Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,613)

Search Parameters:
Keywords = nano-sheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 (registering DOI) - 25 Aug 2025
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

25 pages, 3575 KB  
Article
Simultaneously Estimating Process Variation Effect, Work Function Fluctuation, and Random Dopant Fluctuation of Gate-All-Around Silicon Nanosheet Complementary Field-Effect Transistors
by Sekhar Reddy Kola and Yiming Li
Nanomaterials 2025, 15(17), 1306; https://doi.org/10.3390/nano15171306 - 24 Aug 2025
Abstract
We systematically investigate the combined impact of process variation effects (PVEs), metal gate work function fluctuation (WKF), and random dopant fluctuation (RDF) on the key electrical characteristics of sub-1-nm technology node gate-all-around silicon nanosheet complementary field-effect transistors (GAA Si NS CFETs). Through comprehensive [...] Read more.
We systematically investigate the combined impact of process variation effects (PVEs), metal gate work function fluctuation (WKF), and random dopant fluctuation (RDF) on the key electrical characteristics of sub-1-nm technology node gate-all-around silicon nanosheet complementary field-effect transistors (GAA Si NS CFETs). Through comprehensive statistical analysis, we reveal that the interplay of these intrinsic and extrinsic sources of variability induces significant fluctuations in the off-state leakage current across both N-/P-FETs in GAA Si NS CFETs. The sensitivity to process-induced variability is found to be particularly pronounced in the P-FETs, primarily due to the enhanced parasitic conduction associated with the bottom nanosheet channel. Given the correlated nature of PVE, WKF, and RDF factors, the statistical sum (RSD) of the fluctuation for each factor is overestimated by less than 50% compared with the simultaneous fluctuations of PVE, WKF, and RDF factors. Furthermore, although the static power dissipation remains relatively small compared to dynamic and short-circuit power components, it exhibits the largest relative fluctuation (approximately 82.1%), posing critical challenges for low-power circuit applications. These findings provide valuable insights into the variability-aware design and optimization of GAA NS CFET device fabrication processes, as well as the development of robust and reliable CFET-based integrated circuits for next-generation technology nodes. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 1657 KB  
Article
Fluorine Plasma Functionalization of Borophene Nanoflakes
by Juan Casanova-Chafer, Pedro Atienzar and Carla Bittencourt
Plasma 2025, 8(3), 33; https://doi.org/10.3390/plasma8030033 - 22 Aug 2025
Viewed by 118
Abstract
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine [...] Read more.
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine form. To address this limitation, the present study explores the controlled fluorination of borophene nanoflakes as a strategy to modify their surface chemistry and enhance the availability of active sites. Furthermore, it is anticipated that surface fluorination will improve hydrophobicity, which is crucial for reducing humidity-related interference in sensing applications. In this study, we report the successful functionalization of borophene nanoflakes with fluorine using a plasma arc discharge technique for the first time. Borophene nanolayers were synthesized via a sonochemical-assisted exfoliation method, yielding nanosheets with an average lateral dimension of approximately 100 nm. The fluorinated samples were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). A systematic investigation of plasma exposure durations demonstrated that fluorine was effectively introduced as a dopant while maintaining the crystallinity of the borophene lattice. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

15 pages, 6475 KB  
Article
Catalytic Interface of rGO-VO2/W5O14 Hydrogel for High-Performance Electrochemical Water Oxidation
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Gels 2025, 11(8), 670; https://doi.org/10.3390/gels11080670 - 21 Aug 2025
Viewed by 193
Abstract
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction [...] Read more.
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction kinetics and limited availability of highly active electrocatalysts especially under alkaline conditions. Addressing this challenge, we successfully synthesized a rGO-VO2/W5O14 (rG-VO2/W5O14) hydrogel electrocatalyst through a facile hydrothermal approach. The prepared composite distinctly reveals an advantageous hierarchical microstructure characterized by VO2 nanoflakes uniformly distributed on the surface of rGO nanosheets, intricately integrated with W5O14 nanorods. Evaluated in a 1.0 M KOH electrolyte, the optimized rG-VO2/W5O14-2 catalyst demonstrates remarkable electrocatalytic performance towards OER, achieving a low overpotential of 265.8 mV and a reduced Tafel slope of 81.9 mV dec−1. Furthermore, the catalyst maintains robust stability with minimal performance degradation, exhibiting an overpotential of only 273.0 mV after 5000 cyclic stability tests. The superior catalytic activity and durability are attributed to the synergistic combination of enriched chemical composition, effective electron transfer, and abundant catalytic active sites inherent in the well-optimized rG-VO2/W5O14-2 composite. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 3968 KB  
Article
White-Rot Fungal Pretreatment for High-Performance Bamboo-Derived Carbon-Based Supercapacitor Electrodes
by Jian Zhang, Lin Lin, Tianyao Jiang, Jiaming Cao, Jun Zhang, Jing Qin and Hengnan Liang
Molecules 2025, 30(16), 3430; https://doi.org/10.3390/molecules30163430 - 20 Aug 2025
Viewed by 246
Abstract
Bamboo, as a rapidly renewable biomass material, has garnered significant attention in contemporary research due to its cost effectiveness as a viable source for supercapacitor electrode materials. However, untreated bamboo as an electrode material often leads to poor connectivity and uneven pore distribution. [...] Read more.
Bamboo, as a rapidly renewable biomass material, has garnered significant attention in contemporary research due to its cost effectiveness as a viable source for supercapacitor electrode materials. However, untreated bamboo as an electrode material often leads to poor connectivity and uneven pore distribution. This study introduces a novel approach by using bamboo-derived biological carbon as a conductive substrate, subjecting it to carbonization through white-rot fungal pretreatment to enhance the pore structure and then loading it with nano-MnO2 sheets via a hydrothermal process. The result is a binderless, self-supporting supercapacitor electrode material, denoted as MnO2/hyphae/bamboo-derived carbon (HBC-2M). When compared to untreated bamboo carbon (HBC-0), HBC-2M exhibits an increased number of energy storage sites, enhanced electrolyte ion transport channels, and superior electrochemical performance. HBC-2M achieves a maximum mass-specific capacitance of 133.69 F·g−1 and a maximum area-specific capacitance of 2367.95 mF·cm−2 and retains approximately 87.46% of its capacitance after 2000 cycles. This research suggests a promising future for bamboo charcoal in supercapacitors. Full article
(This article belongs to the Special Issue New Insights into High Performance Carbon-Based Electrode Materials)
Show Figures

Figure 1

14 pages, 2928 KB  
Article
Gold Nanoparticles-Functionalized Ultrathin Graphitic Carbon Nitride Nanosheets for Boosting Solar Hydrogen Production: The Role of Plasmon-Induced Interfacial Electric Fields
by Haidong Yu, Ziqi Wei, Qiyue Gao, Ping Qu, Rui Wang, Xuehui Luo, Xiao Sun, Dong Li, Xiao Zhang, Jiufen Liu and Liang Feng
Molecules 2025, 30(16), 3406; https://doi.org/10.3390/molecules30163406 - 18 Aug 2025
Viewed by 336
Abstract
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, [...] Read more.
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, varying amounts of Au nanoparticles widely utilized to broaden the light absorption were loaded onto ultrathin carbon nitride sheets (Au/UCN). The Au/UCN-20 Schottky junction exhibits exceptional photocatalytic activity, achieving a hydrogen evolution rate (14.2 mmol·g−1 over a 4 h period) while maintaining robust stability through five consecutive photocatalytic cycles. The LSPR activity of Au nanoparticles are responsible for the broadened light absorption spectrum of Au/UCN nanocomposites. The interfacial electric field generated at the Au /UCN heterojunction is proposed to enhance charge-transfer efficiency through Schottky barrier penetration of photocarriers, mediated by electric field-driven carrier migration, according to surface potential and finite-difference time-domain (FDTD). These findings uncover a previously obscured photocatalytic mechanism driven by LSPR-induced interfacial electric fields, pioneering a quantum-dot-directed strategy to precisely engineer charge dynamics in advanced photocatalysts via targeted manipulation of nanoscale electric field effects. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

16 pages, 7400 KB  
Article
Waterborne Phosphated Alkynediol-Modified Mica Nanosheet/Acrylic Nanocomposite Coatings with Superior Anticorrosive Performance
by Rui Yuan, Zhixing Tang, Mindi Xiao, Minzhao Cai, Xin Yuan and Lin Gu
Nanomaterials 2025, 15(16), 1266; https://doi.org/10.3390/nano15161266 - 16 Aug 2025
Viewed by 286
Abstract
Mica is a naturally layered material recognized for its superior insulation and exceptional barrier properties; however, it is prone to agglomeration, and its compatibility with resin remains to be resolved. In this work, phosphate butynediol ethoxylate (PBEO), synthesized by the reaction of a [...] Read more.
Mica is a naturally layered material recognized for its superior insulation and exceptional barrier properties; however, it is prone to agglomeration, and its compatibility with resin remains to be resolved. In this work, phosphate butynediol ethoxylate (PBEO), synthesized by the reaction of a commercial corrosion inhibitor, butynediol ethoxylate, with phosphorus pentoxide, was employed to modify mica nanosheets (MNs), as evidenced by FTIR, Raman, and XPS. The obtained MN@PBEO demonstrated improved water dispersibility and enhanced compatibility with acrylic latex. EIS measurements revealed that the impedance (|Z|0.01Hz) for the waterborne acrylic coating with 0.5 wt% MN@PBEO was approximately an order of magnitude greater than that of the pure waterborne acrylic coating after 28 days of immersion in a 3.5 wt% NaCl solution. Additionally, compared to the pure waterborne acrylic coating, the 0.5 wt% MN@PBEO/acrylic nanocomposite coating on Q235 carbon steel exhibited a water diffusion coefficient that was roughly ten times lower, demonstrating substantially enhanced corrosion protection, attributable to its superior barrier properties. Full article
Show Figures

Graphical abstract

14 pages, 4908 KB  
Article
The Synergistic Anti-Friction and Anti-Wear Mechanisms of Betaine-Functionalized Montmorillonite Nano-Lubricants
by Qiang Wang, Zhengkun Yao, Diange Guo, Shuai-Shuai Li and Xia Zhang
Lubricants 2025, 13(8), 361; https://doi.org/10.3390/lubricants13080361 - 14 Aug 2025
Viewed by 292
Abstract
To address the challenges of friction and wear in mechanical systems, two functionalized montmorillonite (MMT) nanolubricants were developed through mechanochemistry, namely 3-sulfotetradecyldimethyl betaine-modified MMT (BS-MMT) and coconut amide propyl betaine-modified MMT (CAB-MMT) lubricants. The modification significantly expanded MMT’s interlayer spacing, with CAB-MMT exhibiting [...] Read more.
To address the challenges of friction and wear in mechanical systems, two functionalized montmorillonite (MMT) nanolubricants were developed through mechanochemistry, namely 3-sulfotetradecyldimethyl betaine-modified MMT (BS-MMT) and coconut amide propyl betaine-modified MMT (CAB-MMT) lubricants. The modification significantly expanded MMT’s interlayer spacing, with CAB-MMT exhibiting superior delamination and dispersion stability due to its coconut fatty amide groups. Tribological tests demonstrated that 0.5% CAB-MMT reduced the friction coefficient by 71.4% (to 0.08) and wear scar diameter by 58.8%, while maintaining stable performance under high loads (392 N) and speeds (1450 rpm). The exceptional performance stems from a synergistic mechanism involving the physical adsorption of MMT nanosheets, chemical adhesion via Fe-N/C-N+ bonds, and dynamic repair by friction-induced oxides. This work presents an eco-friendly, high-performance water-based nano-lubricant with broad industrial application potential. Full article
Show Figures

Figure 1

14 pages, 3808 KB  
Article
Defect-Engineered Elastic CNC/Chitosan-Based Carbon Aerogel with Wideband Microwave Absorption
by Weikai Zhan, Yijie Hu, Liangjun Li, Yonggang Jiang, Junzong Feng and Jian Feng
Nanomaterials 2025, 15(16), 1233; https://doi.org/10.3390/nano15161233 - 13 Aug 2025
Viewed by 417
Abstract
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) [...] Read more.
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) ratio to fabricate elastic boron nitride nanosheet (BNNS)-embedded carbon aerogels. By fixing BNNS content for optimal impedance matching and modulating the CS/CNC ratio of the aerogel, we achieve synergistic control over hierarchical microstructure, defect topology, and electromagnetic response. The aerogel exhibits a wide effective absorption bandwidth (EAB) of 8.3 GHz at a thickness of 3.6 mm and an excellent reflection loss of −52.79 dB (>99.999% attenuation), surpassing most biomass-derived EMWAs. The performance stems from CNC-derived topological defects enabling novel polarization pathways and BNNS-triggered interfacial polarization, while optimal graphitization (ID/IG = 1.08) balances conductive loss. Simultaneously, the optimal CS/CNC ratio facilitates the formation of a stable and flexible framework. The long-range ordered micro-arch lamellar structure endows the aerogel with promising elasticity, which retains 82% height after 1000 cyclic compression at 50% strain. This work paves the way for biomass-derived carbon aerogels as next-generation wearable and conformal EMWAs with broadband absorption. Full article
Show Figures

Graphical abstract

18 pages, 4250 KB  
Article
Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis
by Sankar Sekar, Atsaya Shanmugam, Youngmin Lee and Sejoon Lee
Materials 2025, 18(16), 3775; https://doi.org/10.3390/ma18163775 - 12 Aug 2025
Viewed by 493
Abstract
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, [...] Read more.
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, we employ 2D molybdenum disulfide (MoS2) nanosheets and pyrolytically fabricated 2D graphitic carbon nitride (gC3N4) nanosheets to create 2D gC3N4-decorated 2D MoS2 (2D–2D gC3N4–MoS2) nanocomposites using a facile sonochemical method. The 2D–2D gC3N4–MoS2 nanocomposites show an interconnected and agglomerated structure of 2D gC3N4 nanosheets decorated on 2D MoS2 nanosheets. For water electrolysis, the gC3N4–MoS2 nanocomposites exhibit low overpotentials (OER: 225 mV, HER: 156 mV), small Tafel slope values (OER: 49 mV/dec, HER: 101 mV/dec), and excellent durability (up to 100 h for both OER and HER) at 10 mA/cm2 in 1 M KOH. Furthermore, the gC3N4–MoS2 nanocomposites show excellent overall water electrolysis performance with a low full-cell voltage (1.52 V at 10 mA/cm2) and outstanding long-term cell stability. The superb bifunctional activities of the gC3N4–MoS2 nanocomposites are attributed to the synergistic effects of 2D gC3N4 (i.e., low charge-transfer resistance) and 2D MoS2 (i.e., a large electrochemically active surface area). These findings suggest that the 2D–2D gC3N4–MoS2 nanocomposites could serve as excellent bifunctional catalysts for overall water electrolysis. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

20 pages, 10780 KB  
Article
Enhanced Photo-Fenton Removal of Oxytetracycline Hydrochloride via BP/Bi2MoO6 Z-Scheme Heterojunction Photocatalyst
by Jian Feng, Xiaohui Li, Xia Ran, Li Wang, Bo Xiao, Rong Li and Guangwei Feng
Int. J. Mol. Sci. 2025, 26(16), 7751; https://doi.org/10.3390/ijms26167751 - 11 Aug 2025
Viewed by 275
Abstract
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we [...] Read more.
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we synthesized black phosphorus (BP) nanosheets by exposing the {010} crystal planes and then constructed a 0D/2D BP/Bi2MoO6 (PBMO) heterojunction to function as a Fenton catalyst. The PBMO-75 heterojunction exhibited a remarkable increase in photo-Fenton catalytic activity towards oxytetracycline (OTC) under neutral conditions, achieving catalytic efficiencies that were 20 and 8 times greater than those of BP and Bi2MoO6 (BMO), respectively. This can be attributed to its strong absorption of visible light, the establishment of an internal electric field (IEF) at the interface, and the implementation of a Z-scheme catalytic mechanism. Additionally, the photo-Fenton system was further improved in OTC degradation through the continuous conversion of Mo6+/Mo5+ under visible light irradiation in conjunction with H2O2. Based on ERS, XPS, and active species trapping experiments, we propose a Z-scheme charge transfer mechanism for PBMO. This research offers compelling evidence that 0D/2D Z-scheme heterojunctions are promising candidates for the photo-Fenton treatment of antibiotic contaminants. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

16 pages, 5434 KB  
Article
Facile Engineering of CoS@NiS Heterostructures for Efficient Oxygen Evolution Reaction
by Ting Yang, Aiyi Dong, Weimin Liao, Xun Zhang, Yinhua Ma, Li Che and Honglin Gao
Nanomaterials 2025, 15(16), 1216; https://doi.org/10.3390/nano15161216 - 8 Aug 2025
Viewed by 327
Abstract
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the [...] Read more.
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the increase of energy consumption. Developing efficient, stable and low-cost electrolytic water catalyst is the core challenge to reduce the reaction energy barrier and improve the energy conversion efficiency. CoS@NiS-80% nanosheets with rich heterogeneous interfaces were successfully synthesized by hydrothermal reaction and sulfuration. Heterogeneous interface not only promotes the effective charge transfer between different materials and reduces the charge transfer resistance but also accelerates the four-electron transfer process through the synergistic effect of nickel and cobalt atoms. Under alkaline conditions, the overpotential of CoS@NiS-80% nanosheets was only 280 mV at a current density of 10 mA cm−2, with a Tafel slope of 100.87 mV dec−1. Furthermore, it could work continuously for 100 h, exhibiting its outstanding stability. This work provides a novel approach for improving the OER performance of transition metal sulfide-based electrocatalysts through heterogeneous interface engineering. Full article
Show Figures

Figure 1

22 pages, 24500 KB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 - 1 Aug 2025
Viewed by 432
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

13 pages, 2008 KB  
Article
Hierarchical Flaky Spinel Structure with Al and Mn Co-Doping Towards Preferable Oxygen Evolution Performance
by Hengfen Shen, Hao Du, Peng Li and Mei Wang
Materials 2025, 18(15), 3633; https://doi.org/10.3390/ma18153633 - 1 Aug 2025
Viewed by 292
Abstract
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous [...] Read more.
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFe2O4 (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm−2, a minimal Tafel slope of 45.09 mV dec−1, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm−2 and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

13 pages, 3341 KB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 325
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

Back to TopTop