Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Colonies and Rearing
2.2. Essential Oils and Chemicals
2.3. GC–MS Characterization of Essential Oils
2.4. Nano-Emulsion Formulation and Characterization
2.5. Formulating Gels from EO Nano-Emulsions
2.6. Repellent Activity of EO Based Gels
- Anise EO, 15 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938, 0.469, 0.235, 0.117, 0.059, 0.029, 0.015 and 0.007 mg of EO)
- Artemisia EO, 9 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938 and 0.469 mg of EO)
- Fennel EO, 12 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938, 0.469, 0.235, 0.117 and 0.059 mg of EO)
- Garlic EO, 10 dosages (7.5, 3.75, 1.875, 0.938, 0.469, 0.235, 0.117, 0.059, 0.029 and 0.015 mg of EO)
- Lavender EO, 6 dosages (120, 60, 30, 15, 7.5 and 3.75 mg of EO)
- Mint EO, 9 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938 and 0.469 mg of EO)
- Rosemary EO, 10 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938, 0.469 and 0.235 mg of EO)
- Sage EO, 10 dosages (120, 60, 30, 15, 7.5, 3.75, 1.875, 0.938, 0.469 and 0.235 mg of EO)
2.7. Acute Toxicity by Cold Aerosol Trials
- Anise EO, 6 doses (22.22, 11.11, 5.56, 2.78, 1.39 and 0.69 mg of EO/L of air)
- Artemisia EO, 6 doses (22.22, 11.11, 5.56, 2.78, 1.39 and 0.69 mg EO/L of air)
- Fennel EO, 5 doses (22.22, 11.11, 5.56, 2.78 and 1.39 mg EO/L of air)
- Garlic EO, 8 doses (22.22, 11.11, 5.56, 2.78, 1.39, 0.69, 0.35 and 0.17 mg EO/L of air)
- Lavender EO, 7 doses (22.22, 11.11, 5.56, 2.78, 1.39, 0.69 and 0.35 mg EO/L of air)
- Mint EO, 5 doses (22.22, 11.11, 5.56, 2.78 and 1.39 mg/L mg EO/L in air)
- Rosemary EO, 7 doses (22.22, 11.11, 5.56, 2.78, 1.39, 0.69 and 0.35 mg EO/L of air)
- Sage EO, 5 doses (22.22, 11.11, 5.56, 2.78 and 1.39 mg EO/L of air)
2.8. Data Analysis
3. Results
3.1. Chemical Composition of Essential Oils
3.2. Characterization of EO-Based Nano-Emulsions
3.3. Repellent Activity of EO-Based Gel
3.4. Toxicity of EO-Based Nano-Emulsions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Insects 2021, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Dis. 2015, 100, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Pavela, R.; Maggi, F.; Petrelli, R.; Nicoletti, M. Commentary: Making Green Pesticides Greener? The Potential of Plant Products for Nanosynthesis and Pest Control. J. Clust. Sci. 2016, 28, 3–10. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Mancini, F.; Woodcock, B.A.; Isaac, N.J.B. Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Curr. Opin. Environ. Sci. Health 2019, 11, 53–58. [Google Scholar] [CrossRef]
- Fields, P.G.; White, N.D.G. Alternative to methyl bromide treatments for stored-product and quarantine insects. Annu. Rev. Entomol. 2002, 47, 331–359. [Google Scholar] [CrossRef] [Green Version]
- Nayak, M.K.; Daglish, G.J. Importance of Stored Product Insects. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–17. ISBN 9783662561256. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D. Current Status and Recent Developments in Biopesticide Use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Deng, H.; Hwang, H.M. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, J.L.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Giunti, G.; Benelli, G.; Conte, G.; Mele, M.; Caruso, G.; Gucci, R.; Flamini, G.; Canale, A. VOCs-Mediated Location of Olive Fly Larvae by the Braconid Parasitoid Psyttalia concolor: A Multivariate Comparison among VOC Bouquets from Three Olive Cultivars. Biomed. Res. Int. 2016, 2016, 7827615. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant Defense Against Herbivores: Chemical Aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Kubeczka, K.-H. History and Sources of Essential Oil Research. In Handbook of Essential Oils; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–39. ISBN 9781351246460. [Google Scholar]
- Romeo, F.V.; De Luca, S.; Piscopo, A.; De Salvo, E.; Poiana, M. Effect of Some Essential Oils as Natural Food Preservatives on Commercial Grated Carrots. J. Essent. Oil Res. 2011, 22, 283–287. [Google Scholar] [CrossRef]
- Jancikova, S.; Dani, D.; Petr, S.; Marcela, N.; Jakub, T.; Bohuslava, T. Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity. Polymers 2021, 13, 1–19. [Google Scholar]
- Moretti, M.D.L.; Sanna-Passino, G.; Demontis, S.; Bazzoni, E. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 2002, 3, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Fabroni, S.; Ruberto, G.; Rapisarda, P. Essential oil profiles of new Citrus hybrids, a tool for genetic citrus improvement. J. Essent. Oil Res. 2012, 24, 159–169. [Google Scholar] [CrossRef]
- Thompson, J.D.; Chalchat, J.-C.; Michet, A.; Linhart, Y.B.; Ehlers, B. Qualitative and Quantitative Variation in Monoterpene Co-Occurrence and Composition in the Essential Oil of Thymus vulgaris Chemotypes. J. Chem. Ecol. 2003, 29, 859–880. [Google Scholar] [CrossRef]
- Campolo, O.; Cherif, A.; Ricupero, M.; Siscaro, G.; Grissa-Lebdi, K.; Russo, A.; Cucci, L.M.; Di Pietro, P.; Satriano, C.; Desneux, N.; et al. Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: Chemical properties and biological activity. Sci. Rep. 2017, 7, 13036. [Google Scholar] [CrossRef] [PubMed]
- Werdin González, J.O.; Gutiérrez, M.M.; Ferrero, A.A.; Fernández Band, B. Essential oils nanoformulations for stored-product pest control—Characterization and biological properties. Chemosphere 2014, 100, 130–138. [Google Scholar] [CrossRef]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef]
- Golden, G.; Quinn, E.; Shaaya, E.; Kostyukovsky, M.; Poverenov, E. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection. Pest Manag. Sci. 2018, 74, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential Oils in Stored Product Insect Pest Control. J. Food Qual. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Steam, IL, USA, 1995; ISBN 978-1-932633-21-4. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980; ISBN 0323141056. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley and Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; John Wiley & Sons, Ltd.: New York, NY, USA, 1974. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G.M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind. Crops Prod. 2019, 142, 111869. [Google Scholar] [CrossRef]
- Mostafiz, M.M.; Shim, J.-K.; Hwang, H.-S.; Bunch, H.; Lee, K.-Y. Acaricidal effects of methyl benzoate against Tetranychus urticae Koch (Acari: Tetranychidae) on common crop plants. Pest Manag. Sci. 2020, 76, 2347–2354. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 1925, 3, 302–303. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Ziani, K.; Fang, Y.; McClements, D.J. Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Res. Int. 2012, 46, 209–216. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Laigle, M.; Michel, T.; Palmeri, V. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crops Prod. 2020, 157, 112935. [Google Scholar] [CrossRef]
- Hashem, A.S.; Awadalla, S.S.; Zayed, G.M.; Maggi, F.; Benelli, G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018, 25, 18802–18812. [Google Scholar] [CrossRef]
- Li, J.; Chang, J.W.; Saenger, M.; Deering, A. Thymol nanoemulsions formed via spontaneous emulsification: Physical and antimicrobial properties. Food Chem. 2017, 232, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Kushnazarova, R.; Lukashenko, S.S.; Nikitin, E.N.; Sinyashin, K.O.; Nesterova, L.M.; Zakharova, L.Y. Carbamate-bearing surfactants as effective adjuvants promoted the penetration of the herbicide into the plant. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124252. [Google Scholar] [CrossRef]
- Niedobová, J.; Skalský, M.; Ouředníčková, J.; Michalko, R.; Bartošková, A. Synergistic effects of glyphosate formulation herbicide and tank-mixing adjuvants on Pardosa spiders. Environ. Pollut. 2019, 249, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Jesser, E.; Lorenzetti, A.S.; Yeguerman, C.; Murray, A.P.; Domini, C.; Werdin-González, J.O. Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management. Ultrason. Sonochem. 2020, 61, 104832. [Google Scholar] [CrossRef] [PubMed]
- Junkum, A.; Maleewong, W.; Saeung, A.; Champakaew, D.; Chansang, A.; Amornlerdpison, D.; Aldred, A.K.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; et al. Ligusticum sinense Nanoemulsion Gel as Potential Repellent against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus (Diptera: Culicidae). Insects 2021, 12, 596. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Khoobdel, M.; Talebi, A.A.; Negahban, M.; Norani, M.; Moradi, M.; Dehghan, O. In vivo Evaluation of the Repellency Effects of Nanoemulsion of Mentha piperita and Eucalyptus globulus Essential Oils against mosquitoes. Open Biotechnol. J. 2021, 14, 145–152. [Google Scholar] [CrossRef]
- Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. [Google Scholar] [CrossRef]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bougherra, H.H.; Bedini, S.; Flamini, G.; Cosci, F.; Belhamel, K.; Conti, B. Pistacia lentiscus essential oil has repellent effect against three major insect pests of pasta. Ind. Crops Prod. 2015, 63, 249–255. [Google Scholar] [CrossRef]
- Giunti, G.; Campolo, O.; Laudani, F.; Zappalà, L.; Palmeri, V. Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Ind. Crops Prod. 2021, 162, 113257. [Google Scholar] [CrossRef]
- Hori, M. Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Appl. Entomol. Zool. 2003, 38, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Niogret, J.; Gill, M.A.; Espinoza, H.R.; Kendra, P.E.; Epsky, N.D. Attraction and electroantennogram responses of male Mediterranean fruit fly (Diptera: Tephritidae) to six plant essential oils. J. Entomol. Zool. Stud. 2017, 5, 958–964. [Google Scholar]
- Arthur, F.H. Aerosol distribution and efficacy in a commercial food warehouse. Insect Sci. 2008, 15, 133–140. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Zhao, M.; Wu, J.; Niu, Z.; Zhang, X.; Simal-Gandara, J.; Süntar, I.; Jafari, S.M.; Qiao, X.; et al. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit. Rev. Food Sci. Nutr. 2021, 1–30. [Google Scholar] [CrossRef]
- Price, D.N.; Berry, M.S. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 2006, 52, 309–319. [Google Scholar] [CrossRef]
- Petrović, M.; Popović, A.; Kojić, D.; Šućur, J.; Bursić, V.; Aćimović, M.; Malenčić, Đ.; Stojanović, T.; Vuković, G. Assessment of toxicity and biochemical response of Tenebrio molitor and Tribolium confusum exposed to Carum carvi essential oil. Entomol. Gen. 2019, 38, 333–348. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Scheff, D.S.; Campbell, J.F.; Arthur, F.H. Aerosol Dispersal Patterns and Resulting Effects on Tribolium confusum (Coleoptera: Tenebrionidae) Adults. J. Econ. Entomol. 2018, 111, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Toews, M.D.; Campbell, J.F.; Arthur, F.H. Temporal dynamics and response to fogging or fumigation of stored-product Coleoptera in a grain processing facility. J. Stored Prod. Res. 2006, 42, 480–498. [Google Scholar] [CrossRef]
Essential Oil | Z-Average Size ± SE 1 (nm) | PDI 2 ± SE | ζ potential ± SE (mV) |
---|---|---|---|
Anise | 128.23 ± 0.37 | 0.146 ± 0.012 | −23.8 ± 0.27 |
Artemisia | 95.01 ± 0.03 | 0.240 ± 0.005 | −10.81 ± 0.74 |
Fennel | 111.30 ± 0.21 | 0.154 ± 0.005 | −16.50 ± 0.35 |
Garlic | 144.30 ± 0.15 | 0.164 ± 0.008 | −23.67 ± 0.23 |
Lavender | 121.17 ± 0.58 | 0.172 ± 0.005 | −11.60 ± 0.06 |
Mint | 141.53 ± 0.26 | 0.189 ± 0.009 | −18.40 ± 0.76 |
Rosemary | 138.13 ± 0.66 | 0.248 ± 0.004 | −22.30 ± 0.21 |
Sage | 124.87 ± 0.09 | 0.181 ± 0.006 | −13.27 ± 0.20 |
EO | Time | RC50 1 (mg of EO) | 95% FL 2 | Slope ± SE 3 | Pearson’s χ2 (df 4) | p |
---|---|---|---|---|---|---|
Anise | 24 h | 0.042 a | 0.028–0.064 | 1.25 ± 0.11 | 7.41(4) | 0.116 |
48 h | 0.033 a | 0.024–0.043 | 0.87 ± 0.11 | 5.51(4) | 0.239 | |
Artemisia | 24 h | 1.622 c | 0.535–3.820 | 0.98 ± 0.14 | 7.35 (3) | 0.068 |
48 h | 1.262 c | 1.856–2.794 | −0.21 ± 0.07 | 2.40 (3) | 0.495 | |
Fennel | 24 h | 0.158 b | 0.092–0.239 | 1.48 ± 0.15 | 5.50 (3) | 0.139 |
48 h | 0.177 b | 0.130–0.221 | 1.47 ± 0.21 | 3.45 (3) | 0.178 | |
Garlic | 24 h | 0.055 a | 0.038–0.074 | 0.79 ± 0.11 | 6.45 (4) | 0.168 |
48 h | 0.095 ab | 0.046–0.212 | 0.70 ± 0.10 | 6.95 (4) | 0.139 | |
Lavender | 24 h | 15.389 d | 11.729–19.683 | 0.99 ± 0.11 | 0.66 (4) | 0.956 |
48 h | 19.625 d | 15.130–24.457 | 1.23 ± 0.15 | 4.56 (4) | 0.207 | |
Mint | 24 h | 1.083 bc | 0.205–0.882 | 0.66 ± 0.14 | 3.22 (3) | 0.359 |
48 h | 1.601 c | 0.387–1.215 | 0.67 ± 0.14 | 4.52 (3) | 0.211 | |
Rosemary | 24 h | 0.577 c | 0.249–0.968 | 1.27 ± 0.15 | 6.63 (3) | 0.085 |
48 h | 0.816 c | 0.435–1.397 | 1.33 ± 0.15 | 6.80 (3) | 0.078 | |
Sage | 24 h | 0.719 c | 0.370–1.144 | 1.14 ± 0.11 | 9.07 (4) | 0.059 |
48 h | 1.985 c | 1.263–3.510 | 1.19 ± 0.11 | 9.26 (4) | 0.055 |
EO | Time | LC50 1 (mg/L of Air) | 95% FL 2 | Slope ± SE 3 | Pearson’s χ2 (df 4) | p |
---|---|---|---|---|---|---|
Anise | 24 h | 2.561 b | 1.988–3.239 | 2.28 ± 0.16 | 6.67 (4) | 0.149 |
1 w | 2.099 b | 1.833–2.385 | 2.32 ± 0.17 | 5.96 (4) | 0.202 | |
Artemisia | 24 h | 7.462 d | 6.058–9.496 | 1.25 ± 0.12 | 5.62 (4) | 0.229 |
1 w | 4.069 c | 3.370–4.924 | 1.34 ± 0.12 | 2.35 (4) | 0.671 | |
Fennel | 24 h | 3.764 bc | 2.699–5.018 | 2.42 ± 0.19 | 5.78 (3) | 0.123 |
1 w | 3.369 bc | 2.323–4.561 | 2.35 ± 0.19 | 6.12 (3) | 0.106 | |
Garlic | 24 h | 0.486 a | 0.381–0.601 | 1.30 ± 0.15 | 2.48 (3) | 0.478 |
1 w | 0.325 a | 0.243–0.408 | 1.26 ± 0.15 | 0.15 (3) | 0.986 | |
Lavender | 24 h | 4.476 bcd | 3.039–7.061 | 1.18 ± 0.09 | 10.98 (5) | 0.052 |
1 w | 2.048 b | 1.482–2.776 | 1.36 ± 0.10 | 8.50 (5) | 0.131 | |
Mint | 24 h | 3.768 c | 3.298–4.275 | 2.41 ± 0.19 | 2.41 (3) | 0.492 |
1 w | 2.915 b | 2.527–3.316 | 2.47 ± 0.21 | 3.22 (3) | 0.359 | |
Rosemary | 24 h | 6.098 cd | 4.666–8.651 | 1.09 ± 0.12 | 5.70 (4) | 0.222 |
1 w | 4.582 c | 3.646–6.048 | 1.18 ± 0.12 | 6.70 (4) | 0.153 | |
Sage | 24 h | 5.782 c | 5.146–6.506 | 2.68 ± 0.20 | 4.42 (3) | 0.219 |
1 w | 4.119 c | 3.665–4.613 | 2.82 ± 0.21 | 2.78 (3) | 0.427 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palermo, D.; Giunti, G.; Laudani, F.; Palmeri, V.; Campolo, O. Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. Sustainability 2021, 13, 9746. https://doi.org/10.3390/su13179746
Palermo D, Giunti G, Laudani F, Palmeri V, Campolo O. Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. Sustainability. 2021; 13(17):9746. https://doi.org/10.3390/su13179746
Chicago/Turabian StylePalermo, Davide, Giulia Giunti, Francesca Laudani, Vincenzo Palmeri, and Orlando Campolo. 2021. "Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum" Sustainability 13, no. 17: 9746. https://doi.org/10.3390/su13179746
APA StylePalermo, D., Giunti, G., Laudani, F., Palmeri, V., & Campolo, O. (2021). Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. Sustainability, 13(17), 9746. https://doi.org/10.3390/su13179746