Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges
Abstract
:1. Introduction
Technique | Type of Wastewater | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
Filtration | Pharmaceutical industry Fish processing | Simple and widely applicable Effective removal of suspended solids | Limited removal of contaminants Filter media can get clogged, require frequent maintenance | [40,41] |
Coagulation | Domestic sewage Oil Surface water Algae-laden | Efficient removal of colloidal particles Enhances subsequent filtration processes | Formation of sludge imposes on proper disposal Requires careful control of coagulant dosage | [42] |
Precipitation | Acidic decontamination of radioactive concrete Digested swine | Can reduce water hardness Effective for the removal of dissolved heavy metals | pH control is crucial for precipitation reactions Sludge production and disposal challenges | [43,44] |
Adsorption | Urban Pharmaceutical Organic | High efficiency in removing organic pollutants Versatile with various adsorbent materials | Saturation of adsorption sites over time Regeneration of adsorbents can be complex | [45,46,47] |
Flocculation | Pb (II)-polluted groundwater | Aggregation of particles for easier removal Enhanced sedimentation and filtration | Requires careful control of flocculant dosage Potential carryover of fine particles | [48] |
Electrodialysis | N and P High-salt organic Carbocysteine | Selective removal of ions Continuous operation with minimal chemical usage | High energy consumption Scaling on membranes may occur | [49,50,51] |
Membranes | Textile Microelectronic | Effective removal of particles, microorganisms, and ions Applicable for various contaminants | High operational and maintenance costs Membrane fouling can reduce efficiency | [52,53] |
Ion exchange | Cu (II), Ni (II) Cu (II), Pb (II) Municipal Mining | Selective removal of specific ions Regeneration allows for extended use | Limited to ion-specific removal High regeneration chemical usage | [54,55,56,57] |
2. Why Biopolymeric Nanocomposites?
3. Biopolymeric Nanocomposites
4. Synthesis of Biopolymeric Nanocomposites
5. Properties of Polymeric and Biopolymeric Nanocomposites
6. Applications of Biopolymeric Nanocomposites in Wastewater Remediation
6.1. Biopolymeric Nanocomposites as Filtration Membranes
Mechanism
6.2. Biopolymeric Nanocomposites as Adsorbents
7. Reusability of Biopolymeric Nanocomposites
8. Limitations and Challenges
9. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Oladoye, P.O. Natural, Low-Cost Adsorbents for Toxic Pb(II) Ion Sequestration from (Waste)Water: A State-of-the-Art Review. Chemosphere 2022, 287, 132130. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Zare, E.N.; Makvandi, P.; Zheng, X.; Iftekhar, S.; Wu, A.; Padil, V.V.T.; Mokhtari, B.; Varma, R.S.; Tay, F.R.; et al. Cytotoxic Aquatic Pollutants and Their Removal by Nanocomposite-Based Sorbents. Chemosphere 2020, 258, 127324. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Modelling and Optimization of Photocatalytic Degradation of Phenol via TiO2 Nanoparticles: An Insight into Response Surface Methodology and Artificial Neural Network. J. Photochem. Photobiol. A Chem. 2019, 384, 112039. [Google Scholar] [CrossRef]
- Devlin, M.; Brodie, J. Nutrients and Eutrophication. In Marine Pollution—Monitoring, Management and Mitigation; Reichelt-Brushett, A., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 75–100. ISBN 978-3-031-10127-4. [Google Scholar]
- Khademian, E.; Salehi, E.; Sanaeepur, H.; Galiano, F.; Figoli, A. A Systematic Review on Carbohydrate Biopolymers for Adsorptive Remediation of Copper Ions from Aqueous Environments-Part A: Classification and Modification Strategies. Sci. Total Environ. 2020, 738, 139829. [Google Scholar] [CrossRef]
- Shah, A.I.; Din Dar, M.U.; Bhat, R.A.; Singh, J.P.; Singh, K.; Bhat, S.A. Prospectives and Challenges of Wastewater Treatment Technologies to Combat Contaminants of Emerging Concerns. Ecol. Eng. 2020, 152, 105882. [Google Scholar] [CrossRef]
- Mansoori, S.; Davarnejad, R.; Matsuura, T.; Ismail, A.F. Membranes Based on Non-Synthetic (Natural) Polymers for Wastewater Treatment. Polym. Test. 2020, 84, 106381. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Ahmadi, S.; Ghosh, S.; Othmani, A.; Osagie, C.; Meskini, M.; AlKafaas, S.S.; Malloum, A.; Khanday, W.A.; Jacob, A.O.; et al. Recent Advances on Sustainable Adsorbents for the Remediation of Noxious Pollutants from Water and Wastewater: A Critical Review. Arab. J. Chem. 2023, 16, 105303. [Google Scholar] [CrossRef]
- Russo, T.; Fucile, P.; Giacometti, R.; Sannino, F. Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes 2021, 9, 719. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review. Carbohydr. Polym. 2014, 113, 115–130. [Google Scholar] [CrossRef]
- Mangla, D.; Annu; Sharma, A.; Ikram, S. Critical Review on Adsorptive Removal of Antibiotics: Present Situation, Challenges and Future Perspective. J. Hazard. Mater. 2022, 425, 127946. [Google Scholar] [CrossRef]
- Singh, R.; Purkait, M.K. Role of Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) in the Modification of Polysulfone Membranes for Ultrafiltration. J. Appl. Polym. Sci. 2017, 134, 45290. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, V.S.K.; Purkait, M.K. Cu2O Photocatalyst Modified Antifouling Polysulfone Mixed Matrix Membrane for Ultrafiltration of Protein and Visible Light Driven Photocatalytic Pharmaceutical Removal. Sep. Purif. Technol. 2019, 212, 191–204. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Rajala, K.; Grönfors, O.; Hesampour, M.; Mikola, A. Removal of Microplastics from Secondary Wastewater Treatment Plant Effluent by Coagulation/Flocculation with Iron, Aluminum and Polyamine-Based Chemicals. Water Res. 2020, 183, 116045. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, K.Q.; Barzinjy, A.A.; Hamad, S.M. Iron Oxide Nanoparticles: Preparation Methods, Functions, Adsorption and Coagulation/Flocculation in Wastewater Treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100661. [Google Scholar] [CrossRef]
- Samer, M. Biological and Chemical Wastewater Treatment Processes. In Wastewater Treatment Engineering; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Sharma, S.; Ahammed, M.M. Application of Modified Water Treatment Residuals in Water and Wastewater Treatment: A Review. Heliyon 2023, 9, e15796. [Google Scholar] [CrossRef] [PubMed]
- Dereli, R.K.; van der Zee, F.P.; Ozturk, I.; van Lier, J.B. Treatment of Cheese Whey by a Cross-Flow Anaerobic Membrane Bioreactor: Biological and Filtration Performance. Environ. Res. 2019, 168, 109–117. [Google Scholar] [CrossRef]
- Li, S.; Wu, S.; Cheng, X.; Dong, H.; Qiang, Z.; Xu, D. Adsorption, Boiling or Membrane Filtration for Disinfection by-Product Removal: How to Make Our Drinking Water Safer? Sci. Total Environ. 2024, 912, 169468. [Google Scholar] [CrossRef]
- Iqbal, A.; Cevik, E.; Bozkurt, A.; Mustafa, A.; Asiri, S.; Alagha, O.; Qahtan, T.F. Tailored Multifunctional Molybdenum-Iron Nanosheets for Enhanced Membrane Filtration and Excellent Electrocatalytic Performance for Hydrogen Evolution Reaction. J. Clean. Prod. 2023, 421, 138486. [Google Scholar] [CrossRef]
- Mandal, S.; Calderon, J.; Marpu, S.B.; Omary, M.A.; Shi, S.Q. Mesoporous Activated Carbon as a Green Adsorbent for the Removal of Heavy Metals and Congo Red: Characterization, Adsorption Kinetics, and Isotherm Studies. J. Contam. Hydrol. 2021, 243, 103869. [Google Scholar] [CrossRef]
- Jun, B.M.; Lee, H.K.; Park, S.; Kim, T.J. Purification of Uranium-Contaminated Radioactive Water by Adsorption: A Review on Adsorbent Materials. Sep. Purif. Technol. 2021, 278, 119675. [Google Scholar] [CrossRef]
- Dhariwal, S.; Mittal, M. Wastewater Treatment with Perovskite-Based Photocatalysts: Environmental Sustainability from a Green Perspective. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Sharma, T.; Yadav, S.; Mittal, M. Recent Advancement in the Sustainable Synthesis of BiOX (X = I, Br, and Cl) Nanomaterials and Their Applications in the Photocatalysis. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Singh, S.; Garg, R.; Jana, A.; Bathula, C.; Naik, S.; Mittal, M. Current Developments in Nanostructurally Engineered Metal Oxide for Removal of Contaminants in Water. Ceram. Int. 2023, 49, 7308–7321. [Google Scholar] [CrossRef]
- Mittal, M.; Jana, A. Role of Nanophotocatalysts in Water Remediation. In Nanotechnology for Sustainable Agriculture, Food and Environment; CRC Press: Boca Raton, FL, USA, 2023; pp. 171–182. [Google Scholar]
- Shekh, M.I.; Annu; Ahmed, S. Chapter 1—Biopolymers: An Overview. In Advanced Applications of Biobased Materials; Ahmed, S., Annu, Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–21. ISBN 978-0-323-91677-6. [Google Scholar]
- Van de Velde, K.; Kiekens, P. Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Compatibilization of Biopolymer Blends: A Review. Adv. Ind. Eng. Polym. Res. 2023. [Google Scholar] [CrossRef]
- Hoque, M.; Alam, M.; Wang, S.; Zaman, J.U.; Rahman, M.S.; Johir, M.A.H.; Tian, L.; Choi, J.-G.; Ahmed, M.B.; Yoon, M.-H. Interaction Chemistry of Functional Groups for Natural Biopolymer-Based Hydrogel Design. Mater. Sci. Eng. R Rep. 2023, 156, 100758. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Guibal, E.; Alghamdi, H.M.; Elwakeel, K.Z. Use of Biopolymers in Wastewater Treatment: A Brief Review of Current Trends and Prospects. Chin. J. Chem. Eng. 2023, 64, 292–320. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers 2023, 15, 3421. [Google Scholar] [CrossRef]
- Rajendra, S.; Sadasivuni, K.K.; Deshmukh, K.; Mehta, A.; Basu, S.; Meshram, J.S.; Al-Maadeed, M.A.A.; Karim, A. Natural Polymer Based Composite Membranes for Water Purification: A Review. Polym. Technol. Mater. 2019, 58, 1295–1310. [Google Scholar] [CrossRef]
- Rahmatpour, A.; Hesarsorkh, A.H.A. Chitosan and Silica Nanoparticles-Modified Xanthan Gum-Derived Bio-Nanocomposite Hydrogel Film for Efficient Uptake of Methyl Orange Acidic Dye. Carbohydr. Polym. 2024, 328, 121721. [Google Scholar] [CrossRef] [PubMed]
- Emam, H.E.; Badawi, A.K.; Adeola, A.O.; Nomngongo, P.N. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers 2022, 14, 2462. [Google Scholar] [CrossRef]
- Tharwat, R.M.; Mahmoud, M.E.; Abdelfattah, A.M.; Hassan, S.S.M. Decorated Xanthan Gum/Alginate Mingled Hydrogel Beads@La(III)-MOFs@reduced Graphene Oxide@graphene Quantum Dots Nanohybrid for Adsorptive Capture and Recovery of U(VI). J. Mol. Liq. 2023, 390, 122960. [Google Scholar] [CrossRef]
- Mudgal, D.; Yadav, N.; Singh, J.; Srivastava, G.K.; Mishra, V. Xanthan Gum-Based Copper Nano-Magnetite Doped Carbon Aerogel: A Promising Candidate for Environmentally Friendly Catalytic Dye Degradation. Int. J. Biol. Macromol. 2023, 253, 127491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Gusain, R.; Pandey, S.; Ray, S.S. Hydrogel Nanocomposite Adsorbents and Photocatalysts for Sustainable Water Purification. Adv. Mater. Interfaces 2023, 10, 2201375. [Google Scholar] [CrossRef]
- Virpiranta, H.; Okyere Abayie, S.; Mäkikangas, J.; Puirava, M.; Koivula, K.; Leiviskä, T. Treatment of Fish Processing Plant Wastewater Using Dissolved Air Flotation and Pilot-Scale Biochar Column Filtration. J. Environ. Chem. Eng. 2023, 11, 110853. [Google Scholar] [CrossRef]
- Hong Tran, G.; Khanh Tran, T.; Leu, H.-J.; Richards, D.; Lo, S.-S. An Integrated System Combining Electrochemical Oxidation and Filtration Processes to Remove Chlorine from Pharmaceutical Industry Wastewater. Arab. J. Chem. 2024, 17, 105611. [Google Scholar] [CrossRef]
- Geng, Y.; Nie, Y.; Du, H.; Ma, T.; Li, L.; Can, Z.; Xue, N.; Shen, Q. Coagulation Performance and Floc Characteristics of Fe–Ti–V Ternary Inorganic Coagulant for Organic Wastewater Treatment. J. Water Process Eng. 2023, 56, 104344. [Google Scholar] [CrossRef]
- Oh, M.; Lee, K.; Jeon, M.K.; Foster, R.I.; Lee, C.-H. Chemical Precipitation–Based Treatment of Acidic Wastewater Generated by Chemical Decontamination of Radioactive Concrete. J. Environ. Chem. Eng. 2023, 11, 110306. [Google Scholar] [CrossRef]
- Bai, W.; Tang, R.; Wu, G.; Wang, W.; Yuan, S.; Xiao, L.; Zhan, X.; Hu, Z.-H. Co-Precipitation of Heavy Metals with Struvite from Digested Swine Wastewater: Role of Suspended Solids. J. Hazard. Mater. 2023, 455, 131633. [Google Scholar] [CrossRef]
- Santos, A.F.; Lopes, D.V.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Phosphorus Removal from Urban Wastewater through Adsorption Using Biogenic Calcium Carbonate. J. Environ. Manag. 2024, 351, 119875. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Yang, S.; Liu, X.; Zhu, C.; Qi, F.; Wang, K.; Wang, J.; Wang, Q.; Wang, T.; Ma, P. Adsorption of Antibiotics from Wastewater by Cabbage-Based N, P Co-Doped Mesoporous Carbon Materials. J. Clean. Prod. 2023, 391, 136174. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Chen, M.; Feng, Q.; Zhang, X.; Wang, S.; Zhao, R.; Jiang, T. Adsorption and Photocatalytic Degradation of Quinolone Antibiotics from Wastewater Using Functionalized Biochar. Environ. Pollut. 2023, 336, 122409. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Liu, L.; Du, J.; Ma, C. Investigation of the Treatment Efficiency and Mechanism of Microporous Flocculation Magnetic Fluidized Bed (MFMFB) Reactor for Pb(II)-Containing Wastewater. Sep. Purif. Technol. 2024, 334, 125963. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Zhang, L. Construction of Bipolar Membrane Electrodialysis Reactor for Removal and Recovery of Nitrogen and Phosphorus from Wastewater. Int. J. Electrochem. Sci. 2023, 18, 100051. [Google Scholar] [CrossRef]
- Jia, Z.; Li, F.; Zhang, X.; Zhao, X. Effects of Cation Exchange Membrane Properties on the Separation of Salt from High-Salt Organic Wastewater by Electrodialysis. Chem. Eng. J. 2023, 475, 146287. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, H.; Cheng, Y.; Ma, X.; Chu, Y.; Hu, X. Treatment of Carbocysteine Wastewater by Bipolar Membrane Electrodialysis: From Lab-to Pilot-Scale. J. Memb. Sci. 2023, 687, 122056. [Google Scholar] [CrossRef]
- Luo, X.; Jiang, L.; Zhao, R.; Wang, Y.; Xiao, X.; Ghazouani, S.; Yu, L.; Mai, Z.; Matsuyama, H.; Jin, P. Energy-Efficient Trehalose-Based Polyester Nanofiltration Membranes for Zero-Discharge Textile Wastewater Treatment. J. Hazard. Mater. 2024, 465, 133059. [Google Scholar] [CrossRef]
- Li, X.; Lin, L.; Zhang, X.; Dai, R.; Wu, Z.; Wang, Z. Performance and Fouling Characteristics in a Pilot-Scale Reverse Osmosis Membrane System for Microelectronic Wastewater Treatment. Sep. Purif. Technol. 2024, 337, 126333. [Google Scholar] [CrossRef]
- Yang, X.; Ma, N.; Jia, Y.; Huang, J.; Zhang, X. Separation and Recovery Process of Copper (II) and Nickel (II) from Wastewater Using Ion Exchange Fiber. ChemistrySelect 2021, 6, 12985–12997. [Google Scholar] [CrossRef]
- Lin, Z.; Li, F.; Liu, X.; Su, J. Preparation of Corn Starch/Acrylic Acid/Itaconic Acid Ion Exchange Hydrogel and Its Adsorption Properties for Copper and Lead Ions in Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131668. [Google Scholar] [CrossRef]
- Medri, V.; Papa, E.; Landi, E.; Maggetti, C.; Pinelli, D.; Frascari, D. Ammonium Removal and Recovery from Municipal Wastewater by Ion Exchange Using a Metakaolin K-Based Geopolymer. Water Res. 2022, 225, 119203. [Google Scholar] [CrossRef] [PubMed]
- Lebron, Y.A.R.; Silva, A.F.R.; Moreira, V.R.; de Souza Santos, L.V.; Amaral, M.C.S. Hybrid Membrane Distillation and Ion Exchange Process for Resources Recovery from Mining Wastewater. Desalination 2024, 573, 117224. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Łuczak, J.; Habibzadeh, S.; Hasanin, M.S.; Mohammadi, A.; Esmaeili, A.; Kim, S.-J.; Khodadadi Yazdi, M.; Rabiee, N.; Badawi, M.; et al. Polysaccharide Nanocomposites in Wastewater Treatment: A Review. Chemosphere 2024, 347, 140578. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Christopher, L.P. Natural Cellulose-Chitosan Cross-Linked Superabsorbent Hydrogels with Superior Swelling Properties. ACS Sustain. Chem. Eng. 2018, 6, 8736–8742. [Google Scholar] [CrossRef]
- Risch, P.; Adlhart, C. A Chitosan Nanofiber Sponge for Oyster-Inspired Filtration of Microplastics. ACS Appl. Polym. Mater. 2021, 3, 4685–4694. [Google Scholar] [CrossRef]
- Jørgensen, S.E. Examination of the Applicability of Cellulose Ion Exchangers for Water and Waste Water Treatment. Water Res. 1979, 13, 1239–1247. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmed, A.I.S.; Malik, M.Z.; Ali, N.; khan, A.; Ali, F.; Hassan, M.O.; Mohamed, B.A.; Zdarta, J.; Bilal, M. Cellulose/Inorganic Nanoparticles-Based Nano-Biocomposite for Abatement of Water and Wastewater Pollutants. Chemosphere 2023, 313, 137483. [Google Scholar] [CrossRef]
- He, S.; Li, J.; Cao, X.; Xie, F.; Yang, H.; Wang, C.; Bittencourt, C.; Li, W. Regenerated Cellulose/Chitosan Composite Aerogel with Highly Efficient Adsorption for Anionic Dyes. Int. J. Biol. Macromol. 2023, 244, 125067. [Google Scholar] [CrossRef]
- Maity, S.K.; Tyagi, U.; Sirohi, S.; Pani, B.; Kumar, K.; Nikita; Kumar, G. Fabrication of Biocompatible Chitosan/Graphene Based Nanocomposite for the Competitive Adsorption of Heavy Metal Ions from Wastewater in Binary and Ternary Systems: Scale-up and Upgradation Studies. J. Water Process Eng. 2023, 56, 104555. [Google Scholar] [CrossRef]
- Li, L.; Iqbal, J.; Zhu, Y.; Wang, F.; Zhang, F.; Chen, W.; Wu, T.; Du, Y. Chitosan/Al2O3-HA Nanocomposite Beads for Efficient Removal of Estradiol and Chrysoidin from Aqueous Solution. Int. J. Biol. Macromol. 2020, 145, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Annu; Ahmed, S.; Ahmed, S.; Ikram, S. Chitin and Chitosan: History, Composition and Properties. In Chitosa; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–24. ISBN 9781119364849. [Google Scholar]
- Annu; Ahmed, S.; Ikram, S. Perspectives of Chitosan and Alginate Membranes for Biomedical Applications. In Natural Polymers: Derivatives, Blends and Composites; Ahmed, S., Ikram, S., Eds.; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2017; Volume 2, pp. 157–182. ISBN 9781536104400. [Google Scholar]
- isverya, S.; Annu; Ali, A.; Sudha, P.N. 28—Pullulan-Based Bionanocomposites in Tissue Engineering and Regenerative Medicine. In Bionanocomposites in Tissue Engineering and Regenerative Medicine; Ahmed, S., Annu, Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2021; pp. 533–547. ISBN 978-0-12-821280-6. [Google Scholar]
- Khatoon, F.; Shabbir, M.; Annu. An Introduction to Regenerated Cellulose: Morphologies and Applications. In Regenerated Cellulose and Composites: Morphology-Property Relationship; Shabbir, M., Ed.; Springer Nature: Singapore, 2023; pp. 1–7. ISBN 978-981-99-1655-9. [Google Scholar]
- Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal Oxide-Cellulose Nanocomposites for the Removal of Toxic Metals and Dyes from Wastewater. Int. J. Biol. Macromol. 2020, 164, 2477–2496. [Google Scholar] [CrossRef]
- Annu; Ahmed, S. 1—Bionanocomposites: An Overview. In Bionanocomposites in Tissue Engineering and Regenerative Medicine; Ahmed, S., Annu, Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2021; pp. 1–6. ISBN 978-0-12-821280-6. [Google Scholar]
- Gomez-Maldonado, D.; Erramuspe, I.B.V.; Peresin, M.S. Natural Polymers as Alternative Adsorbents and Treatment Agents for Water Remediation. BioResources 2019, 14, 10093–10160. [Google Scholar] [CrossRef]
- Annu; Ahmed, S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Evaluation of the Antioxidant, Antibacterial and Anticancer (Lung Cancer Cell Line A549) Activity of: Punica Granatum Mediated Silver Nanoparticles. Toxicol. Res. 2018, 7, 923–930. [Google Scholar] [CrossRef]
- Annu; Ahmed, S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Fruit Waste (Peel) as Bio-Reductant to Synthesize Silver Nanoparticles with Antimicrobial, Antioxidant and Cytotoxic Activities. J. Appl. Biomed. 2018, 16, 221–231. [Google Scholar] [CrossRef]
- Amass, W.; Amass, A.; Tighe, B. A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. Polym. Int. 1998, 47, 89–144. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.A.; Hinrichsen, G.I. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Annu; Manzoor, K.; Ahmad, S.; Soundarajan, A.; Ikram, S.; Ahmed, S. Chapter 30—Chitosan Based Nanomaterials for Biomedical Applications. In Handbook of Nanomaterials for Industrial Applications; Mustansar Hussain, C., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 543–562. ISBN 978-0-12-813351-4. [Google Scholar]
- Annu; Ali, A.; Ahmed, S. Green Synthesis of Metal, Metal Oxide Nanoparticles, and Their Various Applications. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–45. ISBN 978-3-319-48281-1. [Google Scholar]
- Annu; Ali, A.; Ahmed, S. Eco-Friendly Natural Extract Loaded Antioxidative Chitosan/Polyvinyl Alcohol Based Active Films for Food Packaging. Heliyon 2021, 7, e06550. [Google Scholar] [CrossRef]
- Annu; Ahmed, S.; Nirala, R.K.; Kumar, R.; Ikram, S. Green Synthesis of Chitosan/Nanosilver Hybrid Bionanocomposites with Promising Antimicrobial, Antioxidant and Anticervical Cancer Activity. Polym. Polym. Compos. 2021, 29, S199–S210. [Google Scholar] [CrossRef]
- Annu; Bhat, Z.I.; Imtiyaz, K.; Rizvi, M.M.A.; Ikram, S.; Shin, D.K. Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers 2023, 15, 3477. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Sheikh, J.; Annu; Singh, A. An Eco-Friendly Route to Develop Cellulose-Based Multifunctional Finished Linen Fabric Using ZnO NPs and CS Network. J. Ind. Eng. Chem. 2021, 97, 383–389. [Google Scholar] [CrossRef]
- Annu; Pandit, P.; Maity, S.; Bhattacharya, T.; Shekh, M.I.; Ahmed, S. Chapter 30—Chitosan Biobased Materials in Textile Industry. In Advanced Applications of Biobased Materials; Ahmed, S., Annu, Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 717–735. ISBN 978-0-323-91677-6. [Google Scholar]
- Althomali, R.H.; Alamry, K.A.; Hussein, M.A.; Tay, G.S. Versatile Applications Of Biopolymer Nanocomposites: A Review. ChemistrySelect 2022, 7, e202200843. [Google Scholar] [CrossRef]
- Hassan, H.; Salama, A.; El-ziaty, A.K.; El-Sakhawy, M. New Chitosan/Silica/Zinc Oxide Nanocomposite as Adsorbent for Dye Removal. Int. J. Biol. Macromol. 2019, 131, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Arputharaj, E.; Dahms, H.-U.; Patel, A.K.; Huang, Y.-L. Chitosan-Based Nanocomposites for Removal of Cr(VI) and Synthetic Food Colorants from Wastewater. Bioresour. Technol. 2022, 351, 127018. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Ahmed, M.A.; Mohamed, A.A. Synthesis, Characterization and Application of Chitosan/Graphene Oxide/Copper Ferrite Nanocomposite for the Adsorptive Removal of Anionic and Cationic Dyes from Wastewater. RSC Adv. 2023, 13, 5337–5352. [Google Scholar] [CrossRef] [PubMed]
- Billah, R.E.K.; Azoubi, Z.; López-Maldonado, E.A.; Majdoubi, H.; Lgaz, H.; Lima, E.C.; Shekhawat, A.; Tamraoui, Y.; Agunaou, M.; Soufiane, A.; et al. Multifunctional Cross-Linked Shrimp Waste-Derived Chitosan/MgAl-LDH Composite for Removal of As(V) from Wastewater and Antibacterial Activity. ACS Omega 2023, 8, 10051–10061. [Google Scholar] [CrossRef]
- El Shahawy, A.; Mubarak, M.F.; El Shafie, M.; Abdulla, H.M. Fe(Iii) and Cr(vi) Ions’ Removal Using AgNPs/GO/Chitosan Nanocomposite as an Adsorbent for Wastewater Treatment. RSC Adv. 2022, 12, 17065–17084. [Google Scholar] [CrossRef]
- Dou, Z.; Xie, X. Chitosan–Montmorillonite–Fe Nanocomposite Hydrogel for Phosphate Recovery and Reuse. ACS ES&T Eng. 2023, 3, 682–689. [Google Scholar] [CrossRef]
- Landge, V.K.; Hakke, V.S.; Kakunuri, M.; Babu, G.U.B.; Boczkaj, G.; Sonawane, S.H. Synthesis of Bimetallic Co–Pt/Cellulose Nanocomposites for Catalytic Reduction of p-Nitrophenol. React. Chem. Eng. 2022, 7, 641–652. [Google Scholar] [CrossRef]
- Almuslem, A.S.; Alnaim, N.; Ibrahim, S.S.; Ibrahim, M.A. Green Synthesis and Characteristics of Cellulose Nanocrystal/Poly Acrylic Acid Nanocomposite Thin Film for Organic Dye Adsorption during Water Treatment. Polymers 2023, 15, 2154. [Google Scholar] [CrossRef]
- Jing, J.; Feng, Y.; Wu, S.; Ye, Z.; Yang, L.; Li, J.; Chen, Y.; Yang, F. β-FeOOH/TiO2/Cellulose Nanocomposite Aerogel as a Novel Heterogeneous Photocatalyst for Highly Efficient Photo-Fenton Degradation. RSC Adv. 2023, 13, 14190–14197. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Abdelwahab, S.M.; Elsawy, N.M.; Ahmed, N.A.; Raafat, A.I. E-Beam Irradiation-Induced Synthesis of Hydroxyethyl Cellulose/(Cu2O-RGO)/BiVO4-Based Nanocomposite for Photocatalytic Remediation of Wastewater under Visible Light. Int. J. Biol. Macromol. 2024, 258, 128681. [Google Scholar] [CrossRef]
- Eyni Gavabari, S.; Goudarzi, A.; Shahrousvand, M.; Asfaram, A. Preparation of Novel Polyurethane/Activated Carbon/Cellulose Nano-Whisker Nanocomposite Film as an Efficient Adsorbent for the Removal of Methylene Blue and Basic Violet 16 Dyes from Wastewater. Sep. Purif. Technol. 2024, 330, 125285. [Google Scholar] [CrossRef]
- Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Peighambardoust, S.J.; Hemmati, S.; Ramavandi, B. Montmorillonite Clay/Starch/CoFe2O4 Nanocomposite as a Superior Functional Material for Uptake of Cationic Dye Molecules from Water and Wastewater. Mater. Chem. Phys. 2022, 284, 126088. [Google Scholar] [CrossRef]
- Atta, M.M.; Abou-Laila, M.T.; Abdelwahed, M.H.; Dwidar, S.A.; Desouky, O. Structural, Mechanical, and Thermal Features of PVA/Starch/Graphene Oxide Nanocomposite Enriched with WO3 as Gamma–Ray Radiation Shielding Materials for Medical Applications. Polym. Eng. Sci. 2023, 63, 3843–3854. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Ibarhiam, S.; Sallam, S.; Almotairy, A.R.Z.; Al-bonayan, A.M.; Munshi, A.M.; El-Metwaly, N.M. Magnetic Sodium Alginate Grafted with Waste Carbonaceous Material for Diclofenac Sodium Removal: Optimization of Operational Parameters and Process Mechanism. RSC Adv. 2023, 13, 6466–6480. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, G.A.; Sayed, A.; Abdel-raouf, M.E.-S.; Danial, M.Y.F.; Amin, A. Efficient Removal of Cr(VI) from Aqueous Solutions Using Chitosan/Na-Alginate Bio-Based Nanocomposite Hydrogel. J. Appl. Polym. Sci. 2023, 140, e53886. [Google Scholar] [CrossRef]
- Li, J.; Lei, L.; Liu, Z.; Qiu, J.; Wang, H. Sodium Alginate/Polyethyleneimine/Polydopamine@cellulose Nanofiber Composite Aerogel as a Novel Adsorbent for Cr(VI) and Dyes Removal. Polym. Eng. Sci. 2023, 63, 3492–3506. [Google Scholar] [CrossRef]
- Davarnejad, R.; Hassanvand, Z.R.; Mansoori, S.; Kennedy, J.F. Metronidazole Elimination from Wastewater through Photo-Fenton Process Using Green-Synthesized Alginate-Based Hydrogel Coated Bimetallic Iron-copper Nanocomposite Beads as a Reusable Heterogeneous Catalyst. Bioresour. Technol. Rep. 2022, 18, 101068. [Google Scholar] [CrossRef]
- Hosseini, H.; Pirahmadi, P.; Shakeri, S.E.; Khoshbakhti, E.; Sharafkhani, S.; Fakhri, V.; Saeidi, A.; McClements, D.J.; Chen, W.-H.; Su, C.-H.; et al. A Novel Environmentally Friendly Nanocomposite Aerogel Based on the Semi-Interpenetrating Network of Polyacrylic Acid into Xanthan Gum Containing Hydroxyapatite for Efficient Removal of Methylene Blue from Wastewater. Int. J. Biol. Macromol. 2022, 201, 133–142. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Goda, E.S.; Abdallah, H.M.; Shalan, A.E.; Gamal, H.; Yoon, K.R. Innovative Bactericidal Adsorbents Containing Modified Xanthan Gum/Montmorillonite Nanocomposites for Wastewater Treatment. Int. J. Biol. Macromol. 2021, 167, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- El-Kholy, S.A.; Radwan, E.K.; El-Naggar, M.E.; El-Wakeel, S.T.; El-Tantawy El Sayed, I. Sponge-like Zinc Oxide Nanoparticles Loaded Xanthan Gum/Cationic Chitosan Cryogel: Synthesis, Characterization, Microbicidal and Adsorption of Synthetic Dye and Heavy Metal. J. Environ. Chem. Eng. 2023, 11, 110652. [Google Scholar] [CrossRef]
- Cong, S.-Q.; Wang, B.; Wang, H.; Zheng, Q.-C.; Yang, Q.-R.; Yang, R.-T.; Li, Q.-L.; Wang, W.-S.; Cui, X.-J.; Luo, F.-X. Fe3O4-Lignin@Pd-NPs: A Highly Active, Stable and Broad-Spectrum Nanocomposite for Water Treatment. Int. J. Biol. Macromol. 2024, 256, 128233. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.J.; Lau, C.Y.; Farid, M.U.; Islam, M.K.; An, A.K.; Yi, J.; Leu, S.-Y. Woody Biomass Derived Nano Lignin-Enabled Membrane with High Structural Stability for Efficient Wastewater Treatment. Process Saf. Environ. Prot. 2024, 182, 595–607. [Google Scholar] [CrossRef]
- Yao, G.; Wang, K.; Wang, M.; Shao, X.; Qiu, F.; Zhang, T. Magnetic FeS@Lignin-Derived Carbon Nanocomposites as an Efficient Adsorbent for Multistage Collaborative Selective Recovery of Tellurium (IV) from Wastewater. J. Environ. Chem. Eng. 2021, 9, 106135. [Google Scholar] [CrossRef]
- Hassan, A.F.; El-Naggar, G.A.; Esmail, G.; Shaltout, W.A. Efficient Adsorption of Methylene Blue on Novel Triple-Nanocomposites of Potassium Kappa-Carrageenan, Calcium Alginate and Nanohydroxyapatite Obtained from Sea Scallop Shells. Appl. Surf. Sci. Adv. 2023, 13, 100388. [Google Scholar] [CrossRef]
- Bateni, A.; Valizadeh, K.; Salahshour, Y.; Behroozi, A.H.; Maleki, A. Fabrication and Characterization of Pectin-Graphene Oxide-Magnesium Ferrite-Zinc Oxide Nanocomposite for Photocatalytic Degradation of Diclofenac in an Aqueous Solution under Visible Light Irradiation. J. Environ. Manag. 2022, 324, 116358. [Google Scholar] [CrossRef]
- Ibrar, I.; Alsaka, L.; Yadav, S.; Altaee, A.; Zhou, J.L.; Shon, H.K. Kappa Carrageenan-Vanillin Composite Hydrogel for Landfill Leachate Wastewater Treatment. Desalination 2023, 565, 116826. [Google Scholar] [CrossRef]
- Qi, X.; Zeng, Q.; Tong, X.; Su, T.; Xie, L.; Yuan, K.; Xu, J.; Shen, J. Polydopamine/Montmorillonite-Embedded Pullulan Hydrogels as Efficient Adsorbents for Removing Crystal Violet. J. Hazard. Mater. 2021, 402, 123359. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, S.; Zhang, C.; Jiao, Y.; Lin, X.; Dong, W.; Qi, X. Mussel-Inspired Magnetic Pullulan Hydrogels for Enhancing Catalytic Degradation of Antibiotics from Biomedical Wastewater. Chem. Eng. J. 2021, 409, 128203. [Google Scholar] [CrossRef]
- Khan, S.A.; Abbasi, N.; Hussain, D.; Khan, T.A. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. Langmuir 2022, 38, 8280–8295. [Google Scholar] [CrossRef] [PubMed]
- Mpelane, S.; Mpupa, A.; Mlambo, M.; Bingwa, N.; Mketo, N.; Nomngongo, P.N. Magnetic Zeolite@β-Cyclodextrin-Gum Arabic Nanocomposite for Adsorptive Removal of Levofloxacin. J. Hazard. Mater. Adv. 2023, 11, 100354. [Google Scholar] [CrossRef]
- Goswami, R.; Gogoi, M.; Borah, A.; Sarmah, H.; Borah, A.R.; Feng, X.; Hazarika, S. Quantum Dot- β-Cyclodextrin Nanofiller Decorated Thin Film Nanocomposite Membrane for Removal of Cationic and Anionic Dyes from Aqueous Solution. Mater. Today Chem. 2024, 35, 101871. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Hashem, F.S.; Ali, A.S.M.; Elzain, A.A.; Mohamed, F.M. Fabrication of Polyaniline@β-Cyclodextrin Nanocomposite for Adsorption of Carcinogenic Phenol from Wastewater. ACS Appl. Bio Mater. 2022, 5, 4504–4515. [Google Scholar] [CrossRef] [PubMed]
- Zia, Q.; Tabassum, M.; Lu, Z.; Khawar, M.T.; Song, J.; Gong, H.; Meng, J.; Li, Z.; Li, J. Porous Poly(L–Lactic Acid)/Chitosan Nanofibres for Copper Ion Adsorption. Carbohydr. Polym. 2020, 227, 115343. [Google Scholar] [CrossRef] [PubMed]
- Kyshkarova, V.; Marcin Behunova, D.; Václavíková, M.; Melnyk, I. V Hybrid Composite Sorbents Based on SiO2/PLGA for Fe(III) Ions Removal. Appl. Nanosci. 2022, 12, 1201–1212. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Pantic, M.; Pavlovic, S.M.; Knapczyk-Korczak, J.; Stachewicz, U.; Novak, Z. Development of Advanced Floating Poly(Lactic Acid)-Based Materials for Colored Wastewater Treatment. J. Supercrit. Fluids 2021, 177, 105328. [Google Scholar] [CrossRef]
- Soltaninejad, V.; Ahghari, M.R.; Taheri-Ledari, R.; Maleki, A.; Shalan, A.E. A Versatile Nanocomposite Made of Cd/Cu, Chlorophyll and PVA Matrix Utilized for Photocatalytic Degradation of the Hazardous Chemicals and Pathogens for Wastewater Treatment. J. Mol. Struct. 2022, 1256, 132456. [Google Scholar] [CrossRef]
- Joshi, P.; Raturi, A.; Srivastava, M.; Khatri, O.P. Graphene Oxide, Kaolinite Clay and PVA-Derived Nanocomposite Aerogel as a Regenerative Adsorbent for Wastewater Treatment Applications. J. Environ. Chem. Eng. 2022, 10, 108597. [Google Scholar] [CrossRef]
- Saleem, A.; Iqbal, A.; Younas, U.; Ashraf, A.; Al-Mijalli, S.H.; Ali, F.; Pervaiz, M.; Saeed, Z.; Nazir, A.; Iqbal, M. Antimicrobial Attributes and Enhanced Catalytic Potential of PVA Stabilized Ag-NiO2 Nanocomposite for Wastewater Treatment. Arab. J. Chem. 2024, 17, 105545. [Google Scholar] [CrossRef]
- Fawaz, J.; Mittal, V. Synthesis of Polymer Nanocomposites: Review of Various Techniques. In Synthesis Techniques for Polymer Nanocomposites; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 1–30. ISBN 9783527670307. [Google Scholar]
- Amiri, M.J.; Raayatpisheh, M.; Radi, M.; Amiri, S. Preparation and Characterization of Biopolymer-Based Adsorbents and Their Application for Methylene Blue Removal from Wastewater. Sci. Rep. 2023, 13, 17263. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V. In-Situ Synthesis of Polymer Nanocomposites; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 1–25. [Google Scholar] [CrossRef]
- Zaferani, S.H. Introduction of Polymer-Based Nanocomposites. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Pardo, S.; Bucio, E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers 2021, 13, 2998. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Mai, Y.W. Permeability Modelling of Polymer-Layered Silicate Nanocomposites. Compos. Sci. Technol. 2007, 67, 2895–2902. [Google Scholar] [CrossRef]
- Hajiali, F.; Shojaei, A. Silane Functionalization of Nanodiamond for Polymer Nanocomposites-Effect of Degree of Silanization. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 254–263. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Baird, D.G. An Improved Technique for Exfoliating and Dispersing Nanoclay Particles into Polymer Matrices Using Supercritical Carbon Dioxide. Polymer 2007, 48, 6923–6933. [Google Scholar] [CrossRef]
- Ulhaq, I.; Ahmad, W.; Ahmad, I.; Yaseen, M.; Ilyas, M. Engineering TiO2 Supported CTAB Modified Bentonite for Treatment of Refinery Wastewater through Simultaneous Photocatalytic Oxidation and Adsorption. J. Water Process Eng. 2021, 43, 102239. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Ademollo, N.; Cardoni, M.; Di Giulio, A.; Grenni, P.; Pescatore, T.; Rauseo, J.; Patrolecco, L. Assessment of Biodegradation of the Anionic Surfactant Sodium Lauryl Ether Sulphate Used in Two Foaming Agents for Mechanized Tunnelling Excavation. J. Hazard. Mater. 2019, 365, 538–545. [Google Scholar] [CrossRef]
- Najim, A.A.; Ismail, Z.Z.; Hummadi, K.K. Biodegradation Potential of Sodium Dodecyl Sulphate (SDS) by Mixed Cells in Domestic and Non-Domestic Actual Wastewaters: Experimental and Kinetic Studies. Biochem. Eng. J. 2022, 180, 108374. [Google Scholar] [CrossRef]
- Ríos, F.; Caparrós-Salvador, F.; Lechuga, M.; Fernández-Serrano, M. Complete Biodegradability Assessment of Polyoxyethylene Glycerol Ester Non-Ionic Surfactant: Aerobic, Anaerobic, Combined Biodegradation and Inhibitory Effects. Water Res. 2024, 248, 120857. [Google Scholar] [CrossRef]
- Ghimici, L.; Brunchi, C.-E. Titanium Dioxide Separation from Water by PEG and Pluronic Type Polymers. Sep. Purif. Technol. 2013, 103, 306–312. [Google Scholar] [CrossRef]
- Khosroshahi, M.M.; Jafarzadeh, Y.; Nasiri, M.; Khayet, M. Novel Polyvinyl Chloride Ultrafiltration Membranes Blended with Amphiphilic Polyethylene Glycol-Block-Poly(1, 2-Dichloroethylene) Copolymer for Oily Wastewater Treatment. J. Water Process Eng. 2023, 56, 104433. [Google Scholar] [CrossRef]
- Licul-Kucera, V.; Frömel, T.; Kruså, M.; van Wezel, A.P.; Knepper, T.P. Finding a Way out? Comprehensive Biotransformation Study of Novel Fluorinated Surfactants. Chemosphere 2023, 339, 139563. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Baek, J.B. Nanocomposites Derived from Polymers and Inorganic Nanoparticles. Materials 2010, 3, 3654–3674. [Google Scholar] [CrossRef]
- The Global Water Crisis At a Glance. Available online: https://concernusa.org/news/global-water-crisis-causes/ (accessed on 12 January 2023).
- Olajire, A.A.; Bamigbade, L.A. Green Synthesis of Chitosan-Based Iron@silver Nanocomposite as Adsorbent for Wastewater Treatment. Water Resour. Ind. 2021, 26, 100158. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Naggar, M.E.; Malhat, F.M.; El Sharkawi, H.M. Efficient Removal of Pesticides and Heavy Metals from Wastewater and the Antimicrobial Activity of F-MWCNTs/PVA Nanocomposite Film. J. Clean. Prod. 2019, 206, 315–325. [Google Scholar] [CrossRef]
- Shahadat, M.; Jha, A.; Shahid-ul-Islam; Adnan, R.; Ali, S.W.; Ismail, I.M.I.; Oves, M.; Ahammad, S.Z. Recent Advances in Chitosan-Polyaniline Based Nanocomposites for Environmental Applications: A Review. Polymer 2022, 254, 124975. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Morsi, S.M.M.; Kamal, K.H.; Khattab, T.A. Preparation of Isopropyl Acrylamide Grafted Chitosan and Carbon Bionanocomposites for Adsorption of Lead Ion and Methylene Blue. Polymers 2022, 14, 4485. [Google Scholar] [CrossRef]
- Saya, L.; Gautam, D.; Malik, V.; Singh, W.R.; Hooda, S. Natural Polysaccharide Based Graphene Oxide Nanocomposites for Removal of Dyes from Wastewater: A Review. J. Chem. Eng. Data 2021, 66, 11–37. [Google Scholar] [CrossRef]
- Agrawal, A.; Sharma, A.; Awasthi, K.K.; Awasthi, A. Metal Oxides Nanocomposite Membrane for Biofouling Mitigation in Wastewater Treatment. Mater. Today Chem. 2021, 21, 100532. [Google Scholar] [CrossRef]
- Ray, P.; Singh, P.S.; Polisetti, V. Synthetic Polymeric Membranes for the Removal of Toxic Pollutants and Other Harmful Contaminants from Water. In Removal of Toxic Pollutants through Microbiological and Tertiary Treatment: New Perspectives; Elsevier: Amsterdam, The Netherlands, 2020; pp. 43–99. [Google Scholar] [CrossRef]
- Yáñez, O.; Alegría-Arcos, M.; Suardiaz, R.; Morales-Quintana, L.; Castro, R.I.; Palma-Olate, J.; Galarza, C.; Catagua-González, Á.; Rojas-Pérez, V.; Urra, G.; et al. Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach. Polymers 2023, 15, 3020. [Google Scholar] [CrossRef]
- Potara, M.; Focsan, M.; Craciun, A.M.; Botiz, I.; Astilean, S. Polymer-Coated Plasmonic Nanoparticles for Environmental Remediation: Synthesis, Functionalization, and Properties. In New Polymer Nanocomposites for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 361–387. [Google Scholar] [CrossRef]
- Moradi, G.; Heydari, R.; Zinadini, S.; Rahimi, M. Chitosan-Furosemide/Pectin Surface Functionalized Thin Film Nanofiltration Membrane with Improved Antifouling Behavior for Pharmaceutical Wastewater Treatment. J. Ind. Eng. Chem. 2023, 124, 368–380. [Google Scholar] [CrossRef]
- Gopal, G.; Nirmala, M.J.; Mukherjee, A. A Novel Chitosan-Coated Fe–Cu CNS Loaded with CMC–Alginate Composite for Adsorptive Removal of Ciprofloxacin from Water. Surf. Interfaces 2023, 39, 102981. [Google Scholar] [CrossRef]
- Palacio, D.A.; Muñoz, C.; Meléndrez, M.; Rabanal-León, W.A.; Murillo-López, J.A.; Palencia, M.; Rivas, B.L. Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-Vinylbenzyl)Trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations. Polymers 2023, 15, 3185. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, K.; Bateni, A.; Sojoodi, N.; Rafiei, R.; Behroozi, A.H.; Maleki, A. Preparation and Characterization of Chitosan-Curdlan Composite Magnetized by Zinc Ferrite for Efficient Adsorption of Tetracycline Antibiotics in Water. Int. J. Biol. Macromol. 2023, 235, 123826. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Chaudhary, M.; Maiti, A. Synergistic Arsenic Removal Using Chitosan-Based Nanocomposite Beads and Cross-Flow Ultrafiltration: A Significant Reduction of Membrane Fouling. J. Environ. Chem. Eng. 2023, 11, 109431. [Google Scholar] [CrossRef]
- Ehsan, M.; Razzaq, H.; Razzaque, S.; Kanwal, M.; Hussain, I. Engineering Nanocomposite Membranes of Sodium Alginate-Graphene Oxide for Efficient Separation of Oil-Water and Antifouling Performance. J. Environ. Chem. Eng. 2023, 11, 109185. [Google Scholar] [CrossRef]
- Kamari, S.; Shahbazi, A. High–Performance Nanofiltration Membrane Blended by Fe3O4@SiO2–CS Bionanocomposite for Efficient Simultaneous Rejection of Salts/Heavy Metals Ions/Dyes with High Permeability, Retention Increase and Fouling Decline. Chem. Eng. J. 2021, 417, 127930. [Google Scholar] [CrossRef]
- Tang, L.; Gong, J.; Li, J.; Fang, S.; Wang, Y.; Zhou, H. Synergistic Effect between Tannic Acid-Fe3+ and Chitosan Hydrogel-Coated Covalent Organic Framework: Endowing Better Nanofiltration Performance and Stability. Sep. Purif. Technol. 2023, 323, 124469. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Yu, Q.; Sun, H.; Chen, K.; Ye, H.; Tang, S.; Zhang, H.; Li, P.; Jason Niu, Q. Advanced Mg2+/Li+ Separation Nanofiltration Membranes by Introducing Hydroxypropyltrimethyl Ammonium Chloride Chitosan as a Co-Monomer. Appl. Surf. Sci. 2023, 616, 156434. [Google Scholar] [CrossRef]
- Batool, M.; Abbas, M.A.; Khan, I.A.; Khan, M.Z.; Saleem, M.; Khan, A.U.; Deen, K.M.; Batool, M.; Khan, A.L.; Zhu, S.; et al. Response Surface Methodology Modeling Correlation of Polymer Composite Carbon Nanotubes/Chitosan Nanofiltration Membranes for Water Desalination. ACS ES&T Water 2023, 3, 1406–1421. [Google Scholar] [CrossRef]
- Gadkari, R.R.; Ali, S.W.; Das, A.; Alagirusamy, R. Silver Nanowires Embedded Chitosan/Poly-Lactic Acid Electrospun Nanocomposite Web Based Nanofibrous Multifunctional Membrane for Safe Water Purification. Adv. Sustain. Syst. 2022, 6, 2100360. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Zhao, X.; Wang, J.; Zhu, X.; Lai, C.; Wu, D.; Cheng, X.; Xu, J.; Liang, H. PH-Responsive Chitosan Sacrificial Layer for Simultaneous Enhancement of Ultrafiltration Performance and Sustainable Membrane Fouling Control. ACS Appl. Polym. Mater. 2023, 5, 6875–6885. [Google Scholar] [CrossRef]
- Nalatambi, S.; Oh, K.S.; Yoon, L.W.; Tee, L.H. Evaluation of Antibacterial Property and Greywater Treatment Performance Using Composite Chitosan/Graphene Oxide Membrane. Mater. Chem. Phys. 2023, 295, 127160. [Google Scholar] [CrossRef]
- Khosravi, M.J.; Hosseini, S.M.; Vatanpour, V. Performance Improvement of PES Membrane Decorated by Mil-125(Ti)/Chitosan Nanocomposite for Removal of Organic Pollutants and Heavy Metal. Chemosphere 2022, 290, 133335. [Google Scholar] [CrossRef] [PubMed]
- Al Momani, D.E.; Arshad, F.; Zou, L. Chitosan/MoS2/GO Membrane for Catalytic Degradation of Organic Contaminants. Environ. Technol. Innov. 2023, 32, 103410. [Google Scholar] [CrossRef]
- Amiri, S.; Asghari, A.; Vatanpour, V.; Rajabi, M. Fabrication of Chitosan-Aminopropylsilane Graphene Oxide Nanocomposite Hydrogel Embedded PES Membrane for Improved Filtration Performance and Lead Separation. J. Environ. Manag. 2021, 294, 112918. [Google Scholar] [CrossRef]
- Khoerunnisa, F.; Nurhayati, M.; Annisa, N.A.A.; Fatimah, S.; Nashrah, N.; Hendrawan, H.; Ko, Y.-G.; Ng, E.-P.; Opaprakasit, P. Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes. Membranes 2022, 12, 268. [Google Scholar] [CrossRef]
- Amiri, S.; Asghari, A.; Vatanpour, V.; Rajabi, M. Fabrication and Characterization of a Novel Polyvinyl Alcohol-Graphene Oxide-Sodium Alginate Nanocomposite Hydrogel Blended PES Nanofiltration Membrane for Improved Water Purification. Sep. Purif. Technol. 2020, 250, 117216. [Google Scholar] [CrossRef]
- Bai, L.; Wu, H.; Ding, J.; Ding, A.; Zhang, X.; Ren, N.; Li, G.; Liang, H. Cellulose Nanocrystal-Blended Polyethersulfone Membranes for Enhanced Removal of Natural Organic Matter and Alleviation of Membrane Fouling. Chem. Eng. J. 2020, 382, 122919. [Google Scholar] [CrossRef]
- Xing, W.; Wu, Y.; Lu, J.; Lin, X.; Yu, C.; Dong, Z.; Yan, Y.; Li, C. Biomass-Based Synthesis of Green and Biodegradable Molecularly Imprinted Membranes for Selective Recognition and Separation of Tetracycline. Nano 2020, 15, 2050004. [Google Scholar] [CrossRef]
- Yogarathinam, L.T.; Goh, P.S.; Ismail, A.F.; Gangasalam, A.; Ahmad, N.A.; Samavati, A.; Mamah, S.C.; Zainol Abidin, M.N.; Ng, B.C.; Gopal, B. Nanocrystalline Cellulose Incorporated Biopolymer Tailored Polyethersulfone Mixed Matrix Membranes for Efficient Treatment of Produced Water. Chemosphere 2022, 293, 133561. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.; Mackey, H.R.; Mahmoud, K.A. MXene/Chitosan/Lignosulfonate (MCL) Nanocomposite for Simultaneous Removal of Co(II), Cr(VI), Cu(II), Ni(II) and Pb(II) Heavy Metals from Wastewater. 2D Mater. 2023, 10, 24004. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, B.; He, S.; Man, R. Preparation of Graphene-Oxide/Polyamidoamine Dendrimers and Their Adsorption Properties toward Some Heavy Metal Ions. J. Chem. Eng. Data 2014, 59, 1719–1726. [Google Scholar] [CrossRef]
- Lotfi, Z.; Mousavi, H.Z.; Sajjadi, S.M. Covalently Bonded Dithiocarbamate-Terminated Hyperbranched Polyamidoamine Polymer on Magnetic Graphene Oxide Nanosheets as an Efficient Sorbent for Preconcentration and Separation of Trace Levels of Some Heavy Metal Ions in Food Samples. J. Food Meas. Charact. 2020, 14, 293–302. [Google Scholar] [CrossRef]
- Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; McKay, G. Super High Removal Capacities of Heavy Metals (Pb2+ and Cu2+) Using CNT Dendrimer. J. Hazard. Mater. 2017, 336, 146–157. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Abdelbar, N.M.; Mohamed, A.A. Molecular Imprinted Chitosan-TiO2 Nanocomposite for the Selective Removal of Rose Bengal from Wastewater. Int. J. Biol. Macromol. 2018, 107, 1046–1053. [Google Scholar] [CrossRef]
- Hayati, B.; Arami, M.; Maleki, A.; Pajootan, E. Application of Dendrimer/Titania Nanohybrid for the Removal of Phenol from Contaminated Wastewater. Desalin. Water Treat. 2016, 57, 6809–6819. [Google Scholar] [CrossRef]
- Arkas, M.; Tsiourvas, D.; Paleos, C.M. Functional Dendrimeric “Nanosponges” for the Removal of Polycyclic Aromatic Hydrocarbons from Water. Chem. Mater. 2003, 15, 2844–2847. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Niu, G.; Hua, M.; Zhu, L.; Cui, P.; Li, X.; Chao, Y.; Zhu, W.; Liu, Z. Adsorptive Removal of Oxytetracycline in Wastewater by Cu/Al Doped Carbon Microspheres Prepared from Low-Molecular-Weight Chitosan. J. Environ. Chem. Eng. 2023, 11, 109496. [Google Scholar] [CrossRef]
- Li, W.; Guo, M.; Wang, Y.; Deng, H.; Lei, H.; Yu, C.; Liu, Z. Selective Adsorption of Heavy Metal Ions by Different Composite-Modified Semi-Carbonized Fibers. Sep. Purif. Technol. 2024, 328, 125022. [Google Scholar] [CrossRef]
- Shan, H.; Mo, H.; Liu, Y.; Zeng, C.; Peng, S.; Zhan, H. As(III) Removal by a Recyclable Granular Adsorbent through Dopping Fe-Mn Binary Oxides into Graphene Oxide Chitosan. Int. J. Biol. Macromol. 2023, 237, 124184. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ma, H.; Wang, J.; Fan, C. Preparation of Graphene Oxide/Carboxymethyl Chitosan/Polyvinyl Alcohol Composite Nanofiber Membranes by Electrospinning for Heavy Metal Adsorption. J. Appl. Polym. Sci. 2023, e54840. [Google Scholar] [CrossRef]
- Thakur, M.; Rajput, J.K.; Kumar, R. Study of Morphological Aspects in the Efficient Adsorptive Removal of Heavy Metal Ions Using Graphene Oxide-Chitosan Based Magnetic Nanocomposite (0.4Fe0x:6x@GCS). J. Hazard. Mater. Adv. 2023, 11, 100362. [Google Scholar] [CrossRef]
- El-Sayed, E.S.A.; Dacrory, S.; Essawy, H.A.; Ibrahim, H.S.; Ammar, N.S.; Kamel, S. Sustainable Grafted Chitosan-Dialdehyde Cellulose with High Adsorption Capacity of Heavy Metal. BMC Chem. 2023, 17, 117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, Q.; Sun, L.; Zhang, J.; Han, Z.; Xu, S.; Cheng, Z. Adsorption of Heavy Metals and Antibacterial Activity of Silicon-Doped Chitosan Composite Microspheres Loaded with ZIF-8. Sep. Purif. Technol. 2024, 328, 124969. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Qiu, S.; Wang, C.; Zhang, H.; Guo, J.; Wang, S.; Ma, H. 3D-Printed Filters for Efficient Heavy Metal Removal from Water Using PLA@CS/HAP Composites. Polymers 2023, 15, 4144. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Lazar, M.M.; Platon, I.-V.; Humelnicu, D.; Doroftei, F.; Dinu, M.V. Feather-Weight Cryostructured Thiourea-Chitosan Aerogels for Highly Efficient Removal of Heavy Metal Ions and Bacterial Pathogens. Int. J. Biol. Macromol. 2023, 235, 123910. [Google Scholar] [CrossRef]
- Khan, S.A.; Hussain, D.; Abbasi, N.; Khan, T.A. Deciphering the Adsorption Potential of a Functionalized Green Hydrogel Nanocomposite for Aspartame from Aqueous Phase. Chemosphere 2022, 289, 133232. [Google Scholar] [CrossRef]
- Shirzad Kebria, M.R.; Bono, L.; Khoshhal Salestan, S.; Armirotti, A.; Carzino, R.; Athanassiou, A.; Fragouli, D. Efficient Removal of Perfluorobutanesulfonic Acid from Water through a Chitosan/Polyethyleneimine Xerogel. Chem. Eng. J. 2023, 466, 143236. [Google Scholar] [CrossRef]
- Basirun, A.A.; Karim, W.A.W.A.; Wei, N.C.; Wu, J.; Wilfred, C.D. Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application. Molecules 2023, 28, 5777. [Google Scholar] [CrossRef]
- Dinh, V.P.; Nguyen, M.D.; Nguyen, Q.H.; Do, T.T.T.; Luu, T.T.; Luu, A.T.; Tap, T.D.; Ho, T.H.; Phan, T.P.; Nguyen, T.D.; et al. Chitosan-MnO2 Nanocomposite for Effective Removal of Cr (VI) from Aqueous Solution. Chemosphere 2020, 257, 127147. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; Elweshahy, S.M.T. Novel NTiO2-Chitosan@NZrO2-Chitosan Nanocomposite for Effective Adsorptive Uptake of Trivalent Gadolinium and Samarium Ions from Water. Powder Technol. 2021, 378, 246–254. [Google Scholar] [CrossRef]
- Wang, J.; Ma, R.; Li, L.; Gu, P.; Wang, X. Chitosan Modified Molybdenum Disulfide Composites as Adsorbents for the Simultaneous Removal of U(VI), Eu(III), and Cr(VI) from Aqueous Solutions. Cellulose 2020, 27, 1635–1648. [Google Scholar] [CrossRef]
- Reghioua, A.; Barkat, D.; Jawad, A.H.; Abdulhameed, A.S.; Al-Kahtani, A.A.; Alothman, Z.A. Parametric Optimization by Box–Behnken Design for Synthesis of Magnetic Chitosan-Benzil/ZnO/Fe3O4 Nanocomposite and Textile Dye Removal. J. Environ. Chem. Eng. 2021, 9, 105166. [Google Scholar] [CrossRef]
- Lakkaboyana, S.K.; Soontarapa, K.; Vinaykumar; Marella, R.K.; Kannan, K. Preparation of Novel Chitosan Polymeric Nanocomposite as an Efficient Material for the Removal of Acid Blue 25 from Aqueous Environment. Int. J. Biol. Macromol. 2021, 168, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Abootorabi, Z.; Sohrabi, M.R.; Mortazavinik, S. Removing Diazo Direct Red 81 Using Chitosan/Zero-Valent Iron Nanocomposite from Aqueous Solutions and Process Optimization. Int. J. Environ. Anal. Chem. 2023, 103, 1168–1185. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, N.T.; Nguyen, V.A. In Situ Synthesis and Characterization of ZnO/Chitosan Nanocomposite as an Adsorbent for Removal of Congo Red from Aqueous Solution. Adv. Polym. Technol. 2020, 2020, 3892694. [Google Scholar] [CrossRef]
- Muinde, V.M.; Onyari, J.M.; Wamalwa, B.; Wabomba, J.N. Adsorption of Malachite Green Dye from Aqueous Solutions Using Mesoporous Chitosan–Zinc Oxide Composite Material. Environ. Chem. Ecotoxicol. 2020, 2, 115–125. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Ismael, M.K.; Gönen, M. Synthesis of Chitosan-Silica Nanocomposite for Removal of Methyl Orange from Water: Composite Characterization and Adsorption Performance. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012084. [Google Scholar] [CrossRef]
- Abbasi, M. Synthesis and Characterization of Magnetic Nanocomposite of Chitosan/SiO2/Carbon Nanotubes and Its Application for Dyes Removal. J. Clean. Prod. 2017, 145, 105–113. [Google Scholar] [CrossRef]
- Almasian, A.; Olya, M.E.; Mahmoodi, N.M. Synthesis of Polyacrylonitrile/Polyamidoamine Composite Nanofibers Using Electrospinning Technique and Their Dye Removal Capacity. J. Taiwan Inst. Chem. Eng. 2015, 49, 119–128. [Google Scholar] [CrossRef]
- Ghasempour, A.; Pajootan, E.; Bahrami, H.; Arami, M. Introduction of Amine Terminated Dendritic Structure to Graphene Oxide Using Poly(Propylene Imine) Dendrimer to Evaluate Its Organic Contaminant Removal. J. Taiwan Inst. Chem. Eng. 2017, 71, 285–297. [Google Scholar] [CrossRef]
- Samani, F.N.; Darvishi, R.; Moshkriz, A.; Darvish, M. Oxidized Pectin-Cross-Linked O-Carboxymethyl Chitosan/EDTriAA Intercalated LDH: An Antibiotic Adsorbent Hydrogel. J. Polym. Environ. 2023, 31, 3131–3148. [Google Scholar] [CrossRef]
- Mehdi Salehi, M.; Hassanzadeh-Afruzi, F.; Esmailzadeh, F.; Choopani, L.; Rajabi, K.; Naeimy Kuzekanan, H.; Azizi, M.; Eshrati yeganeh, F.; Demchuk, O.M.; Maleki, A. Chlorpyrifos and Diazinon Elimination through PAAm-g-XG/HKUST-1@Fe3O4 Biopolymer Nanoadsorbent Hydrogel from Wastewater: Preparation, Characterization, Kinetics and Isotherm. Sep. Purif. Technol. 2024, 334, 126097. [Google Scholar] [CrossRef]
- Sudarmono; Istiqomah, N.I.; Budianti, S.I.; Cuana, R.; Puspitarum, D.L.; Mahardhika, L.J.; Chotimah; Suharyadi, E. Magnetically Separable and Reusable Fe3O4/Chitosan Nanocomposites Green Synthesized Utilizing Moringa Oleifera Extract for Rapid Photocatalytic Degradation of Methylene Blue. Results Chem. 2024, 7, 101245. [Google Scholar] [CrossRef]
- Rehan, M.; Elhaddad, E. An Efficient Multi-Functional Ternary Reusable Nanocomposite Based on Chitosan@TiO2@Ag NP Immobilized on Cellulosic Fiber as a Support Substrate for Wastewater Treatment. Environ. Pollut. 2024, 340, 122850. [Google Scholar] [CrossRef]
Biopolymers | Advantages | Limitations | Refs. |
---|---|---|---|
Chitosan | High surface area and porosity High cationic charge density enables effective adsorption of anionic contaminants Biodegradable and environmentally friendly Versatile in various forms (powder, beads, membranes) for diverse wastewater applications | Limited stability in acidic conditions, impacting its performance in low-pH environments Relatively high production cost compared to some other biopolymers Regeneration for reuse can be challenging and may affect adsorption efficiency | [86,87,88,89,90] |
Cellulose | Abundant and renewable, derived from plant sources Chemically modifiable for enhanced adsorption properties High surface area and porosity contribute to effective pollutant removal | Limited solubility in common solvents, affecting its processability May require chemical modification to tailor adsorption characteristics Production processes may involve energy-intensive treatments | [91,92,93,94,95] |
Starch | Abundant, renewable, and cost-effective Chemically modifiable to enhance adsorption capacity Biodegradable and environmentally friendly | Relatively low mechanical strength in its native form Requires processing to improve stability and functionality Limited in applications requiring high-temperature stability | [96,97] |
Alginate | Gel-forming properties in the presence of divalent cations Good affinity for metal ions and certain organic pollutants Biocompatible and suitable for encapsulation applications | Limited mechanical strength, which can affect its performance in certain applications Challenges in maintaining stability and preventing disintegration in aggressive chemical environments Possibility of cation exchange with divalent cations in water, leading to gel breakdown | [98,99,100,101] |
Xanthan gum | High viscosity and excellent water-holding capacity Anionic nature facilitates interaction with cationic contaminants Rheological properties make it suitable for gel formation | High viscosity, which may hinder its dispersion and mixing in certain wastewater treatment processes Susceptibility to microbial degradation, affecting its long-term stability Limited adsorption capacity for certain types of contaminants compared to other biopolymers | [102,103,104] |
Lignin | High aromatic content and complex structure Adsorption capacity for various pollutants due to functional groups Renewable and abundant, contributing to sustainability | Complex and heterogeneous structure, making it challenging to control and optimize for specific applications Limited solubility in water, which can impact its effectiveness in certain wastewater treatment scenarios The presence of impurities in lignin from various sources may affect its performance and reliability | [105,106,107] |
Pectin | Biodegradable and environment-friendly Effective for the removal of specific pollutants from wastewater Structural feasibility for chemical modification to enhance adsorption | Limited biodegradability in certain wastewater treatment conditions, potentially leading to persistence in the environment Challenging processing while converting pectin into effective adsorbent forms Specific adsorption capabilities for certain pollutants | [108,109] |
Carrageenan | Sulfated polysaccharide derived from red seaweed High binding affinity for metal ions and dyes Gel-forming properties enhance encapsulation of contaminants | Limited adsorption capacity for certain heavy metals The cost of production can be higher compared to other biopolymers May exhibit variability in performance based on carrageenan subtype | [108,110] |
Pullulan | Water-soluble polysaccharide produced by yeast Forms inclusion complexes with various pollutants Biodegradable and suitable for controlled-release applications | Limited applicability to specific pollutants Relatively higher production costs Susceptible to microbial degradation under certain conditions | [111,112,113] |
Cyclodextrin | Cyclic oligosaccharides with a hydrophobic core and hydrophilic exterior Forms host–guest inclusion complexes with organic pollutants Enhances solubility and bioavailability of certain contaminants | Limited adsorption capacity for larger molecules Higher cost compared to some other biopolymers Release of captured pollutants may require additional processes | [114,115,116] |
Polylactic acid (PLA) | Biodegradable and eco-friendly Chemically modified PLA exhibits improved adsorption of pollutants Versatility in pollutant removal | Processing challenges for adsorbent forms High implementation costs Adsorbing specific pollutants may vary, requiring consideration of targeted contaminants | [117,118,119] |
Polyvinyl alcohol (PVA) | Biodegradable and eco-friendly Adaptable for various forms, such as films, fibers, and gels Allows for chemical modification to tailor its properties | Biodegradation of PVA is influenced by specific environmental conditions, and complete degradation may require extended periods Incomplete degradation of PVA in wastewater treatment systems may lead to the accumulation of residuals, raising concerns about long-term environmental impact | [120,121,122] |
Nanocomposite | Type of Membrane | Pollutant | Flux Recovery Ratio/Rate | Advantages | Application | Refs. |
---|---|---|---|---|---|---|
Chitosan–iron oxyhydroxide beads | Ultrafiltration | Arsenic | - | Removal of toxic arsenic, reduction in fouling by 32 ± 2% | Portable drinking water | [153] |
Alginate-GO | Nanocomposite | Oil | >88% | 93.26% oil removal efficiency, good antifouling with 90% protein rejection rate | Oil–water separation | [154] |
Chitosan-Fe3O4-SiO2 | Nanofiltration | Na2SO4, MgSO4, NaCl MgCl2, Pb2+, Cu2+, Cd2+, dyes (MB, CR, RB5) | Water flux: 70.6 L m–2 h−1 | High performance, high efficiency of heavy metal ion removal (98%), high rate of desalination, high retention of anionic dyes (BR5 and CR; ~98.2%) | Wastewater treatment | [155] |
Chitosan-CNT | Nanofiltration | Brackish water | Water flux: 80.26 L/m2·h | 95.5% salt rejection at 40 °C, remarkable water flux | Safe drinking water | [158] |
Chitosan-PLA-Ag nanowires | Nanofibrous | E. coli and S. aureus bacteria | Ag leach out: 0.003 ppm, 36 h | Excellent antibacterial activity and removal of heavy ion contaminants | Potable drinking water | [159] |
Chitosan | Ultrafiltration | Organic matter, inorganic salt | 95% | Enhanced separation efficiencies, antifouling, and hydrophilicity, and reduced pore size | High-quality drinking water | [160] |
Chitosan-GO | Nanocomposite | Bathroom greywater | Permeation: 23.43 kg/m2 h at 4 bars | High greywater treatment efficiency, improved porosity and water flux permeation, non-detectable pathogen inhibition | Reuse in non-potable application | [161] |
Chitosan-Mil-125Ti nanoparticles | Nanofiltration | Organic dye, antibiotic, NaCl, Na2SO4, and heavy metal | 98% in bovine serum albumin (BSA) filtration | Enhanced performance for antifouling and high separation efficiency | Performance improvement in polyethersulfone (PES) membranes | [162] |
Chitosan-MoS2-GO | Nanocomposite | Organic matter (dye, humic acid) | 5.1 L m−2 h−1 bar−1 | High porosity, 95–100% color removal, fast kinetics per filtration cycle, 100% (1 ppm) total organic content (TOC) removal | Separation and catalytic degradation of methyl orange organic dye | [163] |
Chitosan-aminopropylsilane-GO | Nanocomposite | Pb (II) ion, C.I. Reactive Blue 50 and Green 19 | >90%, water flux: 123.8 L/m2 h | 98% BSA rejection, high removal efficiency (82%, Pb(II); 90.5%, Reactive Blue 50; and 98.5%, Reactive Green 19), and good antifouling properties | Filtration and separation | [164] |
Chitosan-benzalkonium chloride-CNT | Ultrafiltration | BSA | Water flux: 88 (2 bars) to 138 L/m2 h (4 bars) | Increased porosity, minimized biofouling, decreased hydrophilicity, increased BSA rejection | Wastewater treatment | [165] |
Alginate-PVA-GO | Nanofiltration | Lanasol blue 3R | 88.7% | Improved permeability, porosity, and antifouling ability, >83% dye rejection | Water purification | [166] |
Cellulose nanocrystal | Nanocomposite | Natural organic matter (humic acid, sodium alginate, BSA) | 93.6% total fouling resistance | Increased performance of polyethersulfone membrane, improved antifouling ability and cleaning efficiency | Water treatment | [167] |
Cellulose–chitosan-biomass-activated carbon nanoparticles | Molecularly imprinted membrane | Tetracycline antibiotic | - | High biodegradability, adsorption, and separation performance, 15.99 mg g−1 adsorption capacity, 4.91 perm-selectivity factor | Pollutant separation | [168] |
N-phthaloylchitosan–nanocrystalline cellulose | Mixed matrix membrane | Nano-silica and NaCl | - | Increase in hydrophilicity, 98% rejection of produced water | Produced water treatment | [169] |
Nanocomposite | Pollutant | Adsorption Equilibrium Time (min) | Isotherm Model and Kinetics | Removal Efficiency/ Adsorption Capacity | Refs. |
---|---|---|---|---|---|
GO/polyamidoamine | Pb (II), Cd (II), Cu (II), Mn (II) | 60 | Langmuir and pseudo-second-order | 568.18, 253.81, 68.68, 18.29 mg/g | [171] |
Chitosan/silica/ZnO | Methylene blue | - | Langmuir and pseudo-second-order | 293.3 mg/g | [85] |
Molecularly imprinted polymer (MIP) chitosan-TIO2 | Rose Bengal | - | Langmuir and pseudo-second-order | 79.365 mg/g | [174] |
PAMAM–titaniananohybrid | Phenol | - | Langmuir and pseudo-second-order model | 77 mg/g | [175] |
PPI dendrimers functionalized with long aliphatic chains | Fluoranthene, phenanthrene, pyrene | - | - | 19, 67, 57 (mg/g) | [176] |
Chitosan-MnO2 | Cr (VI) | 120 | Langmuir and intra-diffusion | 61.56 mg/g | [189] |
NTiO2-chitosan@NZrO2-chitosan | Gd (III) Sm (III) | 30 20 | Langmuir–Freundlich and pseudo-first-order | 450 650 μmol/g | [190] |
Chitoson-MoS2 | Cr (IV) U (VI) Eu (III) | 180 120 240 | Langmuir | 3.05 0.71 0.86 mmol/g | [191] |
Chitosan-benzil/zinc oxide/Fe3O4 | Remazol brilliant blue | - | Freundlich and pseudo-second-order | 620.5 mg/g | [192] |
Chitosan-PVA@CuO | Acidblue 25 | - | Langmuir and pseudo-second-order | 171.4 mg/g | [193] |
Chitosan/zero-valent iron | Direct red 81 | - | Freundlich and pseudo-first-order | 61.35 mg/g | [194] |
ZnO/chitosan nanocomposite | Congo red | - | Langmuir | 227.3 mg/g | [195] |
Chitosan-ZnO | Malachite green | - | Langmuir and pseudo-second-order | 11 mg/g | [196] |
Chitosan–silica | Methyl orange | - | Langmuir | 7 mg/g | [197] |
Chitosan/SiO2/CNTs | Direct blue 71 (DB71) Reactive blue 19 (RB19) | - | Langmuir and pseudo-second-order | 61.35 mg/g 97.08 mg/g | [198] |
Polyacrylonitrile/PAMAM composite nanofibers | Direct red 80, Direct red 23 | - | Langmuir and pseudo-second-order kinetics | 2000 mg/g | [199] |
GO-PPI dendrimer | Acid red 14, Acid blue 92 | - | Langmuir and pseudo-second-order kinetics | 434.78, 196.08 mg/g | [200] |
Chitosan-Cu/Al@N-C microspheres | Oxytetracycline antibiotics | - | Langmuir and pseudo-second-order kinetics | 92.25%, 1727.65 mg/g (25 °C) | [177] |
O-carboxymethyl chitosan (O-CMC)/oxidized pectin hydrogel-EDTA acid-LDH | Benzylpenicillin | - | Langmuir and pseudo-second-order kinetics | 250 mg/L | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annu; Mittal, M.; Tripathi, S.; Shin, D.K. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers 2024, 16, 294. https://doi.org/10.3390/polym16020294
Annu, Mittal M, Tripathi S, Shin DK. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers. 2024; 16(2):294. https://doi.org/10.3390/polym16020294
Chicago/Turabian StyleAnnu, Mona Mittal, Smriti Tripathi, and Dong Kil Shin. 2024. "Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges" Polymers 16, no. 2: 294. https://doi.org/10.3390/polym16020294
APA StyleAnnu, Mittal, M., Tripathi, S., & Shin, D. K. (2024). Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers, 16(2), 294. https://doi.org/10.3390/polym16020294