Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer
Abstract
:1. Introduction
2. Curing Mechanism and Influencing Factors of Chinese Lacquer
2.1. Curing Mechanism of Chinese Lacquer
- C–C coupling at the meta- or para-positions of aromatic rings to form biphenyl- or diaryl-type dimers, e.g., C8–C8′, C8–C5′ linkages.
- C–O coupling, where semiquinone radicals undergo oxidative etherification at ortho-positions.
- Side chain coupling, involving the reaction of unsaturated triene side chains with aromatic radicals, forming allyl-aryl linkages or extended conjugated networks.
2.2. Influencing Factors in Lacquer Curing
2.2.1. Temperature
2.2.2. pH
2.2.3. Other Factors
3. Strategies for Accelerating the Curing of Chinese Lacquer
3.1. Catalytic Curing Mechanism of Metal Ions
3.1.1. Catalytic Mechanism and Effects of Copper Ions
3.1.2. Catalytic Effects of Other Metal Ions
3.2. Repeated Kneading Mixing Technology
3.3. Hybrid Lacquer Technology
3.4. Nanoparticle Modification Technology
4. Key Challenges in Chinese Lacquer Curing
5. Future Research Priorities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brunskog, M.; Tetsuo, M. The material complexity of three seventeenth-century cabinets exported from the Far East. Stud. Conserv. 2024, 69, 261–284. [Google Scholar] [CrossRef]
- Schilling, M.R.; Khanjian, H.; Chang, J.; Heginbotham, A.; Schellmann, N. Chinese lacquer: Much more than Chinese lacquer. Stud. Conserv. 2014, 59 (Suppl. S1), S131–S133. [Google Scholar] [CrossRef]
- Heginbotham, A.; Chang, J.; Khanjian, H.; Schilling, M.R. Some observations on the composition of Chinese lacquer. Stud. Conserv. 2016, 61 (Suppl. S3), 28–37. [Google Scholar] [CrossRef]
- Shen, H.; Li, S.; Zhang, H. Transparent and Thermally Stable Urushiol Films by Fast Thiol–ene Curing. ACS Appl. Polym. Mater. 2023, 5, 7022–7034. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Li, D.; Li, K.; Fang, J. Research progress on modification and application of raw lacquer. ChemistrySelect 2022, 7, e202200943. [Google Scholar] [CrossRef]
- Gonçalves, I.; Silva, C.; Cavaco-Paulo, A. Ultrasound enhanced laccase applications. Green Chem. 2015, 17, 1362–1374. [Google Scholar] [CrossRef]
- Lu, R.; Miyakoshi, T. Lacquer Chemistry and Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Watanabe, H.; Fujimoto, A.; Takahara, A. Characterization of catechol-containing natural thermosetting polymer “urushiol” thin film. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 3688–3692. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Góralczyk-Bińkowska, A.; Jasińska, A.; Długoński, J. Characteristics and use of multicopper oxidases enzymes. Post. Mikrobiol. 2019, 58, 7–18. [Google Scholar] [CrossRef]
- Yeon, J.H.; Lee, T.H.; Lee, H.J.; Cho, J.-Y.; Moon, J.-H. Ionization Neutralizes the Allergy-Inducing Property of 3-Pentadecylcatechol: A Urushiol Derivative. J. Med. Food 2020, 23, 793–801. [Google Scholar]
- Wang, Z.; Liu, D.; Oleksandr, S.; Li, J.; Arumugam, S.K.; Chen, F. Urushiol-Induced Hydrogels with Long-Term Durability and Long Service Lifespan in Mechanosensation. Ind. Eng. Chem. Res. 2021, 60, 17534–17544. [Google Scholar] [CrossRef]
- Xia, J.; Lin, J.; Xu, Y.; Chen, Q. On the UV-induced polymeric behavior of Chinese lacquer. ACS Appl. Mater. Interfaces 2011, 3, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Lu, R.; Sakai, R.; Ishimura, T.; Miyakoshi, T. Characterization and comparison of Asian lacquer saps. Prog. Org. Coat. 2008, 61, 68–75. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhang, Q.; Shen, Q.; Li, D.; Xiao, Z. Effects of polysaccharides on the properties of Chinese lacquer sap. Prog. Org. Coat. 2015, 78, 176–182. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhu, J.; Liu, W.; Zhou, M.; Li, D. Thermal polymerization of lacquer sap and its effects on the properties of lacquer film. Prog. Org. Coat. 2016, 94, 41–48. [Google Scholar] [CrossRef]
- Dai, X.; Wang, S.; Li, J.; Wei, Y.; Wei, W. Research progress on organic pollutants degradation by laccase. Environ. Prot. Sci. 2020, 46, 95–103. (In Chinese) [Google Scholar]
- Wang, H.X.; Ng, T.B. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotechnol. 2006, 69, 521–525. [Google Scholar] [CrossRef]
- Glazunova, O.A.; Polyakov, K.M.; Moiseenko, K.V.; Kurzeev, S.A.; Fedorova, T.V. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi. Int. J. Biol. Macromol. 2018, 118, 406–418. [Google Scholar] [CrossRef]
- Oshima, R.; Yamauchi, Y.; Watanabe, C.; Kumanotani, J. Enzymic oxidative coupling of urushiol in sap of the lac tree, Rhus vernicifera. J. Org. Chem. 1985, 50, 2613–2621. [Google Scholar] [CrossRef]
- Kato, T.; Kumanotani, J. Studies of Japanese lacquer: Urushiol dimerization by the coupling reaction between urushiol quinone and a triolefinic component of urushiol. J. Polym. Sci. Part A-1 Polym. Chem. 1969, 7, 1455–1465. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, F.; Sui, Y.; Yan, J. Radical chemistry in polymer science: An overview and recent advances. Beilstein J. Org. Chem. 2023, 19, 1580–1603. [Google Scholar] [CrossRef]
- Zhao, X.; Chang, F.; Fang, Z.; Zhang, Y.; Xiao, Y. Bioinformatic analysis and characterization of myxobacteria laccase-like multicopper oxidases. Chin. J. Biotechnol. 2017, 33, 609–619. [Google Scholar]
- Pawlik, A.; Ciołek, B.; Sulej, J.; Mazur, A.; Grela, P.; Staszczak, M.; Niscior, M.; Jaszek, M.; Matuszewska, A.; Janusz, G.; et al. Cerrena unicolor laccases, genes expression and regulation of activity. Biomolecules 2021, 11, 468. [Google Scholar] [CrossRef]
- Chen, X.M.; Wu, H.B.; Xiang, Q.J.; Zeng, X.F.; Zhang, X.P.; Gu, Y.F. Effects of different temperature cultures on laccase activity and transcriptional expression of Letinous edodes. J. Sichuan Univ. (Nat. Sci. Ed.) 2019, 56, 155–160. [Google Scholar]
- Han, Q.; Ge, Z.Q. Laccase-like activity of Mn3O4 nanoparticles and its application in degrading acridine orange. Chem. Ind. Eng. 2025, 42, 59–68. [Google Scholar]
- Bollag, J.M.; Leonowicz, A. Comparative studies of extracellular fungal laccases. Appl. Environ. Microbiol. 1984, 48, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Galhaup, C.; Goller, S.; Peterbauer, C.K.; Strauss, J.; Haltrich, D. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 2002, 148, 2159–2169. [Google Scholar] [CrossRef]
- Xu, F.; Berka, R.M.; Wahleithner, J.A.; Nelson, B.A.; Shuster, J.R.; Brown, S.H.; Palmer, A.E.; Solomon, E.I. Site-directed mutations in fungal laccase: Effect on redox potential, activity and pH profile. Biochem. J. 1998, 334, 63–70. [Google Scholar] [CrossRef]
- Debon, A. Directed Evolution of Enzymes using Ultrahigh-Throughput Screening. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2021. [Google Scholar]
- Zhan, D.F.; Du, Y.M.; Qian, B.G. Effects of proteins and polysaccharides on the activity of Toxicodendron vernicifera laccase. Chem. Ind. Forest Prod. 1991, 11, 111–116. [Google Scholar]
- Terada, T.; Oda, K.; Oyabu, H.; Inoue, M.; Kobayashi, F. Lacquer—The Science and Practice; Rikou Co., Ltd.: Tokyo, Japan, 1999. [Google Scholar]
- Huang, T.; Guo, M.G. Studies on the oxidative polymerization of urushiol to coating, catalyzed by the cupric complex with weakly alkaline anion-exchange resin of polystyrene series Cu-D370 simulating laccase. Chem. Ind. Forest Prod. 1990, 1, 21–27. [Google Scholar]
- Honzicek, J. Curing of air-drying paints: A critical review. Ind. Eng. Chem. Res. 2019, 58, 12485–12505. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, Y.; Wang, D.; Chen, J.; Yang, K.; Zheng, B.; Bai, W.; Jian, R.; Xu, Y. Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling. RSC Adv. 2020, 10, 13936–13943. [Google Scholar] [CrossRef]
- Capdevielle, P.; Lavigne, A.; Sparfel, D.; Baranne-Lafont, J.; Nguyen, K.C.; Maumy, M. Mechanism of primary aliphatic amines oxidation to nitriles by the cuprous chloride-dioxygen-pyridine system. Tetrahedron Lett. 1990, 31, 3305–3308. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Shen, F.; Cai, J.; Zhou, M. Promotion by copper(II)-modified montmorillonite of the drying property of oriental lacquer sap. Prog. Org. Coat. 2018, 118, 72–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Ban, L.; Tang, T.; Liu, Q.; Liu, X.; He, J. Cu–Ethanolamine Nanozymes Promote Urushiol Oxidation of Lacquer. Coatings 2024, 14, 332. [Google Scholar] [CrossRef]
- Minjiang University. A Preparation Method and Product of Ultra-Tough and Adhesive Hydrogel Electrolyte Mediated by Urushiol Nanomicelles. CN202411622213.8, 25 March 2025.
- Zhang, L.; Hua, J.L.; Wang, G.H.; Li, X.; Wang, D. The Influence of Catalyzed Activity of Laccase by Lives Metal Ions. J. Jiangxi Norm. Univ. (Nat. Sci. Ed.) 1998, 3, 49–53. [Google Scholar] [CrossRef]
- Yu, Z.P.; Luo, R.R.; Yang, J. Study on Catalytic of Metal Ions on the UV Curing. Inf. Rec. Mater. 2010, 11, 4–8. [Google Scholar]
- Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145. [Google Scholar] [CrossRef]
- Lu, R.; Harigaya, S.; Ishimura, T.; Nagase, K.; Miyakoshi, T. Development of a fast drying lacquer based on raw lacquer sap. Prog. Org. Coat. 2004, 51, 238–243. [Google Scholar] [CrossRef]
- Scheibel, D.M.; Gitsov, I.P.I.; Gitsov, I. Enzymes in “Green” synthetic chemistry: Laccase and Lipase. Molecules 2024, 29, 1039. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Bai, W.; Chen, J.; Jian, R.; Yang, K.; Lin, Q.; Xu, Y. Inorganic salts as effective additive for adjusting the curing of natural oriental lacquer. Prog. Org. Coat. 2021, 161, 106494. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhang, Q.; Shen, Y.; Guo, M. The UV-Vis spectra and FTIR spectra analysis of urushi films cured at different relative humidity. Adv. Mater. Res. 2012, 450–451, 1057–1060. [Google Scholar]
- Wu, X.; Xie, Y.; Yu, J.; Wang, H.; Liu, G.; Li, Q. Application and progress of modified natural urushiol resin. J. Chin. Adhes. Adhes. 2023, 32, 150–160. [Google Scholar]
- Lu, R.; Ono, M.; Suzuki, S.; Miyakoshi, T. Studies on a newly designed natural lacquer. Mater. Chem. Phys. 2006, 100, 158–161. [Google Scholar] [CrossRef]
- Wang, G.; Wu, X.; Xie, Y.; Zhang, Q.; Li, H.; Chen, S. A study on the modification and UV resistance of urushiol epoxy resin. Polym. Mater. Sci. Eng. 2021, 37, 34–40. [Google Scholar]
- Yang, J.; Zhu, J.; Deng, J.; Zhang, Q.; Shen, Y.; Zhou, Y.; Yang, F. The adhesion properties and mechanism of oriental lacquer sap to different materials. Prog. Org. Coat. 2018, 118, 13–18. [Google Scholar]
- Sato, K.; Iwatsubo, M.; Yamashita, M. Adhesive strength of lacquer films on various wood surfaces. J. Adhes. Sci. Technol. 1997, 11, 711–721. [Google Scholar]
- Wang, H.; Zhang, H.; Li, S.; Dang, S.; Gao, K.; Yuan, J.; Chu, J. Preparation and properties of quick-drying modified nano-alumina/lacquer composite coating. J. For. Eng. 2023, 8, 72–79. [Google Scholar]
- Ma, Y.; Guo, Y.; Li, Y.; Liu, X.; Zhang, L.; Wang, J.; Chen, H. Synthesis of Waterborne UV-Curable Urethane Acrylate Emulsion Modified by Urushiol. Coatings 2023, 13, 334. [Google Scholar]
Somece of Laecase | Form of Laccase | 2.6-Dimethoxy Phenol | Ferwlic Acid | Sinapic Acid | Syringic Acid | Vanillic Acid | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Activity | pH | Activity | pH | Activity | pH | Activity | pH | Activity | pH | ||
B. cinerea A235 | Constitutive | 1000 | 4.2 | 570 | 4.0 | 1097 | 3.8 | 694 | 4.0 | 92 | 4.1 |
F. annosus | Constitutive | 1000 | 4.2 | 650 | 4.6 | 1112 | 3.0 | 812 | 4.3 | 170 | 4.9 |
F. annosus | Inducible | 1000 | 4.2 | 1570 | 4.6 | 3430 | 3.0 | 2115 | 4.3 | 501 | 4.9 |
P. mutabilis | Constitutive | 1000 | 3.4 | 420 | 4.1 | 1211 | 3.9 | 970 | 4.1 | 104 | 4.3 |
P. mutabilis | Inducible | 1000 | 3.4 | 980 | 4.1 | 2870 | 3.9 | 2164 | 4.1 | 460 | 4.3 |
P. ostreatus | Constitutive | 1000 | 4.2 | 514 | 4.2 | 1127 | 3.8 | 890 | 4.0 | 120 | 4.8 |
P. ostreatus | Inducible | 1000 | 4.2 | 1374 | 4.7 | 3210 | 3.8 | 2970 | 4.0 | 630 | 4.8 |
P. anserina(−) | Constitutive | 1000 | 4.4 | 1460 | 4.2 | 2115 | 4.0 | 1860 | 4.2 | 616 | 4.5 |
R. praticola | Constitutive | 1000 | 6.8 | 910 | 7.2 | 1970 | 6.5 | 1215 | 7.0 | 170 | 7.5 |
T. versicolor | Constitutive | 1000 | 3.8 | 190 | 4.0 | 987 | 3.6 | 420 | 4.0 | 97 | 5.0 |
T. versicolor | Inducible | 1000 | 3.8 | 1028 | 4.0 | 2126 | 3.6 | 1270 | 4.0 | 420 | 5.0 |
Testing Item | Fi1m of Urushiol Polymer 502, Catalyzed by Cu-D370 | Film of Super Urushiol Polymer | Film of Ordinary Urushi |
---|---|---|---|
Surface dry (min.) | <20 | <30 | 30–120 |
Hard dry (day) | 1 | 3 | 30–90 |
Luster value (%) | 120–130 | 120–140 | 57 |
Appearance | Purple | Purple | Dark brown |
Impact strength (Kg × cm) | Front > 50; Back > 50 | Front > 50; Back > 50 | <30 |
Adhesion (grade) | 1 | 1–2 | 4 |
Hardness (glass value) | 0.78 | 0.82 | 0.78–0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Wang, T.; Wang, Y.; Feng, X.; Liu, X. Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer. Polymers 2025, 17, 1596. https://doi.org/10.3390/polym17121596
Hou J, Wang T, Wang Y, Feng X, Liu X. Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer. Polymers. 2025; 17(12):1596. https://doi.org/10.3390/polym17121596
Chicago/Turabian StyleHou, Jiangyan, Tianyi Wang, Yao Wang, Xinhao Feng, and Xinyou Liu. 2025. "Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer" Polymers 17, no. 12: 1596. https://doi.org/10.3390/polym17121596
APA StyleHou, J., Wang, T., Wang, Y., Feng, X., & Liu, X. (2025). Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer. Polymers, 17(12), 1596. https://doi.org/10.3390/polym17121596