Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = nanoinsecticide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1343 KiB  
Review
Nano-Enabled Insecticides for Efficient Pest Management: Definition, Classification, Synergistic Mechanism, and Safety Assessment
by Ying Wei, Jingyi Chen, Min Dong, Meizhen Yin, Jie Shen, Le Gao and Shuo Yan
Nanomaterials 2025, 15(13), 1050; https://doi.org/10.3390/nano15131050 - 6 Jul 2025
Viewed by 453
Abstract
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient [...] Read more.
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient to meet the demands for sustainable modern agriculture. Recent advances in nanotechnology offer innovative strategies for improving pesticide delivery, bioavailability, and selectivity. This review systematically summarizes the current progress in nano-insecticides, including their definitions, classification, preparation techniques, synergistic mechanisms, insecticidal performance, and safety evaluation. In addition, emerging strategies, such as multi-stimuli responsive systems, co-delivery with multiple agents or genetic materials, and integration with biological control, are discussed. Finally, future perspectives are proposed to guide the design/development of intelligent, efficient, and eco-friendly nano-insecticides for sustainable pest management in modern agriculture. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

28 pages, 1129 KiB  
Review
Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection
by Puji Shandila, Tunjung Mahatmanto and Jue-Liang Hsu
Processes 2025, 13(5), 1278; https://doi.org/10.3390/pr13051278 - 23 Apr 2025
Cited by 2 | Viewed by 1212
Abstract
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. [...] Read more.
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. These properties enable the formulation of MNPs for controlled and sustained release, thereby reducing application frequency and minimizing environmental runoff. This controlled release mechanism not only improves pest management efficacy but also reduces risks to non-target organisms and beneficial species, aligning with the principles of sustainable crop protection. This review examines nanopesticides based on their specific targets, such as nanoinsecticide, nanobactericide, nanofungicide, nanonematicide, and nanoviricide. It also explores the mechanisms of action of metal-based nanoparticles, including physical disruption, chemical interactions, and biological processes. Additionally, the review details how MNPs compromise cellular integrity through mechanisms such as membrane damage, DNA disruption, mitochondrial impairment, and protein denaturation. Despite these advantages, significant challenges remain, particularly concerning the environmental impact of MNPs, their long-term effects on soil health and ecosystem dynamics, and potential risks to human safety. Addressing these challenges is crucial for realizing the full potential of MNPs in sustainable agriculture. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Graphical abstract

10 pages, 790 KiB  
Article
Insecticide Efficacy of Green Synthesis Silver Nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae)
by Vidal Zavala-Zapata, Sonia N. Ramírez-Barrón, Maricarmen Sánchez-Borja, Luis A. Aguirre-Uribe, Juan Carlos Delgado-Ortiz, Sergio R. Sánchez-Peña, Juan Mayo-Hernández, Josué I. García-López, Jesus A. Vargas-Tovar and Agustín Hernández-Juárez
Insects 2024, 15(7), 469; https://doi.org/10.3390/insects15070469 - 23 Jun 2024
Cited by 5 | Viewed by 3452
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential [...] Read more.
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential alternative to control of agricultural insect pests. The insecticide effect of silver nanoparticles (AgNPs) on 2nd instar nymphs of D. citri under laboratory and greenhouse conditions was evaluated. Mortality was recorded 24, 48, and 72 h after application on D. citri nymphs under both laboratory and greenhouse conditions. The laboratory results showed that AgNPs caused 97.84 and 100% mortality at 32 and 64 ppm, respectively, 72 h after treatment. In the greenhouse, AgNPs caused 78.69 and 80.14% mortality using 64 and 128 ppm 72 h after application. This research is the first to evaluate the green synthesis AgNPs on D. citri and are a promising strategy to control the pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

27 pages, 2195 KiB  
Review
A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants
by Ved Prakash Giri, Pallavi Shukla, Ashutosh Tripathi, Priya Verma, Navinit Kumar, Shipra Pandey, Christian O. Dimkpa and Aradhana Mishra
Plants 2023, 12(4), 815; https://doi.org/10.3390/plants12040815 - 11 Feb 2023
Cited by 40 | Viewed by 5342
Abstract
Climate change is more likely to have a detrimental effect on the world’s productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are [...] Read more.
Climate change is more likely to have a detrimental effect on the world’s productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world’s growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants. Full article
(This article belongs to the Special Issue Advances in Nano-Enabled Agriculture)
Show Figures

Figure 1

11 pages, 1491 KiB  
Article
Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide
by Francesca Laudani, Orlando Campolo, Roberta Caridi, Ilaria Latella, Antonino Modafferi, Vincenzo Palmeri, Agostino Sorgonà, Paolo Zoccali and Giulia Giunti
Insects 2022, 13(12), 1150; https://doi.org/10.3390/insects13121150 - 13 Dec 2022
Cited by 15 | Viewed by 3701
Abstract
Due to its high polyphagy, Aphis gossypii is considered a key pest of many crops, and it can feed on hundreds of plant species belonging to the families Cucurbitaceae, Malvaceae, Solanaceae, Rutaceae, and Asteraceae. The control of this pest mainly relies on synthetic [...] Read more.
Due to its high polyphagy, Aphis gossypii is considered a key pest of many crops, and it can feed on hundreds of plant species belonging to the families Cucurbitaceae, Malvaceae, Solanaceae, Rutaceae, and Asteraceae. The control of this pest mainly relies on synthetic insecticides whose adverse effects on the environment and human health are encouraging researchers to explore innovative, alternative solutions. In this scenario, essential oils (EOs) could play a key role in the development of ecofriendly pesticides. In this study, the development of a citrus peel EO-based nano-formulation and its biological activity against A. gossypii both in the laboratory and field were described and evaluated. The phytotoxicity towards citrus plants was also assessed. The developed nano-insecticide highlighted good aphicidal activity both in the laboratory and field trials, even at moderate EO concentrations. However, the highest tested concentrations (4 and 6% of active ingredient) revealed phytotoxic effects on the photosynthetic apparatus; the side effects need to be carefully accounted for to successfully apply this control tool in field conditions. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 2574 KiB  
Article
Larvicidal and Antifeedant Effects of Copper Nano-Pesticides against Spodoptera frugiperda (J.E. Smith) and Its Immunological Response
by Afroja Rahman, Sarayut Pittarate, Vivekanandhan Perumal, Julius Rajula, Malee Thungrabeab, Supamit Mekchay and Patcharin Krutmuang
Insects 2022, 13(11), 1030; https://doi.org/10.3390/insects13111030 - 7 Nov 2022
Cited by 41 | Viewed by 4169
Abstract
This study aimed to synthesize and evaluate the efficacy of CuO NPs (copper oxide nanoparticles) with varying test concentrations (10–500 ppm) against larvicidal, antifeedant, immunological, and enzymatic activities against larvae of S. frugiperda at 24 h of treatment. Copper nanoparticles were characterized by using [...] Read more.
This study aimed to synthesize and evaluate the efficacy of CuO NPs (copper oxide nanoparticles) with varying test concentrations (10–500 ppm) against larvicidal, antifeedant, immunological, and enzymatic activities against larvae of S. frugiperda at 24 h of treatment. Copper nanoparticles were characterized by using a scanning electron microscope (SEM) and energy dispersive X-ray (EDaX) analysis. The EDaX analysis results clearly show that the synthesized copper nanoparticles contain copper as the main element, and the SEM analysis results show nanoparticle sizes ranging from 29 to 45 nm. The CuO NPs showed remarkable larvicidal activity (97%, 94%, and 81% were observed on the 3rd, 4th, and 5th instar larvae, respectively). The CuO NPs produced high antifeedant activity (98.25%, 98.01%, and 98.42%), which was observed on the 3rd, 4th, and 5th instar larvae, respectively. CuO NPs treatment significantly reduced larval hemocyte levels 24 h after treatment; hemocyte counts and sizes changed in the CuO NPs treatment compared to the control. After 24 h of treatment with CuO NPs, the larval acetylcholinesterase enzyme levels decreased with dose-dependent activity. The present findings conclude that CuO NPs cause remarkable larvicidal antifeedant activity and that CuO NPs are effective, pollution-free green nano-insecticides against S. frugiperda. Full article
(This article belongs to the Special Issue Recent Advances in Fall Armyworm Research)
Show Figures

Figure 1

12 pages, 2548 KiB  
Article
Preparation of an Environmentally Friendly Nano-Insecticide through Encapsulation in Polymeric Liposomes and Its Insecticidal Activities against the Fall Armyworm, Spodoptera frugiperda
by Xiuqin Chen, Liangmiao Qiu, Qiquan Liu and Yuxian He
Insects 2022, 13(7), 625; https://doi.org/10.3390/insects13070625 - 13 Jul 2022
Cited by 14 | Viewed by 3541
Abstract
The insecticide emamectin benzoate (EB) was formulated with nanoparticles composed of DSPE-PEG2000-NH2 by the co-solvent method to determine its adverse impacts on the environment and to reinforce its dispersion, adhesion, and biocompatibility. A good encapsulation efficiency (70.5 ± 1.5%) of [...] Read more.
The insecticide emamectin benzoate (EB) was formulated with nanoparticles composed of DSPE-PEG2000-NH2 by the co-solvent method to determine its adverse impacts on the environment and to reinforce its dispersion, adhesion, and biocompatibility. A good encapsulation efficiency (70.5 ± 1.5%) of EB loaded in DSPE-PEG2000-NH2 polymeric liposomes was confirmed. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and contact angle meter measurements revealed that the DSPE-EB nanoparticles had a regular distribution, spherical shape, and good leaf wettability. The contact angle on corn leaves was 47.26°, and the maximum retention was higher than that of the reference product. DSPE-EB nanoparticles had strong adhesion on maize foliage and a good, sustained release property. The efficacy trial showed that the DSPE-EB nanoparticles had a strong control effect on S. frugiperda larvae, with the LC50 of 0.046 mg/L against the third-instar S. furgiperda larve after 48 h treatment. All these results indicate that DSPE-EB nanoparticles can serve as an insecticide carrier with lower environmental impact, sustained release property, and effective control of pests. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

28 pages, 2743 KiB  
Review
Zinc Oxide Nanoparticles and Their Biosynthesis: Overview
by Hareb Al Jabri, Muhammad Hamzah Saleem, Muhammad Rizwan, Iqbal Hussain, Kamal Usman and Mohammed Alsafran
Life 2022, 12(4), 594; https://doi.org/10.3390/life12040594 - 18 Apr 2022
Cited by 120 | Viewed by 10899
Abstract
Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils [...] Read more.
Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants. Full article
(This article belongs to the Special Issue Cultivation and Regulation of Abiotic Stress for Field Crops)
Show Figures

Figure 1

12 pages, 1536 KiB  
Article
Contact Toxicity and Ovideterrent Activity of Three Essential Oil-Based Nano-Emulsions against the Olive Fruit Fly Bactrocera oleae
by Giulia Giunti, Francesca Laudani, Emilio Lo Presti, Monica Bacchi, Vincenzo Palmeri and Orlando Campolo
Horticulturae 2022, 8(3), 240; https://doi.org/10.3390/horticulturae8030240 - 10 Mar 2022
Cited by 21 | Viewed by 3813
Abstract
The control strategies for the olive crop key pest, Bactrocera oleae, involve synthetic chemical insecticides and few eco-sustainable alternatives, such as ovideterrents and lures. In the last few decades, the interest concerning the formulation of botanical based biopesticides increased, but little research [...] Read more.
The control strategies for the olive crop key pest, Bactrocera oleae, involve synthetic chemical insecticides and few eco-sustainable alternatives, such as ovideterrents and lures. In the last few decades, the interest concerning the formulation of botanical based biopesticides increased, but little research investigated the suitability of these approaches for B. oleae control. This research aimed to investigate the residual contact toxicity and the oviposition deterrence of three essential oil (EO)-based nano-emulsions (Pimpinella anisum, Foeniculum vulgare, Mentha × piperita) against B. oleae adult flies. All the nano-emulsions possessed optimal physical characteristics, with droplets dimensions ranging from 115 to 152 nm and low PDI values (<0.2), even after 1 year of storage. Although no notable residual contact toxicity was noted, all the tested formulations reduced the number of oviposition puncture in no-choice tests (percent repellence: mint < fennel < anise). In choice trials, olives treated with fennel and anise EO-formulations at the highest concentration (7.5%, 75 g of EO/L) were less attractive respect to control fruits and a significant reduction of olive punctures was recorded. Nano-biopesticides are promising eco-friendly tools to integrate B. oleae pest management programs and to reduce the use of harmful conventional active ingredients. Full article
(This article belongs to the Special Issue New Insights into Pest Management in Horticultural Production)
Show Figures

Figure 1

21 pages, 18931 KiB  
Article
The Potency of Fungal-Fabricated Selenium Nanoparticles to Improve the Growth Performance of Helianthus annuus L. and Control of Cutworm Agrotis ipsilon
by Mohamed A. Amin, Mohamed A. Ismail, Ali A. Badawy, Mohamed A. Awad, Mohammed F. Hamza, Mohamed F. Awad and Amr Fouda
Catalysts 2021, 11(12), 1551; https://doi.org/10.3390/catal11121551 - 19 Dec 2021
Cited by 72 | Viewed by 5124
Abstract
The application of green nanotechnology in agriculture has been receiving substantial attention, especially in the development of new nano-fertilizers and nano-insecticides. Herein, the metabolites secreted by the fungal strain Penicillium chrysogenum are used as a reducing agent for selenium ions to form selenium [...] Read more.
The application of green nanotechnology in agriculture has been receiving substantial attention, especially in the development of new nano-fertilizers and nano-insecticides. Herein, the metabolites secreted by the fungal strain Penicillium chrysogenum are used as a reducing agent for selenium ions to form selenium nanoparticles (Se-NPs). The synthesized Se-NPs were characterized using color change, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS). The biomass filtrate of the fungal strain changed from colorless to a ruby red color after mixing with sodium selenite with a maximum surface plasmon resonance at 262 nm. Data exhibits the successful formation of spherical, amorphous Se-NPs with sizes ranging between 3–15 nm and a weight percentage of 38.52%. The efficacy of Se-NPs on the growth performance of sunflower (Helianthus annuus L.) and inhibition of cutworm Agrotis ipsilon was investigated. The field experiment revealed the potentiality of Se-NPs to enhance the growth parameters and carotenoid content in sunflower, especially at 20 ppm. The chlorophylls, carbohydrates, proteins, phenolic compounds, and free proline contents were markedly promoted in response to Se-NPs concentrations. The antioxidant enzymes (peroxidase, catalase, superoxide dismutase, and polyphenol oxidase) were significantly decreased compared with the control. Data analysis showed that the highest mortality for the 1st, 2nd, 3rd, 4th, and 5th instar larvae of Agrotis ipsilon was achieved at 25 ppm with percentages of 89.7 ± 0.3, 78.3 ± 0.3, 72.3 ± 0.6, 63.7 ± 0.3, and 68.7 ± 0.3 respectively after 72 h. Full article
Show Figures

Figure 1

12 pages, 19396 KiB  
Review
Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture
by Vishnu D. Rajput, Abhishek Singh, Tatiana Minkina, Sapna Rawat, Saglara Mandzhieva, Svetlana Sushkova, Victoria Shuvaeva, Olga Nazarenko, Priyadarshani Rajput, Komariah, Krishan K. Verma, Awani Kumar Singh, Mahesh Rao and Sudhir K. Upadhyay
Plants 2021, 10(12), 2727; https://doi.org/10.3390/plants10122727 - 11 Dec 2021
Cited by 171 | Viewed by 9478
Abstract
Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1–100 nm) with a larger surface area [...] Read more.
Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1–100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided. Full article
Show Figures

Figure 1

13 pages, 302 KiB  
Article
Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum
by Davide Palermo, Giulia Giunti, Francesca Laudani, Vincenzo Palmeri and Orlando Campolo
Sustainability 2021, 13(17), 9746; https://doi.org/10.3390/su13179746 - 30 Aug 2021
Cited by 57 | Viewed by 5905
Abstract
Post-harvest pest control can rely on few approved pesticides and tools; hence, there is a rising interest in new sustainable, eco-friendly approaches. In this study, eight commercial essential oils (EOs) (anise Pimpinella anisum, artemisia Artemisia vulgaris, fennel Foenicum vulgare, garlic [...] Read more.
Post-harvest pest control can rely on few approved pesticides and tools; hence, there is a rising interest in new sustainable, eco-friendly approaches. In this study, eight commercial essential oils (EOs) (anise Pimpinella anisum, artemisia Artemisia vulgaris, fennel Foenicum vulgare, garlic Allium sativum, lavender Lavandula angustifolia, mint Mentha piperita, rosemary Rosmarinus officinalis, and sage Salvia officinalis) were selected for their bioactivity and commercial availability, and then formulated in nano-emulsions. Repellency and acute toxicity of the developed nano-formulations were tested against a key stored product pest, Tribolium confusum (Coleoptera: Tenebrionidae). All the developed nano-emulsions presented optimal physical characteristics (droplet dimension = 95.01–144.30 nm; PDI = 0.146–0.248). All the formulations were repellent over time tested against adult beetles, in area preference bioassays. The best repellent was the anise EO-based formulation (RC50 = 0.033 mg). Mortality values from cold aerosol trials showed that the majority of tested EOs caused immediate acute toxicity, and garlic EO nano-emulsion caused the highest mortality of T. confusum adults (LC50 = 0.486 mg/L of air). EO-based nano-insecticides, used as cold aerosol and gel, are promising control methods against stored product pests, which can be integrated and combined with other sustainable biorational approaches. Full article
(This article belongs to the Special Issue Sustainable Defense Strategies for Pest Management)
20 pages, 1334 KiB  
Article
Insecticidal Effect of Zinc Oxide and Titanium Dioxide Nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on Tomato Solanum lycopersicum
by José A. Gutiérrez-Ramírez, Rebeca Betancourt-Galindo, Luis A. Aguirre-Uribe, Ernesto Cerna-Chávez, Alberto Sandoval-Rangel, Epifanio Castro-del Ángel, Julio C. Chacón-Hernández, Josué I. García-López and Agustín Hernández-Juárez
Agronomy 2021, 11(8), 1460; https://doi.org/10.3390/agronomy11081460 - 22 Jul 2021
Cited by 51 | Viewed by 6572
Abstract
The use of nanoparticles (NPs) has generated an alternative pest control. The objective was to evaluate the insecticidal effect of zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2 NPs), and their combination on Bactericera cockerelli (Hemiptera: Triozidae) second-stage nymphs under [...] Read more.
The use of nanoparticles (NPs) has generated an alternative pest control. The objective was to evaluate the insecticidal effect of zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2 NPs), and their combination on Bactericera cockerelli (Hemiptera: Triozidae) second-stage nymphs under laboratory and greenhouse conditions in tomato. The laboratory research was carried out with the leaf immersion bioassay method under a complete randomized design, and in the greenhouse by direct plant spraying under a randomized block design; in both designs, a control without NPs was added. Mortality was recorded every 24 h for 4 days. Both NPs in the laboratory and greenhouse showed toxicity to B. cockerelli nymphs. Results in the laboratory showed that NPs significantly caused increased mortality of 88, 99, and 100% 96 h after treatment of ZnO NPs, TiO2 NPs, and their combinations, at 1000, 100, and 250 ppm, respectively. Direct spray of plants in the greenhouse showed low mortality with 27, 32, and 23% after 96 h of ZnO NPs, TiO2 NPs, and their combinations, at 3000, 500, and 250 ppm, respectively. These results on B. cockerelli control seem promising. Nanoparticles as insecticides are a novel strategy, however, further investigation is required in field tests to obtain suitable efficacy for use in a pest management system. Full article
Show Figures

Figure 1

13 pages, 435 KiB  
Article
Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat
by Nickolas G. Kavallieratos, Erifili P. Nika, Anna Skourti, Nikoletta Ntalli, Maria C. Boukouvala, Catherine T. Ntalaka, Filippo Maggi, Rianasoambolanoro Rakotosaona, Marco Cespi, Diego Romano Perinelli, Angelo Canale, Giulia Bonacucina and Giovanni Benelli
Molecules 2021, 26(6), 1812; https://doi.org/10.3390/molecules26061812 - 23 Mar 2021
Cited by 46 | Viewed by 4464
Abstract
Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential [...] Read more.
Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Figure 1

15 pages, 1871 KiB  
Article
Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana
by Giovanni Benelli, Lucia Pavoni, Valeria Zeni, Renato Ricciardi, Francesca Cosci, Gloria Cacopardo, Saverio Gendusa, Eleonora Spinozzi, Riccardo Petrelli, Loredana Cappellacci, Filippo Maggi, Roman Pavela, Giulia Bonacucina and Andrea Lucchi
Nanomaterials 2020, 10(9), 1867; https://doi.org/10.3390/nano10091867 - 18 Sep 2020
Cited by 78 | Viewed by 5811
Abstract
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as [...] Read more.
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest. Full article
(This article belongs to the Special Issue Green Synthesis of Nanomaterials and Their Biological Applications)
Show Figures

Figure 1

Back to TopTop