Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (587)

Search Parameters:
Keywords = nanoparticles hyperthermia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4212 KB  
Article
Analysis of the Feasibility of Concurrent Application of Magnetic Nanoparticles as MRI Contrast Agents and for Magnetic Hyperthermia
by Przemysław Wróblewski, Michał Wieteska, Mateusz Midura, Grzegorz Domański, Damian Wanta, Wojciech Obrębski, Tomasz Płociński, Ewa Piątkowska-Janko, Kamil Lipiński, Mikhail Ivanenko, Mateusz Orzechowski, Waldemar T. Smolik and Piotr Bogorodzki
J. Funct. Biomater. 2026, 17(1), 54; https://doi.org/10.3390/jfb17010054 - 21 Jan 2026
Viewed by 72
Abstract
The aim of the article was to analyze the potential simultaneous use of magnetic nanoparticles as contrast agents in MRI imaging and for magnetic hyperthermia. The study proposed characterizing the nanoparticles using various measurement methods in order to investigate the relationships between different [...] Read more.
The aim of the article was to analyze the potential simultaneous use of magnetic nanoparticles as contrast agents in MRI imaging and for magnetic hyperthermia. The study proposed characterizing the nanoparticles using various measurement methods in order to investigate the relationships between different properties. The first stage involved measuring images of nanoparticle samples using scanning transmission electron microscopy (TEM) and dynamic light scattering (DLS). The diameter distribution of nanoparticles was determined based on image segmentation. The next step involved measuring relaxation properties of nanoparticles in low and high magnetic fields. The research was carried out for nanoparticle solutions of various concentrations and properties. The last step was measuring calorimetric properties of nanoparticles as a thermal source under alternating magnetic field excitation conditions. The range of nanoparticle diameters (20–25 nm) for which maximum losses occur in an alternating magnetic field corresponds to the diameter range in which the maximum r2 relaxivity is observed. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

22 pages, 5891 KB  
Article
Two-Stage Microwave Hyperthermia Using Magnetic Nanoparticles for Optimal Chemotherapy Activation in Liver Cancer: Concept and Preliminary Tests on Wistar Rat Model
by Oliver Daniel Schreiner, Thomas Gabriel Schreiner, Lucian Miron and Romeo Cristian Ciobanu
Cancers 2026, 18(2), 330; https://doi.org/10.3390/cancers18020330 - 21 Jan 2026
Viewed by 184
Abstract
Background/Objectives: Liver cancer is among the most frequent poor-prognosis malignancies worldwide, with currently insufficient effective treatment. The two-stage microwave hyperthermia using magnetic nanoparticles is a modern technique designed to specifically target tumor tissues and facilitate chemotherapy activation, with promising results from fundamental [...] Read more.
Background/Objectives: Liver cancer is among the most frequent poor-prognosis malignancies worldwide, with currently insufficient effective treatment. The two-stage microwave hyperthermia using magnetic nanoparticles is a modern technique designed to specifically target tumor tissues and facilitate chemotherapy activation, with promising results from fundamental studies across various tumor types. The method consists of a first irradiation, performed before nano-assemblies administration. This is intended to sensitize the tumor by inducing a hyperthermic effect, leading to increasing blood supply, enhancing endothelial damage/permeation and inflammatory activation, with the final goal of improving the diffusion/retention of nano-assemblies in the tumor. Subsequently, the second microwave irradiation follows the injection in the hepatic artery and diffusion in the tumor of the activated nano-assemblies, to further determine a strong, but localized and focalized hyperthermic action. Nano-magnetic assemblies for hyperthermia accomplish the proposed chemo-thermal delivery, i.e., act per se on the tumor and also destabilize co-administered assemblies of nanoparticles loaded with chemotherapeutics, which would be consequently released locally in the most efficient way. This article aims to demonstrate the efficacy of this therapeutic approach in a rat liver model and its potential applicability in patients with liver tumors. Methods: Adult male Wistar rats were used to obtain liver samples, which were divided into three groups, each receiving a different hyperthermia protocol in terms of temperature (41–45 °C), duration, and co-administration of nanoparticles. Results: The most suitable exposure temperature for rat liver appears to be 42 °C, resulting in vacuolar degeneration lesions at the focal level. The effects of thermal conditioning do not appear to be homogeneous in the tested liver, and the controlling environment and methodology should be improved in the near future. The level of hepatic inflammation, as indicated by elevated interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, appears negligible under the current hyperthermia protocol. Conclusions: Two-stage microwave hyperthermia using magnetic nanoparticles is a promising therapeutic modality for liver cancer, with promising results from animal studies opening the way for further research in humans. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

27 pages, 1311 KB  
Review
Peptide-Functionalized Iron Oxide Nanoparticles for Cancer Therapy: Targeting Strategies, Mechanisms, and Translational Opportunities
by Andrey N. Kuskov, Lydia-Nefeli Thrapsanioti, Ekaterina Kukovyakina, Anne Yagolovich, Elizaveta Vlaskina, Petros Tzanakakis, Aikaterini Berdiaki and Dragana Nikitovic
Molecules 2026, 31(2), 236; https://doi.org/10.3390/molecules31020236 - 10 Jan 2026
Viewed by 400
Abstract
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles [...] Read more.
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles (IONPs) offer a compelling solution to these challenges. Owing to their biocompatibility, magnetic properties, and ability to serve as both drug carriers and imaging agents, IONPs have become a versatile platform for precision nanomedicine. The integration of peptides with IONPs has generated a new class of hybrid systems that combine the biological accuracy of peptide ligands with the multifunctionality of magnetic nanomaterials. Peptide functionalization enables selective tumor targeting and deeper tissue penetration, while the IONP core supports controlled delivery, MRI-based tracking, and activation of therapeutic mechanisms such as magnetic hyperthermia. These hybrids also influence the tumor microenvironment (TME), facilitating stromal remodeling and improved drug accessibility. Importantly, the iron-driven redox chemistry inherent to IONPs can trigger regulated cell death pathways, including ferroptosis and autophagy, inhibiting opportunities to overcome resistance in aggressive or refractory tumors. As advances in peptide engineering, nanotechnology, and artificial intelligence accelerate design and optimization, peptide–IONP conjugates are poised for translational progress. Their combined targeting precision, imaging capability, and therapeutic versatility position them as promising candidates for next-generation cancer theranostics. Full article
Show Figures

Graphical abstract

20 pages, 8258 KB  
Article
Biomedical Applications of Chitosan-Coated Gallium Iron Oxide Nanoparticles GaxFe(3−x)O4 with 0 ≤ x ≤ 1 for Magnetic Hyperthermia
by Marta Orzechowska, Urszula Klekotka, Magdalena Czerniecka, Adam Tylicki, Dmytro Soloviov, Arkadiusz Miaskowski and Katarzyna Rećko
Molecules 2026, 31(1), 177; https://doi.org/10.3390/molecules31010177 - 2 Jan 2026
Viewed by 450
Abstract
Nanoparticles based on gallium ferrite are explored as potential agents for magnetic fluid hyperthermia due to their magnetic performance and biocompatibility. In this study, GaxFe3−xO4 systems (0 ≤ x ≤ 1) were synthesized by co-precipitation of iron chlorides, [...] Read more.
Nanoparticles based on gallium ferrite are explored as potential agents for magnetic fluid hyperthermia due to their magnetic performance and biocompatibility. In this study, GaxFe3−xO4 systems (0 ≤ x ≤ 1) were synthesized by co-precipitation of iron chlorides, with part of the series modified by a chitosan shell. Structural analysis confirmed single-phase formation across the studied range, while microscopy revealed irregular morphology, broad size distribution, and aggregation into mass-fractal-like assemblies. Chitosan was observed to coat groups of particles rather than single crystallites. Under an alternating magnetic field, all samples exhibited efficient heating, with specific absorption rate values generally increasing with gallium content. The composition Ga0.73Fe2.27O4 showed the highest SAR—83.4 ± 2.2 W/g at 2.8 mg/mL, 532 kHz, 15.3 kA/m, and SAR values rose with decreasing concentration. Cytotoxicity assays without magnetic activation indicated no harmful effect, while chitosan-coated nanoparticles enhanced fibroblast viability and lowered metabolic activity of HeLa cells. Higher Ga content (x = 0.66) combined with chitosan modification was identified as optimal for hyperthermia. The results demonstrate the biomedical potential of these nanoparticles, while emphasizing the need to reduce shape heterogeneity, aggregation, and sedimentation for improved performance. Full article
Show Figures

Figure 1

22 pages, 3229 KB  
Article
Influence of the Polarizing Magnetic Field and Volume Fraction of Nanoparticles in a Ferrofluid on the Specific Absorption Rate (SAR) in the Microwave Range
by Iosif Malaescu, Paul C. Fannin, Catalin N. Marin and Madalin O. Bunoiu
Magnetochemistry 2026, 12(1), 5; https://doi.org/10.3390/magnetochemistry12010005 - 30 Dec 2025
Viewed by 165
Abstract
For the study, we used four kerosene-based ferrofluid samples containing magnetite nanoparticles stabilized with oleic acid. Starting from the initial sample (A0), the other three samples were obtained by dilution with kerosene. The complex magnetic permeability measurements were performed in the microwave region [...] Read more.
For the study, we used four kerosene-based ferrofluid samples containing magnetite nanoparticles stabilized with oleic acid. Starting from the initial sample (A0), the other three samples were obtained by dilution with kerosene. The complex magnetic permeability measurements were performed in the microwave region (0.5–6) GHz, for different H values of the polarizing magnetic field, between (0–115) kA/m. These measurements revealed the ferromagnetic resonance phenomenon for each sample, allowing the determination of the anisotropy field (HA) and the effective anisotropy constant (Keff) of nanoparticles, depending on the volume fraction of particles (φ). At the same time, the measurements allowed the determination of the specific magnetic loss power (pm), effective heating rate (HReff), intrinsic loss power (ILP), and specific absorption rate (SAR) as functions of the frequency (f) and magnetic field (H), of all investigated samples, using newly proposed equations for their calculation. For the first time, this study evaluates the maximum limit of the applied polarizing magnetic field (Hmax ≈ 80 kA/m) and the minimum limit volume fraction of nanoparticles (φmin ≈ 3.5%) at which microwave heating of the ferrofluid remains efficient. At the same time, the results obtained show that the temperature increase of the ferrofluid samples, upon interaction with a microwave field, can be controlled by varying both H and φ, pointing to possible applications in magnetic hyperthermia. Full article
(This article belongs to the Special Issue 10th Anniversary of Magnetochemistry: Past, Present and Future)
Show Figures

Figure 1

22 pages, 9663 KB  
Article
Chitosan-Coated Fe3O4 Nanoparticles for Magnetic Hyperthermia
by Aleksandra Wilczyńska, Leszek Ruchomski, Mateusz Łakomski, Małgorzata Góral-Kowalczyk, Zbigniew Surowiec and Arkadiusz Miaskowski
Materials 2025, 18(24), 5629; https://doi.org/10.3390/ma18245629 - 15 Dec 2025
Viewed by 436
Abstract
This work investigated the electrical, dielectric, and magnetic properties of ferrofluids containing Fe3O4 nanoparticles and their composites with chitosan (30–100 cP and 100–300 cP), relevant to magnetic hyperthermia. The nanoparticles were synthesized by coprecipitation and characterized using impedance spectroscopy, X-ray [...] Read more.
This work investigated the electrical, dielectric, and magnetic properties of ferrofluids containing Fe3O4 nanoparticles and their composites with chitosan (30–100 cP and 100–300 cP), relevant to magnetic hyperthermia. The nanoparticles were synthesized by coprecipitation and characterized using impedance spectroscopy, X-ray diffraction, scanning microscopy with X-ray microanalysis, Mössbauer spectroscopy, and calorimetry. The study showed that the chitosan coating altered the textural properties of Fe3O4, reducing the specific surface area from 76.3 m2/g to 68.9–72.5 m2/g. The zeta potential and particle size showed strong pH dependence. Impedance measurements showed that the conductivity of ferrofluids was frequency- and temperature-dependent, with both metallic and dielectric conductivity observed. The complex dielectric permittivity exhibited Maxwell–Wagner–Sillars interface polarization. Calorimetry revealed that specific absorption rate (SAR) ranged from 11.4 to 23.4 W/g, depending on the chitosan concentration and type, while the chitosan coating reduced SAR by 12–40%. These results confirm that the electrical and dielectric parameters of ferrofluids significantly influence their thermal capabilities, which is important for optimizing magnetic hyperthermia therapy when energy dissipation is considered in bio-heat models. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 2516 KB  
Article
Cationic Surface Modification Combined with Collagen Enhances the Stability and Delivery of Magnetosomes for Tumor Hyperthermia
by Yu Wang, Conghao Lin, Yubing Zhang, Wenjun Li, Hongli Cui, Bohan Li, Zhengyi Liu, Kang Wang, Qi Wang, Yinchu Wang, Kangning Lv, Yandi Huang, Hongqin Zhuang and Song Qin
J. Funct. Biomater. 2025, 16(12), 461; https://doi.org/10.3390/jfb16120461 - 12 Dec 2025
Viewed by 1374
Abstract
Magnetosomes (MTS), membrane-enclosed magnetic nanoparticles naturally biomineralized by magnetotactic bacteria, are promising materials for tumor hyperthermia owing to their good biocompatibility and heating efficiency. However, their application is limited by poor suspension stability and low injectability at high concentrations. This study aimed to [...] Read more.
Magnetosomes (MTS), membrane-enclosed magnetic nanoparticles naturally biomineralized by magnetotactic bacteria, are promising materials for tumor hyperthermia owing to their good biocompatibility and heating efficiency. However, their application is limited by poor suspension stability and low injectability at high concentrations. This study aimed to enhance magnetosome stability and delivery performance through surface cationization combined with collagen matrix stabilization. The resulting cationic magnetosomes (CMTS) exhibited an increased positive charge on the outer membrane. Collagen, functioning as a negatively charged matrix under mildly alkaline conditions, effectively stabilized the cationic magnetosomes, forming CMTS–collagen aqueous suspensions (CMTS-Colas) that remained well-suspended for over 24 h and could be easily resuspended after 10 days of storage. Compared with native magnetosome suspensions, CMTS in collagen displayed smaller hydrodynamic diameters and significantly improved injectability through 26G and 31G fine needles. Under an alternating magnetic field, 2 mg/mL CMTS-Colas efficiently induced over 98% apoptosis in hepatoma cells after two treatment sessions and led to complete loss of cell viability after three sessions. These findings demonstrate that CMTS-Colas substantially improve the suspension stability and injectability of magnetosomes while maintaining strong hyperthermic efficacy, suggesting a promising strategy for stabilizing magnetosomes and potentially benefiting other charged, aggregation-prone magnetic biomaterials. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Graphical abstract

19 pages, 2215 KB  
Review
A Theoretical Framework for Ligand-Functionalised Magnetic Lipid Nanoparticles in Glioblastoma Therapy
by Dian Buist, Hiska van der Weide, Steven Bergink and Roland Chiu
Cancers 2025, 17(24), 3905; https://doi.org/10.3390/cancers17243905 - 6 Dec 2025
Viewed by 448
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumour with limited treatment options and a poor prognosis. Therapeutic failure is driven by multiple barriers, including the blood–brain barrier (BBB), the tumour microenvironment (TME), and intratumoural heterogeneity. Conventional delivery systems often fail to [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumour with limited treatment options and a poor prognosis. Therapeutic failure is driven by multiple barriers, including the blood–brain barrier (BBB), the tumour microenvironment (TME), and intratumoural heterogeneity. Conventional delivery systems often fail to achieve sufficient drug accumulation or controlled release within the tumour. In this review, we outline a theoretical framework for the design of ligand-functionalised magnetic lipid nanoparticles (MF-R-LNs), a multifunctional nanoplatform that integrates active targeting, stimuli-responsive drug release, and external magnetic-field control. The proposed MF-R-LNs incorporate superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic guidance and hyperthermia; polyethylene glycol (PEG) for extended circulation; and surface ligands such as peptides, antibodies, or aptamers to target GBM-specific receptors including epidermal growth factor receptor (EGFR), Interleukin-13 receptor alpha-2 (IL-13Rα2), and integrins. Triggered release mechanisms such as pH-sensitive lipids, redox cleavable linkers, and enzyme-responsive coatings enable selective drug release within the TME. Magnetic hyperthermia serves as both a therapeutic modality and a remote trigger to enhance release and tumour penetration. This modular design offers a theoretically robust strategy to overcome the key physiological and therapeutic barriers in GBM. We discuss the rationale behind each design feature, explore potential synergies, and highlight translational challenges such as tumour heterogeneity, manufacturing complexity, and safety concerns. Despite encouraging preclinical evidence, clinical translation faces substantial hurdles, notably patient-specific heterogeneity and scalable GMP manufacturing/characterisation of multi-component nanoplatforms. While preclinical validation remains necessary, this framework may inform future efforts to develop spatiotemporally controlled, multifunctional therapeutics for glioblastoma. This manuscript is a conceptual framework review that synthesises current strategies into actionable guidance for designing and reporting MF-R-LNs for GBM. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

23 pages, 6819 KB  
Article
Pomegranate and Cherry Leaf Extracts as Stabilizers of Magnetic Hydroxyapatite Nanocarriers for Nucleic Acid Delivery
by Hina Inam, Simone Sprio, Federico Pupilli, Marta Tavoni and Anna Tampieri
Int. J. Mol. Sci. 2025, 26(23), 11562; https://doi.org/10.3390/ijms262311562 - 28 Nov 2025
Viewed by 432
Abstract
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by [...] Read more.
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by external magnetic fields, thus improving delivery efficiency and reducing off-target effects. In addition, magnetic nanoparticles offer a novel nanoplatform for theranostic applications, integrating siRNA delivery with magnetic resonance imaging and magnetic hyperthermia for synergistic diagnostic and therapeutic advantages. The present work reports the development of a novel platform based on biomimetic magnetic nanoparticles made of Fe(II)/Fe(III)-doped apatite (FeHA) nucleated and grown in the presence of cherry and pomegranate leaf extracts to enhance the colloidal stability and make it suitable for nucleic acid delivery under the guidance of magnetic fields. This approach allowed the obtention of FeHA suspension with increased negative zeta potential leading to very good stability. In addition, the functionalization with natural extracts conferred antioxidant properties also favoring the maintenance of the Fe(III)/Fe(II) ratio in the apatitic structure, inducing the superparamagnetic properties. To evaluate the delivery capability of the system, a model GAPDH-targeting siRNA molecule was employed. Its interaction with the nanoplatform was characterized by assessing loading capacity and release kinetics, which were further interpreted using mathematical modeling to elucidate the underlying release mechanisms. Full article
(This article belongs to the Special Issue The Role of Natural Products in Treating Human Diseases)
Show Figures

Figure 1

30 pages, 2551 KB  
Article
Magnetohydrodynamic Flow and Transport Behaviors of Blood-Based Ternary Nanofluids in Stenosed Arteries with Axial Symmetry: Effects of Thermal Radiation and Caputo Fractional Derivatives
by Ji-Huan He, Magaji Yunbunga Adamu, Isah Abdullahi, Nuo Xu and Chun-Hui He
Symmetry 2025, 17(12), 2024; https://doi.org/10.3390/sym17122024 - 25 Nov 2025
Cited by 1 | Viewed by 417
Abstract
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical [...] Read more.
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical fields (magnetic field, thermal radiation). The findings offer significant insights into the realm of hyperthermia therapy and targeted drug delivery within the domain of biomedical engineering. A mathematical model is established under a cylindrical coordinate system (consistent with arterial axial symmetry), integrating key physical effects (thermal radiation, chemical reactions, viscous dissipation, body acceleration) and fractional-order dynamics via Caputo derivatives—while ensuring the symmetry of governing equations in time and space. The numerical solutions for velocity and temperature profiles are obtained using the Laplace transform and Concentrated Matrix-Exponential (CME) method, a technique that preserves symmetric properties during the solution process. The results of the study indicate the following: The Hartmann number, which is increased, has been shown to reduce axial velocity due to the Lorentz force, thereby maintaining radial symmetry. Furthermore, thermal radiation has been demonstrated to raise fluid temperature, a critical factor in heat-based therapies, with the temperature field evolving symmetrically. In addition, it has been observed that ternary nanoparticles outperform single and binary systems in heat and mass transfer via symmetric dispersion. This work contributes to the existing body of knowledge by integrating symmetry principles into the study of fractional dynamics, electromagnetic fields, and body acceleration modeling. It establishes a comprehensive biomedical flow framework. It is imperative that future research explore pulsatile flow under symmetric boundaries and validate the model through experimental means. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 3916 KB  
Article
Dual-Modality Ultrasound Imaging of SPIONs Distribution via Combined Magnetomotive and Passive Cavitation Imaging
by Christian Marinus Huber, Lars Hageroth, Nicole Dorsch, Johannes Ringel, Helmut Ermert, Martin Vossiek, Stefan J. Rupitsch, Ingrid Ullmann and Stefan Lyer
Sensors 2025, 25(23), 7171; https://doi.org/10.3390/s25237171 - 24 Nov 2025
Viewed by 2437
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise across a wide range of biomedical applications, including targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and regenerative medicine. In the context of local tumor therapy (Magnetic Drug Targeting, MDT) SPIONs can be functionalized with [...] Read more.
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise across a wide range of biomedical applications, including targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and regenerative medicine. In the context of local tumor therapy (Magnetic Drug Targeting, MDT) SPIONs can be functionalized with chemotherapeutic agents and accumulated at tumor sites using an externally applied magnetic field. To achieve effective drug accumulation and therapeutic efficacy, precise positioning of the accumulation magnet relative to the tumor is essential. To address this need, we propose a dual-modality ultrasound imaging approach combining magnetomotive ultrasound (MMUS) and passive cavitation mapping (PCM). MMUS detects magnetically induced displacements to localize SPIONs embedded in elastic tissue, while PCM monitors cavitation emissions from circulating SPIONs under focused ultrasound exposure. In addition to detection, PCM has the potential to enable feedback-based control of cavitation exposure, allowing cavitation parameters to be kept within a safe regime. The dual imaging modality approach was validated using standard phantoms and a complex carotid bifurcation tumor flow phantom fabricated via 3D printing. Experimental results demonstrate the first coordinated spatiotemporal imaging of MMUS and PCM within the same anatomical model, resolving the key bottleneck of SPIONs monitoring in blood vessels/tissue. This demonstrates the strong potential of complementary MMUS and PCM imaging for monitoring in preclinical and clinical MDT settings. Full article
(This article belongs to the Special Issue Ultrasonic Sensors and Ultrasonic Signal Processing)
Show Figures

Figure 1

32 pages, 2523 KB  
Article
Hybrid Nanofluid Flow and Heat Transfer in Inclined Porous Cylinders: A Coupled ANN and Numerical Investigation of MHD and Radiation Effects
by Muhammad Fawad Malik, Reem Abdullah Aljethi, Syed Asif Ali Shah and Sidra Yasmeen
Symmetry 2025, 17(11), 1998; https://doi.org/10.3390/sym17111998 - 18 Nov 2025
Viewed by 634
Abstract
This study investigates the thermal characteristics of two hybrid nanofluids, single-walled carbon nanotubes with titanium dioxide (SWCNTTiO2) and multi-walled carbon nanotubes with copper (MWCNTCu [...] Read more.
This study investigates the thermal characteristics of two hybrid nanofluids, single-walled carbon nanotubes with titanium dioxide (SWCNTTiO2) and multi-walled carbon nanotubes with copper (MWCNTCu), as they flow over an inclined, porous, and longitudinally stretched cylindrical surface with kerosene as the base fluid. The model takes into consideration all of the consequences of magnetohydrodynamic (MHD) effects, thermal radiation, and Arrhenius-like energy of activation. The outcomes of this investigation hold practical significance for energy storage systems, nuclear reactor heat exchangers, electronic cooling devices, biomedical hyperthermia treatments, oil and gas transport processes, and aerospace thermal protection technologies. The proposed hybrid ANN–numerical framework provides an effective strategy for optimizing the thermal performance of hybrid nanofluids in advanced thermal management and energy systems. A set of coupled ordinary differential equations is created by applying similarity transformations to the governing nonlinear partial differential equations that reflect conservation of mass, momentum, energy, and species concentration. The boundary value problem solver bvp4c, which is based in MATLAB (R2020b), is used to solve these equations numerically. The findings demonstrate that, in comparison to the MWCNTCu/kerosene nanofluid, the SWCNTTiO2/kerosene hybrid nanofluid improves the heat transfer rate (Nusselt number) by up to 23.6%. When a magnetic field is applied, velocity magnitudes are reduced by almost 15%, and the temperature field is enhanced by around 12% when thermal radiation is applied. The impact of important dimensionless variables, such as the cylindrical surface’s inclination angle, the medium’s porosity, the magnetic field’s strength, the thermal radiation parameter, the curvature ratio, the activation energy, and the volume fraction of nanoparticles, is investigated in detail using a parametric study. According to the comparison findings, at the same flow and thermal boundary conditions, the SWCNTTiO2/kerosene hybrid nanofluid performs better thermally than its MWCNTCu/kerosene counterpart. These results offer important new information for maximizing heat transfer in engineering systems with hybrid nanofluids and inclined porous geometries under intricate physical conditions. With its high degree of agreement with numerical results, the ANN model provides a computationally effective stand-in for real-time thermal system optimization. Full article
(This article belongs to the Special Issue Integral/Differential Equations and Symmetry)
Show Figures

Figure 1

27 pages, 8264 KB  
Article
Semiconducting Polymer-Based Nanocomposite for Photothermal Elimination of Staphylococcus aureus Biofilm
by Pedro Sanchez, Erica Vargas, Stan Green, Madison Greer, Shaina Yates-Alston, Mariana Esposito, Li Tan and Nicole Levi
Microorganisms 2025, 13(11), 2568; https://doi.org/10.3390/microorganisms13112568 - 11 Nov 2025
Viewed by 1023
Abstract
Biofilm growth on silicone (Si) medical devices is routinely treated with antibiotics or device removal; however, new approaches are needed. The current work evaluates photothermal therapy (PTT) to augment antibiotic efficacy or directly ablate Staphylococcus aureus biofilms. The semiconducting polymer, Poly [4,4-bis(2-ethylhexyl)-cyclopenta [2,1-b;3,4 [...] Read more.
Biofilm growth on silicone (Si) medical devices is routinely treated with antibiotics or device removal; however, new approaches are needed. The current work evaluates photothermal therapy (PTT) to augment antibiotic efficacy or directly ablate Staphylococcus aureus biofilms. The semiconducting polymer, Poly [4,4-bis(2-ethylhexyl)-cyclopenta [2,1-b;3,4 b’]dithiophene-2,6-diyl-alt22,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe), with a high photothermal conversion efficiency of 53.2%, was formulated into nanoparticles (BSe NPs) and incorporated into Si. Nanocomposites were stimulated with 800 nm light to generate mild hyperthermic conditions of 42 °C, or ablative temperatures above 50 °C. PTT, with or without antibiotics, was deployed against two strains of Staphylococcus aureus biofilms, Xen 29 and Xen 40, followed by an evaluation of bacterial survival, biofilm regrowth, and differential disruption of specific biofilm components. Mild hyperthermia was also used in an in vivo model of silicone implant infection. The results demonstrate a 55–59% reduction in S. aureus when PTT plus antibiotic was used in vitro, and a 51% reduction in vivo. Higher temperatures effectively eradicate both Xen 29 and Xen 40 strains, with a longer exposure time using lower laser power being optimal. Hyperthermia inhibited biofilm regrowth in both strains, resulting in a > 3 log reduction, plus increased dead cells, polysaccharides, and eDNA in treated Xen 40 biofilms. These experiments demonstrate that nanocomposite-based PTT can both reduce viable bacteria and alter individual biofilm components. Full article
(This article belongs to the Special Issue Novel Nanomaterials with Antimicrobial Activity)
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 681
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

55 pages, 17120 KB  
Review
Magnetic Hydrogels as a Treatment for Oncological Pathologies
by Veronica Manescu (Paltanea), Adrian-Vasile Dumitru, Aurora Antoniac, Iulian Antoniac, Gheorghe Paltanea, Elena-Cristina Zeca (Berbecar), Mirela Gherghe, Iosif Vasile Nemoianu, Alexandru Streza, Costel Paun and Sebastian Gradinaru
J. Funct. Biomater. 2025, 16(11), 414; https://doi.org/10.3390/jfb16110414 - 5 Nov 2025
Viewed by 1768
Abstract
Cancer is considered today as a prevalent research direction due to the fact that, by 2050, more than 30 million cases will occur, followed by about 19 million deaths. It is expected that scholars will search for new, innovative, and localized therapies to [...] Read more.
Cancer is considered today as a prevalent research direction due to the fact that, by 2050, more than 30 million cases will occur, followed by about 19 million deaths. It is expected that scholars will search for new, innovative, and localized therapies to ensure a much more targeted treatment with reduced side effects. Magnetic hydrogels overcome the disadvantages of classical magnetic nanoparticles in various oncological domains, including magnetic hyperthermia, theragnostic, immunotherapy, and, notably, regenerative medicine and contrast substances. We will review the magnetic hydrogel topics that may be involved as a potential application for cancer. Firstly, we present the international context and subject importance in the framework of statistics estimated by some researchers. Then, the magnetic hydrogel synthesis method will be briefly described with examples extracted from the literature. Supplementary, we will emphasize the main attributes of an ideal magnetic hydrogel, and last but not least, we will review some of the latest in vitro and in vivo studies in a direct relationship with magnetic hyperthermia, chemotherapeutic drug release dynamics, and immunotherapy used as single strategies or in combination, by underling the magnetic properties of the hydrogels and importance of application of magnetic fields. We will conclude our review paper by discussing toxicity issues, future trends, limitations, and proposed new approaches to address them. Full article
Show Figures

Graphical abstract

Back to TopTop