Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = nanomodification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6713 KiB  
Article
Influence of Nanosilica and PVA Fibers on the Mechanical and Deformation Behavior of Engineered Cementitious Composites
by Mohammed A. Albadrani
Polymers 2025, 17(15), 2067; https://doi.org/10.3390/polym17152067 - 29 Jul 2025
Viewed by 207
Abstract
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step [...] Read more.
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step is to improve their performance even more through nano-modification and fine-tuning of fiber dosage—one of the major research directions. In the experiment, six types of ECC mixtures were made by maintaining constant PVA fiber content (0.5, 1.0, 1.5, and 2.0%), while the nanosilica contents were varied (0, 1, 2, 3, and 5%). Stress–strain tests carried out in the form of compression, together with unrestrained shrinkage measurement, were conducted to test strength, strain capacity, and resistance to deformation, which was highest at 80 MPa, recorded in the concrete with 2% nS and 0.5% PVA. On the other hand, the mixture of 1.5% PVA and 3% nS had the highest strain result of 2750 µm/m, which indicates higher ductility. This is seen to be influenced by refined microstructures, improved fiber dispersion, and better fiber–matrix interfacial bonding through nS. In addition to these mechanical modifications, the use of nanosilica, obtained from industrial byproducts, provided the possibility to partially replace Portland cement, resulting in a decrease in the amount of CO2 emissions. In addition, the enhanced crack resistance implies higher durability and reduced long-term maintenance. Such results demonstrate that optimized ECC compositions, including nS and PVA, offer high performance in terms of strength and flexibility as well as contribute to the sustainability goals—features that will define future eco-efficient infrastructure. Full article
Show Figures

Figure 1

18 pages, 4701 KiB  
Article
Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys
by Joanna Korzekwa, Adam Jarząbek, Marek Bara, Mateusz Niedźwiedź, Krzysztof Cwynar and Dariusz Oleszak
Materials 2025, 18(15), 3471; https://doi.org/10.3390/ma18153471 - 24 Jul 2025
Viewed by 258
Abstract
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on [...] Read more.
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on EN AW 5251 aluminium alloys, this paper presents a modification of the coating with tungsten disulfide (IF-WS2) nanopowder and its effect on coating resistance. The wear properties of Al2O3/IF-WS2 coatings in contact with a cast iron pin were investigated. The results include the analysis of the friction coefficient in the reciprocating motion without oil lubrication at two loads, the analysis of the wear intensity of the cast iron pin, the characterisation of wear scars, and the analysis of SGP parameters. Two-level factorial analysis showed that load and nanomodification significantly affected the load-bearing parameter Rk. Incorporation of the modifier, especially under higher loads, reduced the Rk value, thus improving the tribological durability of the contact pair. Both load and nanomodification had a notable impact on the coefficient of friction. The use of IF-WS2-modified coatings reduced the coefficient, and higher loads further enhanced this effect, by approximately 9% at a load of 0.3 MPa and 15% at a load of 0.6 MPa, indicating improved lubricating conditions under greater contact stress. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 2807 KiB  
Review
Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer
by Jiangyan Hou, Tianyi Wang, Yao Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(12), 1596; https://doi.org/10.3390/polym17121596 - 7 Jun 2025
Viewed by 596
Abstract
Chinese lacquer, a historically significant bio-based coating, has garnered increasing attention in sustainable materials research due to its outstanding corrosion resistance, thermal stability, and environmental friendliness. Its curing process relies on the laccase-catalyzed oxidation and polymerization of urushiol to form a dense lacquer [...] Read more.
Chinese lacquer, a historically significant bio-based coating, has garnered increasing attention in sustainable materials research due to its outstanding corrosion resistance, thermal stability, and environmental friendliness. Its curing process relies on the laccase-catalyzed oxidation and polymerization of urushiol to form a dense lacquer film. However, the stringent temperature and humidity requirements (20–30 °C, 70–80% humidity) and a curing period that can extend over several weeks severely constrain its industrial application. Recent studies have significantly enhanced the curing efficiency through strategies such as pre-polymerization control, metal ion catalysis (e.g., Cu2+ reducing drying time to just one day), and nanomaterial modification (e.g., nano-Al2O3 increasing film hardness to 6H). Nevertheless, challenges remain, including the sensitivity of laccase activity to environmental fluctuations, the trade-off between accelerated curing and film performance, and issues related to toxic pigments and VOC emissions. Future developments should integrate enzyme engineering (e.g., directed evolution to broaden laccase tolerance), intelligent catalytic systems (e.g., photo-enzyme synergy), and green technologies (e.g., UV curing), complemented by multiscale modeling and circular design strategies, to drive the innovative applications of Chinese lacquer in high-end fields such as aerospace sealing and cultural heritage preservation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 4360 KiB  
Article
Effects of Nano-SiO2 and Nano-CaCO3 on Mechanical Properties and Microstructure of Cement-Based Soil Stabilizer
by Baofeng Lei, Xingchen Zhang, Henghui Fan, Jianen Gao, Yichun Du, Yafei Ji and Zhe Gao
Nanomaterials 2025, 15(11), 785; https://doi.org/10.3390/nano15110785 - 23 May 2025
Viewed by 558
Abstract
Soil stabilizers are environmentally friendly engineering materials that enable efficient utilization of local soil-water resources. The application of nano-modified stabilizers to reinforce loess can effectively enhance the microscopic interfacial structure and improve the macroscopic mechanical properties of soil. This study employed nano-SiO2 [...] Read more.
Soil stabilizers are environmentally friendly engineering materials that enable efficient utilization of local soil-water resources. The application of nano-modified stabilizers to reinforce loess can effectively enhance the microscopic interfacial structure and improve the macroscopic mechanical properties of soil. This study employed nano-SiO2 and nano-CaCO3 to modify cement-based soil stabilizers, investigating the enhancement mechanisms of nanomaterials on stabilizer performance through compressive and flexural strength tests combined with microscopic analyses, including SEM, XRD, and FT-IR. The key findings are as follows: (1) Comparative analysis of mortar specimen strength under identical conditions revealed that nano-SiO2 generally demonstrated superior mechanical enhancement compared to nano-CaCO3 across various curing ages (1–3% dosage). At 1% dosage, the compressive strength of both modified stabilizers increased with curing duration. Early-stage strength differences (3 days) remained below 3% but showed a significant divergence with prolonged curing: nano-SiO2 groups exhibited 10.3%, 11.3%, and 7.2% higher compressive strengths than nano-CaCO3 at 7, 14, and 28 days, respectively. (2) The strength enhancement effect of nano-SiO2 on MBER soil stabilizer followed a parabolic trend within 1–3% dosage range, peaking at 2.5% with over 15% strength improvement. (3) The exceptional performance of nano-SiO2 originates from its high reactivity and ultrafine particle characteristics, which induce nano-catalytic hydration effects and demonstrate strong pozzolanic activity. These properties accelerate hydration processes while promoting the formation of interlocking C-S-H gels and hexagonal prismatic AFt crystals, ultimately creating a robust three-dimensional network that optimizes interfacial structure and significantly enhances strength characteristics across curing periods. These findings provide scientific support for the performance optimization of soil stabilizers and their sustainable applications in eco-construction practices. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 40454 KiB  
Article
Shining a Light on Carbon-Reinforced Polymers: Mg/MgO and TiO2 Nanomodifications for Enhanced Optical Performance
by Lukas Haiden, Michael Feuchter, Andreas J. Brunner, Michel Barbezat, Amol Pansare, Bharath Ravindran, Velislava Terziyska and Gerald Pinter
J. Compos. Sci. 2025, 9(4), 187; https://doi.org/10.3390/jcs9040187 - 12 Apr 2025
Cited by 1 | Viewed by 494
Abstract
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition [...] Read more.
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition (EPD) and physical vapor deposition (PVD), respectively. Employing a customized electrophoretic cell, EPD facilitated uniform MgO nanoparticle deposition onto unsized carbon fibers, ensuring stable nanoparticle dispersion and precise fiber coating. As a result, the fibers exhibited increased ultraviolet (UV) reflectance, largely attributed to the optical properties of the protective MgO layer. In parallel, PVD enabled the deposition of Mg/MgO and TiO2 thin films with tailored thicknesses, providing precise control over key optical parameters such as reflectivity and interference effects. Mg/MgO coatings demonstrated high UV reflectivity, while TiO2 layers, with their varying refractive indices, generated vibrant colors in the visible (Vis) range through thickness-dependent light interference. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) assessed the quality, thickness, and uniformity of these thin films, and UV/Vis spectroscopy confirmed the influence of deposition parameters on the resulting optical performance. Post-lamination analyses revealed that both EPD and PVD modifications significantly enhanced UV reflectivity and allowed for customizable color effects. This dual strategy underscores the potential of combining EPD and PVD to develop advanced CFRPs with superior UV resistance, decorative optical features, and improved environmental stability. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

27 pages, 10694 KiB  
Article
Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry
by Karol Chilmon, Maciej Kalinowski and Wioletta Jackiewicz-Rek
Purification 2025, 1(1), 1; https://doi.org/10.3390/purification1010001 - 21 Feb 2025
Cited by 2 | Viewed by 1402
Abstract
This study investigates the relationship between surface properties and microstructural characteristics of photocatalytic composites and their impact on air purification efficiency. High-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and mercury intrusion porosimetry (MIP) were employed to analyze photocatalyst distribution and pore structure quantitatively. The [...] Read more.
This study investigates the relationship between surface properties and microstructural characteristics of photocatalytic composites and their impact on air purification efficiency. High-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and mercury intrusion porosimetry (MIP) were employed to analyze photocatalyst distribution and pore structure quantitatively. The findings demonstrated a strong correlation between TiO2 coverage on the photoactive surface and NO removal rates and between pore structure characteristics and NO2 generation rates. Two predictive models were developed to link NOx removal rates with photocatalytic cementitious mortars’ surface and structural properties. A stepwise regression approach produced a second-degree polynomial model with an adjusted R2 of 0.98 and a Mean Absolute Percentage Error (MAPE) of 8.34%, indicating high predictive accuracy. The results underscore the critical role of uniform photocatalyst distribution and optimized pore structure in enhancing NOx removal efficiency while promoting the generation of desirable products (NO3) and minimizing the formation of undesirable byproducts (NO2). Full article
Show Figures

Figure 1

14 pages, 3968 KiB  
Article
Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels
by Shahed Ekbatani, Phattharasaya Rattanawongkun, Supattra Klayya, Dimitrios G. Papageorgiou, Nattakan Soykeabkaew and Han Zhang
Polymers 2025, 17(3), 281; https://doi.org/10.3390/polym17030281 - 22 Jan 2025
Cited by 1 | Viewed by 1123
Abstract
Effective sound absorption materials are essential for mitigating noise pollution in urban and industrial environments, which pose serious health risks to humans. This work develops a hierarchical natural fibre binderless composite based on porous luffa, modified with localised cellulose nanocrystals (CNCs), for application [...] Read more.
Effective sound absorption materials are essential for mitigating noise pollution in urban and industrial environments, which pose serious health risks to humans. This work develops a hierarchical natural fibre binderless composite based on porous luffa, modified with localised cellulose nanocrystals (CNCs), for application in acoustic panels. The impedance tube approach was employed to systematically evaluate sound absorption performance across a range of frequencies. Adding 3 wt.% and 7 wt.% CNCs to the porous luffa structure improved its sound absorption, especially in mid-to-high frequency areas. The binderless luffa panels with 3% CNC panels exhibited the most balanced performance across various thicknesses, while 7% CNC–luffa panels demonstrated excellent sound absorption averages across all frequency ranges, although increased rigidity and reflective tendencies were observed. The nano-modification successfully maintained the sound absorption coefficient with reduced panel thickness. This study establishes CNC-modified luffa composites as a sustainable and efficient alternative to conventional acoustic materials, leveraging renewable resources and lightweight characteristics. These findings highlight the potential of CNC-luffa composites for noise mitigation, paving the way for environmentally conscious acoustic solutions. Full article
(This article belongs to the Special Issue Sustainable Development of Advanced Polymer Composites)
Show Figures

Figure 1

20 pages, 5599 KiB  
Article
Modification and Aging Mechanism of Crumb Rubber Modified Asphalt Based on Molecular Dynamics Simulation
by Jian Li and Liang He
Materials 2025, 18(1), 197; https://doi.org/10.3390/ma18010197 - 5 Jan 2025
Cited by 3 | Viewed by 997
Abstract
Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA). [...] Read more.
Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA). The base asphalt and CRMA (original and aged) and two typical aggregate models were constructed. The accuracy of the model was verified through multiple indicators. The effects of CR and aging on the physical properties (density, compatibility, and diffusion coefficient), mechanical properties, component interaction behavior, and interfacial interactions with aggregates of CRMA were systematically analyzed. The results showed that the CR reduced the diffusion coefficient of asphalt by about 31%. The CR inhibited the movement of the components of asphalt (especially saturate and aromatic), which significantly improved the mechanical properties of asphalt. The compatibility between asphalt and CR significantly deteriorated after aging. The difference in the solubility parameter was about four times that before aging. It is instructive for the regeneration of CRMA. Aging led to a decrease in the shear modulus and Young’s modulus of both base asphalt and CRMA, which verified and quantified the adverse effects of aging on the mechanical properties. Comparing the two aggregates, CaCO3 had a greater adhesion with asphalt than SiO2. The difference ranged from 22.5% to 39.9%, which quantified the difference in the adhesion properties of acid base aggregates with asphalt. This study can provide theoretical guidance for the modification and application of CRMA. Full article
Show Figures

Figure 1

18 pages, 6388 KiB  
Article
Deep Learning-Assisted Analysis of GO-Reinforcing Effects on the Interfacial Transition Zone of CWRB
by Jiajian Yu, Zhiwei Chen, Xiaoli Xu, Xinjie Su, Shuai Liang, Yanchao Wang, Junqing Hong and Shaofeng Zhang
Materials 2024, 17(23), 5926; https://doi.org/10.3390/ma17235926 - 4 Dec 2024
Cited by 1 | Viewed by 869
Abstract
Understanding the enhancing mechanisms of graphene oxide (GO) on the pore structure characteristics in the interfacial transition zone (ITZ) plays a crucial role in cemented waste rock backfill (CWRB) nanoreinforcement. In the present work, an innovative method based on metal intrusion techniques, backscattered [...] Read more.
Understanding the enhancing mechanisms of graphene oxide (GO) on the pore structure characteristics in the interfacial transition zone (ITZ) plays a crucial role in cemented waste rock backfill (CWRB) nanoreinforcement. In the present work, an innovative method based on metal intrusion techniques, backscattered electron (BSE) images, and deep learning is proposed to analyze the micro/nanoscale characteristics of microstructures in the GO-enhanced ITZ. The results showed that the addition of GO reduced the interpore connectivity and the porosity at different pore throats by 53.5–53.8%. GO promotes hydration reaction in the ITZ region; reduces pore circularity, solidity, and aspect ratio; enhances the mechanical strength of CWRB; and reduces transport performance to form a dense microstructure in the ITZ. Deep learning-based analyses were then proposed to classify and recognize BSE image features, with a high average recognition accuracy of 95.8%. After that, the deep Taylor decomposition (DTD) algorithm successfully located the enhanced features of graphene oxide modification in the ITZ. The calculation and verification of the typical pore optimization area of the location show that the optimization efficiency reaches 9.6–9.8%. This study not only demonstrated the deepening of the enhancement effect of GO on the pore structure in cement composites and provided new insights for the structural modification application of GO but also revealed the application prospect of GO in the strengthening of CWRB composites and solid waste recycling. Full article
Show Figures

Figure 1

20 pages, 2677 KiB  
Article
Workability of Nanomodified Self-Compacting Geopolymer Concrete Based on Response Surface Method
by Yong-Hua Tian, Jia-Cheng Tao, Tao Luo and Li Li
Buildings 2024, 14(11), 3610; https://doi.org/10.3390/buildings14113610 - 13 Nov 2024
Cited by 1 | Viewed by 1227
Abstract
Geopolymer concrete is more low-carbon and environmentally friendly than Portland cement concrete. Nanoparticle modification can help to improve the mechanical and durability performance of concrete, but due to its large specific surface area and high activity, it may deteriorate its workability. However, there [...] Read more.
Geopolymer concrete is more low-carbon and environmentally friendly than Portland cement concrete. Nanoparticle modification can help to improve the mechanical and durability performance of concrete, but due to its large specific surface area and high activity, it may deteriorate its workability. However, there is currently limited research on the effect of nanomodification on the workability of freshly mixed self-compacting geopolymer concrete (SCGC). This article conducted SCGC workability experiments using the response surface methodology, which included 29 different mixtures. The effects of nano-silica (NS), nano-calcium carbonate (NC), alkali content (N/B), and water cement ratio (W/B) on the workability of SCGC were studied. The experimental results show that the addition of NS and NC can reduce the slump expansion of SCGC, and the combination of the two significantly increases the amplitude of slump expansion with the change in nanomaterial content. An increase in N/B will reduce the expansion time and clearance value of SCGC. As N/B increases from 4% to 4.4%, the slump extension of SCGC decreases, and with a further increase in N/B, the slump extension increases significantly to 68.1 cm, which means that the slump extension of SCGC increases by 9.5% as N/B increases from 4.4 to 5. This study can provide a reference for optimizing the fresh performance of geopolymer concrete and improving the mechanism of nanomaterial-modified geopolymer concrete. Full article
Show Figures

Figure 1

14 pages, 27807 KiB  
Article
Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique
by Athanasios Kotrotsos, Nikolaos Syrmpopoulos, Prokopios Gavathas, Sorina Moica and Vassilis Kostopoulos
J. Compos. Sci. 2024, 8(6), 213; https://doi.org/10.3390/jcs8060213 - 6 Jun 2024
Cited by 3 | Viewed by 2528
Abstract
In this study, nanofibers obtained through the electrospinning process are explored for strain-sensing applications. Thermoplastic polyurethane (TPU) flexible structures were fabricated using the solution electrospinning process (SEP) technique. Subsequently, these structures were nanomodified with single-walled carbon nanotubes (SWCNTs) through immersion into an ultrasonicated [...] Read more.
In this study, nanofibers obtained through the electrospinning process are explored for strain-sensing applications. Thermoplastic polyurethane (TPU) flexible structures were fabricated using the solution electrospinning process (SEP) technique. Subsequently, these structures were nanomodified with single-walled carbon nanotubes (SWCNTs) through immersion into an ultrasonicated suspension containing 0.3 wt% SWCNTs. The nanomodification aimed to impart an electrically conductive network to the structures. Micro-tensile tests and electrical resistance measurements were conducted to characterize the apparent mechanical and electrical properties, respectively. The fabricated structures demonstrated potential as wearable strain sensors for monitoring changes in strain across various applications. The samples exhibited excellent performance, high sensitivity, outstanding mechanical properties, and a broad stretching range. Scanning electron microscopy (SEM) observations provided qualitative insights into the activated conductive pathways during operation. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

17 pages, 4992 KiB  
Article
Potentiometric Phosphate Ion Sensor Based on Electrochemically Modified All-Solid-State Copper Electrode for Phosphate Ions’ Detection in Real Water
by Yang He, Chenhua Han, Hao Du, Ying Ye and Chunhui Tao
Chemosensors 2024, 12(4), 53; https://doi.org/10.3390/chemosensors12040053 - 1 Apr 2024
Cited by 8 | Viewed by 3585
Abstract
The importance of phosphates has sparked researchers’ considerable interest in the electrochemical detection of phosphates within aqueous solutions in recent years. In this study, we present a novel all-solid-state phosphate ion-selective electrode (ISE) that integrates copper, copper nanoparticles, and copper phosphate. By modifying [...] Read more.
The importance of phosphates has sparked researchers’ considerable interest in the electrochemical detection of phosphates within aqueous solutions in recent years. In this study, we present a novel all-solid-state phosphate ion-selective electrode (ISE) that integrates copper, copper nanoparticles, and copper phosphate. By modifying the copper substrate of the electrode with a copper nanoparticle film and creating a lamellar copper phosphate film through electrochemical treatment, we significantly enhanced the electrode’s electron transfer efficiency. This microstructure with large specific surface area markedly improved the electrode’s responsiveness to the targeted ions by accelerating the achievement of chemical equilibrium on the electrode surface, thereby boosting its sensitivity and stability. The newly developed electrode was capable of detecting phosphate ions in solutions with a pH range from 6 to 11 and performed optimally in neutral solutions at pH 7, following Nernst principle, with a detection limit of 1 × 106 M. The electrode exhibited a short response time of less than 10 s with significant reproducibility, stability, longevity—maintaining functionality for more than two months. It also displayed good selectivity as the electrochemical equilibrium was not influenced by up to 1 mM of potential competing species like HCO3, NO3, Cl and SO42. We compared the detection results of current phosphate ion sensor and conventional determination methods for phosphate content in natural lake and aquaculture water samples, with a detection discrepancy of about 10% (RSD). Considering all feasible performance characteristics combined with its low cost, simple manufacture and portability, the sensor provides a new possibility for rapid, reliable, and long-term real-time in situ detection of phosphates. Full article
(This article belongs to the Special Issue Chemical Sensors and Analytical Methods for Environmental Monitoring)
Show Figures

Graphical abstract

34 pages, 8372 KiB  
Review
Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges
by Annu, Mona Mittal, Smriti Tripathi and Dong Kil Shin
Polymers 2024, 16(2), 294; https://doi.org/10.3390/polym16020294 - 21 Jan 2024
Cited by 33 | Viewed by 7450
Abstract
Essential for human development, water is increasingly polluted by diverse anthropogenic activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective remediation. Recent research focuses on sustainable adsorption, with nano-modifications [...] Read more.
Essential for human development, water is increasingly polluted by diverse anthropogenic activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective remediation. Recent research focuses on sustainable adsorption, with nano-modifications enhancing adsorbent efficacy against persistent waterborne pollutants. This review delves into recent advancements (2020–2023) in sustainable biopolymeric nanocomposites, spotlighting the applications of biopolymers like chitosan in wastewater remediation, particularly as adsorbents and filtration membranes along with their mechanism. The advantages and drawbacks of various biopolymers have also been discussed along with their modification in synthesizing biopolymeric nanocomposites by combining the benefits of biodegradable polymers and nanomaterials for enhanced physiochemical and mechanical properties for their application in wastewater treatment. The important functions of biopolymeric nanocomposites by adsorbing, removing, and selectively targeting contaminants, contributing to the purification and sustainable management of water resources, have also been elaborated on. Furthermore, it outlines the reusability and current challenges for the further exploration of biopolymers in this burgeoning field for environmental applications. Full article
Show Figures

Figure 1

26 pages, 27330 KiB  
Review
Status of Research on the Use of Nanomodified Microcapsules in Cement-Based Materials
by Xiaoman Xie, Sulei Zhang, Xiaoqiang Qi, Siyao Guo and Rui Ren
Processes 2024, 12(1), 128; https://doi.org/10.3390/pr12010128 - 3 Jan 2024
Cited by 3 | Viewed by 2363
Abstract
Microcapsules have received considerable attention owing to their excellent self-healing properties, and many researchers have attempted to modify their microcapsules’ characteristics to meet the requirements of various applications. Owing to their excellent physical and chemical properties, nanomaterial-modified (nanomodified) microcapsules can be used to [...] Read more.
Microcapsules have received considerable attention owing to their excellent self-healing properties, and many researchers have attempted to modify their microcapsules’ characteristics to meet the requirements of various applications. Owing to their excellent physical and chemical properties, nanomaterial-modified (nanomodified) microcapsules can be used to protect surface coatings and internal structures of cement-based materials. This paper summarizes the progress in theoretical research and practical application of nanomodified microcapsules in coatings and cement-based materials, focusing on preparation processes and performance enhancements. The advantages and necessity of using nanomaterials are highlighted by clarifying the effects of nanomodified microcapsules on the performances of coatings and cement-based materials. In addition, the bottlenecks in the application of nanomodified microcapsules to coatings and cement-based materials are comprehensively examined, and the challenges and future development directions are specified. This review provides technical guidance for the preparation of smart nanomodified microcapsules and novel ideas for enhancing the functionality of protective coatings and the durability and safety of cement-based materials. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 1167 KiB  
Article
Barrier Graphene Oxide on a CoCr Alloy via Silane/GO Covalent Bonding and Its Electrochemical Behavior in a Simulated Synovial Fluid Electrolyte
by Luna Sánchez-López, Belén Chico, María Lorenza Escudero, Rose María Lozano and María Cristina García-Alonso
Metals 2023, 13(8), 1331; https://doi.org/10.3390/met13081331 - 26 Jul 2023
Cited by 1 | Viewed by 1801
Abstract
In this work, impermeable and ultrathin surface nanomodifications for joint applications based on graphene oxide (GO) are assembled on CoCr surfaces via covalent immobilization between GO nanosheets and silane monolayers. Two silane curing temperatures, 45 °C for 24 h and 75 °C for [...] Read more.
In this work, impermeable and ultrathin surface nanomodifications for joint applications based on graphene oxide (GO) are assembled on CoCr surfaces via covalent immobilization between GO nanosheets and silane monolayers. Two silane curing temperatures, 45 °C for 24 h and 75 °C for 30 min, on CoCr surfaces and two incubation times for GO suspension, 12 h and 24 h, on silanized CoCr surfaces are prepared. Electrochemical characterization is performed using electrochemical impedance spectroscopy (EIS) in a 3 g/L hyaluronic acid solution. Results show that GO nanosheets immobilized with silane covalent bonding confer impermeability of sp2 networks on GO and strong interfacial adhesion of GO sheets anchored to silanized CoCr via organosilane chemistry, which prevents the permeation of oxidant species at the metal interface. At short GO incubation times (12 h), the Rs values decrease with the immersion time, indicating that small species, such as metal ions, are able to diffuse through the interlayer gaps of nanolayers. Longer GO incubation times (24 h) favor the formation of bonds between the GO and the silane, thus slowing downdiffusion and metal ion release into the medium. EIS data confirm the impermeability of GO nanocoatings with lengthening GO incubation time for medical application of metallic implants. Full article
Show Figures

Graphical abstract

Back to TopTop