewed by 1091
Abstract
Current crop management worldwide is shifting toward the use of environmentally friendly products. With this objective, we developed a new phytosanitary product with biostimulant properties based on the encapsulation of garlic extract at a lower dose (<0.1%) in chitosan nanoparticles as a seed [...] Read more.
Current crop management worldwide is shifting toward the use of environmentally friendly products. With this objective, we developed a new phytosanitary product with biostimulant properties based on the encapsulation of garlic extract at a lower dose (<0.1%) in chitosan nanoparticles as a seed nano-priming agent. In the present study, the morphology of the nanoparticles, their stability under prolonged storage conditions, and their efficacy as a biostimulant are evaluated on cereals in rainfed crops, and the activities were correlated with a transcriptomic analysis. The nanoparticles showed a spherical shape and had a maximum size close to 200 nm with satisfactory stability at 4 °C, reducing the probability of aggregation processes in the nanoparticles. The biostimulant properties of the nano-priming agent were evaluated in a field experiment with wheat, barley, and oat seeds at 30 and 90 days, showing that plants treated with nanoparticles showed significant differences with higher values in root development, leaf length, and total plant weight. Finally, through a RNA-SEQ analysis of the treated wheat seeds, we have confirmed that the nano-treatment showed a higher increases in regard to development, metabolism, and plant response genes compared with untreated seeds. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 2631 KiB  
Article
Seeds Priming with Bio-Silver Nanoparticles Protects Pea (Pisum sativum L.) Seedlings Against Selected Fungal Pathogens
by Karolina Stałanowska, Viorica Railean, Paweł Pomastowski, Agnieszka Pszczółkowska, Adam Okorski and Lesław Bernard Lahuta
Int. J. Mol. Sci. 2024, 25(21), 11402; https://doi.org/10.3390/ijms252111402 - 23 Oct 2024
Cited by 4 | Viewed by 1568
Abstract
Nano-priming is a relatively new seed treatment technique using metal and metal oxide nanoparticles (NPs), and such application of NPs may support the plants’ immunity. Recently we have shown that the that biologically synthesized silver nanoparticles (bio-AgNPs) used as short-term foliar treatment protect [...] Read more.
Nano-priming is a relatively new seed treatment technique using metal and metal oxide nanoparticles (NPs), and such application of NPs may support the plants’ immunity. Recently we have shown that the that biologically synthesized silver nanoparticles (bio-AgNPs) used as short-term foliar treatment protect pea seedlings against D. pinodes and F. avenaceum. In the present study, the protection of peas against both fungal pathogens via seed priming with bio-AgNPs was analyzed. Moreover, the changes in the polar metabolic profiles of the seedlings caused by priming and infection were also compared. Seed priming with bio-AgNPs at concentrations of 50 and 100 mg/L considerably reduced the symptoms and infection levels of both pathogens by over 70% and 90% for F. avenaceum and D. pinodes, respectively. Pathogens infection and nano-priming affected the metabolic profile of pea seedlings. The major changes in the primary metabolism were observed among carbohydrates and amino acids. In turn, this may result in changes in the expression and accumulation of secondary metabolites. Therefore, further investigation of the effect of nano-priming should focus on the changes in the secondary metabolism. Full article
(This article belongs to the Special Issue Molecular Trends and Prospects in Plant-Pathogen Interactions)
Show Figures

Figure 1

19 pages, 40086 KiB  
Article
Nanopriming-Induced Enhancement of Cucumber Seedling Development: Exploring Biochemical and Physiological Effects of Silver Nanoparticles
by Beatriz Pintos, Hugo de Diego and Arancha Gomez-Garay
Agronomy 2024, 14(8), 1866; https://doi.org/10.3390/agronomy14081866 - 22 Aug 2024
Cited by 3 | Viewed by 1639
Abstract
Nanopriming, a technique that involves treating seeds with nanoparticles, is gaining attention for enhancing seed germination and seedling growth. This study explored the effects of silver nanoparticles (AgNPs), synthesized using Ascorbic acid, Caffeic acid, and Gallic acid, on cucumber seedling development. The nanoparticles, [...] Read more.
Nanopriming, a technique that involves treating seeds with nanoparticles, is gaining attention for enhancing seed germination and seedling growth. This study explored the effects of silver nanoparticles (AgNPs), synthesized using Ascorbic acid, Caffeic acid, and Gallic acid, on cucumber seedling development. The nanoparticles, characterized by spherical morphology and distinct optical properties, showed varying effects based on the type and concentration of the reducing agents used. AgNP treatments generally led to higher germination rates and improved shoot and root growth compared to controls. Biochemical analyses revealed that these treatments influenced plant physiology, affecting reactive oxygen species (ROS) production, oxidative stress markers, and the content of amino acids, phenolic compounds, flavonoids, and soluble sugars. Specifically, certain AgNP treatments reduced oxidative stress, while others increased oxidative damage. Additionally, variations in free amino acids and phenolic and flavonoid contents were noted, suggesting complex interactions between nanoparticles and plant biochemical pathways. These findings highlight the potential of nanopriming in agriculture and underscore the need for further research to optimize nanoparticle formulations for different plant species. Full article
Show Figures

Graphical abstract

16 pages, 2270 KiB  
Article
Nanopriming with Zinc–Molybdenum in Jalapeño Pepper on Imbibition, Germination, and Early Growth
by Erick H. Ochoa-Chaparro, Carlos A. Ramírez-Estrada, Julio C. Anchondo-Páez, Esteban Sánchez, Sandra Pérez-Álvarez, Luis U. Castruita-Esparza, Ezequiel Muñoz-Márquez, Celia Chávez-Mendoza, Juan J. Patiño-Cruz and Cristina L. Franco-Lagos
Agronomy 2024, 14(8), 1609; https://doi.org/10.3390/agronomy14081609 - 23 Jul 2024
Cited by 2 | Viewed by 1524
Abstract
The jalapeño pepper is a vegetable of great economic importance worldwide. However, low germination efficiency, weak seedlings, and a high mortality rate during transplant compromise the viability and sustainability of the crop. An innovative solution is the nanopriming technique, an emerging and novel [...] Read more.
The jalapeño pepper is a vegetable of great economic importance worldwide. However, low germination efficiency, weak seedlings, and a high mortality rate during transplant compromise the viability and sustainability of the crop. An innovative solution is the nanopriming technique, an emerging and novel technology, which involves the imbibition of seeds for a specific period using mineral nanoparticles. The addition of micronutrients such as zinc and molybdenum has been used in seed germination and early seedling development due to their crucial roles. The aim of this study was to evaluate the effectiveness of using zinc–molybdenum nanopriming in jalapeño pepper on germination and early growth. The results showed that applying nanopriming (124–10 mg L−1 of zinc–molybdenum) promotes the effectiveness on the imbibition and germination of jalapeño pepper seeds, resulting in heavier seeds with a better initial absorption. This method not only improves germination rates and seedling vigor, but also points towards more sustainable and efficient agriculture. Building on these findings, the zinc–molybdenum nanopriming method could potentially transform jalapeño pepper cultivation by enhancing seed quality and resilience. Nanopriming could help increase crop yields and minimize reliance on chemical inputs, such as fertilizers and pesticides, which might reduce production costs and environmental impact. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 2329 KiB  
Article
The Impact of ZnO and Fe2O3 Nanoparticles on Sunflower Seed Germination, Phenolic Content and Antiglycation Potential
by Waleed Khaled Kaddem Al-Sudani, Rawaa Shakir Shnain Al-Shammari, Mohammed Saheb Abed, Jasim Hafedh Al-Saedi, Maria Mernea, Iulia Ioana Lungu, Florian Dumitrache and Dan Florin Mihailescu
Plants 2024, 13(13), 1724; https://doi.org/10.3390/plants13131724 - 21 Jun 2024
Cited by 4 | Viewed by 1922
Abstract
The enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and [...] Read more.
The enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and 4.5 nm and 16.7 nm Fe2O3 NPs to treat sunflower seeds. We evaluated the effects on germination, total phenolic content, and the anti-glycation potential of extracted polyphenols. Sunflower seeds were allowed to germinate in vitro after soaking in NP solutions of different concentrations. Polyphenols were extracted, dosed, and used in serum albumin glycation experiments. The germination speed of seeds was significantly increased by the 100 nm ZnO NPs and significantly decreased by the 4.5 nm Fe2O3 NPs. The total phenolic content (TPC) of seeds was influenced by the type of NP, as ZnO NPs enhanced TPC, and the size of the NPs, as smaller NPs led to improved parameters. The polyphenols extracted from seeds inhibited protein glycation, especially those extracted from seeds treated with 7 nm ZnO. The usage of NPs impacted the germination speed and total polyphenol content of sunflower seeds, highlighting the importance of NP type and size in the germination process. Full article
(This article belongs to the Special Issue Nanotechnology in Plant Science)
Show Figures

Figure 1

20 pages, 1071 KiB  
Article
Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments
by Gordana Tamindžić, Sergei Azizbekian, Dragana Miljaković, Maja Ignjatov, Zorica Nikolić, Dragana Budakov, Sanja Vasiljević and Mila Grahovac
Plants 2024, 13(11), 1547; https://doi.org/10.3390/plants13111547 - 3 Jun 2024
Cited by 11 | Viewed by 2435
Abstract
One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of [...] Read more.
One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of 8-day-old field pea seedlings (cv. NS Junior) under optimal and artificial drought (PEG-induced) laboratory conditions, this study aimed to assess the efficacy of priming with three different nanomaterials: Nanoplant Ultra (Co, Mn, Cu, Fe, Zn, Mo, and Se), Nanoplant Ca-Si (Ca, Si, B, and Fe), and Nanoplant Sulfur (S). The findings indicate that nanopriming seed treatments have a positive impact on seed quality indicators, early plant growth, and drought resilience in field pea plants established in both optimal and drought-stressed conditions. Nevertheless, all treatments showed a positive effect, but their modes of action varied. Nanoplant Ultra proved to be the most effective under optimal conditions, whereas Nanoplant Ca-Si and Nanoplant Sulfur were the most efficient under drought stress. After a field evaluation, the examined comprehensive nanomaterials may be utilized as priming agents for pea seed priming to boost seed germination, initial plant growth, and crop productivity under various environmental conditions. Full article
(This article belongs to the Special Issue Mechanisms of Seed Dormancy and Germination)
Show Figures

Figure 1

17 pages, 3380 KiB  
Article
Effect of MnO2 Nanoparticles Stabilized with Cocamidopropyl Betaine on Germination and Development of Pea (Pisum sativum L.) Seedlings
by Andrey Nagdalian, Andrey Blinov, Alexey Gvozdenko, Alexey Golik, Zafar Rekhman, Igor Rzhepakovsky, Roman Kolesnikov, Svetlana Avanesyan, Anastasiya Blinova, Maxim Pirogov, Pavel Leontev, Alina Askerova, Evgeniy Tsykin and Mohammad Ali Shariati
Nanomaterials 2024, 14(11), 959; https://doi.org/10.3390/nano14110959 - 30 May 2024
Cited by 4 | Viewed by 1804
Abstract
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50–600 nm, comprising spherical particles sized between 19 to 50 [...] Read more.
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50–600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1–10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 μg/L at 10 mg/L and 892.6 μg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

19 pages, 3621 KiB  
Article
Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression
by Yuliya Venzhik, Alexander Deryabin and Kseniya Zhukova
Plants 2024, 13(9), 1261; https://doi.org/10.3390/plants13091261 - 30 Apr 2024
Cited by 4 | Viewed by 2309
Abstract
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in [...] Read more.
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5–50 µg mL−1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs’ influence on the cold tolerance of wheat varieties were considered. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

Back to TopTop