Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = nLTE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6280 KiB  
Article
Abundance Analysis of the Spectroscopic Binary α Equulei
by Anna Romanovskaya and Sergey Zvyagintsev
Galaxies 2025, 13(4), 88; https://doi.org/10.3390/galaxies13040088 (registering DOI) - 6 Aug 2025
Abstract
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution [...] Read more.
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution (SLD) iterative technique. The atmospheric parameters of each component were refined with the SME (spectroscopy made easy) package and further validated by following methods: SED (spectral energy distribution), the independence of the abundance of individual Fe iii lines on the reduced equivalent width and ionisation potential, and fitting with the hydrogen line profiles. Our accurate abundance analysis uses a hybrid technique for spectrum synthesis. This is based on classical model atmospheres that are calculated under the assumption of local thermodynamic equilibrium (LTE), together with non-LTE (NLTE) line formation. This is used for 15 out of the 25 species from C to Nd that were investigated. The primary giant component (G7-type) exhibits a typical abundance pattern for normal stars, with elements from He to Fe matching solar values and neutron-capture elements showing overabundances up to 0.5 dex. In contrast, the secondary dwarf component displays characteristics of an early stage Am star. The observed abundance differences imply distinct diffusion processes in their atmospheres. Our results support the scenario in which chemical peculiarities in Am stars develop during the main sequence and may decrease as the stars evolve toward the subgiant branch. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

19 pages, 1107 KiB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 246
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

18 pages, 4873 KiB  
Article
Computational Modeling of the Effect of Nitrogen on the Plasma Spray Process with Ar–H2–N2 Mixtures
by Byeongryun Jeon, Hansol Kwon, Yeon Woo Yoo, Do Hyun Kim, Youngjin Park, Yong-jin Kang, Anthony B. Murphy and Hunkwan Park
Processes 2025, 13(4), 1155; https://doi.org/10.3390/pr13041155 - 10 Apr 2025
Viewed by 689
Abstract
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, [...] Read more.
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, remains inadequately characterized. In this study, a three-dimensional MHD simulation using OpenFOAM (v2112) was performed on a Metco 9MB plasma torch operating in an Ar–H2–N2 environment under the LTE assumption to investigate the effect of nitrogen addition. The simulation revealed that increasing nitrogen levels results in a dual effect on the temperature distribution: temperatures rise near the cathode tip and decrease downstream, likely due to variations in the net emission coefficient and enthalpy characteristics of nitrogen. Furthermore, although the outlet velocity remained largely unaffected, the Mach number increased as the nitrogen reduced the speed of sound. These findings provide essential insights for optimizing ternary gas mixtures to enhance coating efficiency in thermal spray applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 5906 KiB  
Article
Specific Absorption Rate Analysis of Wideband Multiple-Input Multiple-Output Antennas for Upper Mid-Band LTE 46/47 and n102 Future Generation Applications
by Muhammad Zahid and Yasar Amin
Telecom 2025, 6(2), 22; https://doi.org/10.3390/telecom6020022 - 31 Mar 2025
Viewed by 722
Abstract
The design of wideband multi-port multiple-input multiple-output (MIMO) antennas and their optimization are very important for next-generation smartphones with the increase in massive connectivity. This paper offers the design, simulation, measurement, and specific absorption rate (SAR) analysis of a Pi-shaped ten-element MIMO antenna [...] Read more.
The design of wideband multi-port multiple-input multiple-output (MIMO) antennas and their optimization are very important for next-generation smartphones with the increase in massive connectivity. This paper offers the design, simulation, measurement, and specific absorption rate (SAR) analysis of a Pi-shaped ten-element MIMO antenna system for use in the upper mid-band, covering LTE 46 (5.15–5.925 GHz), LTE 47 (5.855–5.925 GHz), and n102 (5.925–6.425 GHz), thus meeting a good fractional bandwidth of 32.7% with a maximum peak gain of 2.89 dBi. Hence, it is well suited for high-isolation (<−10 dB), compactness, and wideband (4.7–6.5 GHz) applications suitable for the current communication system needs. The overall size of the proposed system is 125 mm × 70 mm, with a planar dielectric material Rogers RT/5880. Designing the proposed antenna with multiple units entails the preservation of the spatial features of the antenna alongside the reduction of the mutual coupling for adjacent elements by using a decoupling structure. Due to the high accuracy of the positioning elements and precise geometric transformations, the antenna system provides high-performance analysis based on reflection coefficients, radiation patterns, and each antenna’s averaged efficiency values (76.12–91.57%). Full article
Show Figures

Figure 1

21 pages, 4992 KiB  
Article
Enhancing Security of Telemedicine Data: A Multi-Scroll Chaotic System for ECG Signal Encryption and RF Transmission
by José Ricardo Cárdenas-Valdez, Ramón Ramírez-Villalobos, Catherine Ramirez-Ubieta and Everardo Inzunza-Gonzalez
Entropy 2024, 26(9), 787; https://doi.org/10.3390/e26090787 - 14 Sep 2024
Cited by 3 | Viewed by 2103
Abstract
Protecting sensitive patient data, such as electrocardiogram (ECG) signals, during RF wireless transmission is essential due to the increasing demand for secure telemedicine communications. This paper presents an innovative chaotic-based encryption system designed to enhance the security and integrity of telemedicine data transmission. [...] Read more.
Protecting sensitive patient data, such as electrocardiogram (ECG) signals, during RF wireless transmission is essential due to the increasing demand for secure telemedicine communications. This paper presents an innovative chaotic-based encryption system designed to enhance the security and integrity of telemedicine data transmission. The proposed system utilizes a multi-scroll chaotic system for ECG signal encryption based on master–slave synchronization. The ECG signal is encrypted by a master system and securely transmitted to a remote location, where it is decrypted by a slave system using an extended state observer. Synchronization between the master and slave is achieved through the Lyapunov criteria, which ensures system stability. The system also supports Orthogonal Frequency Division Multiplexing (OFDM) and adaptive n-quadrature amplitude modulation (n-QAM) schemes to optimize signal discretization. Experimental validations with a custom transceiver scheme confirmed the system’s effectiveness in preventing channel overlap during 2.5 GHz transmissions. Additionally, a commercial RF Power Amplifier (RF-PA) for LTE applications and a development board were integrated to monitor transmission quality. The proposed encryption system ensures robust and efficient RF transmission of ECG data, addressing critical challenges in the wireless communication of sensitive medical information. This approach demonstrates the potential for broader applications in modern telemedicine environments, providing a reliable and efficient solution for the secure transmission of healthcare data. Full article
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
A Broadband Three-Way Series Doherty Power Amplifier with Deep Power Back-Off Efficiency Enhancement for 5G Application
by Xianfeng Que, Jun Li and Yanjie Wang
Electronics 2024, 13(10), 1882; https://doi.org/10.3390/electronics13101882 - 11 May 2024
Cited by 4 | Viewed by 2195
Abstract
This article presents a new broadband three-way series Doherty power amplifier (DPA) topology, which enables a broadband output power back-off (OBO) efficiency enhancement of up to 10 dB or higher. The proposed DPA topology achieves Doherty load modulation and three-way power combining through [...] Read more.
This article presents a new broadband three-way series Doherty power amplifier (DPA) topology, which enables a broadband output power back-off (OBO) efficiency enhancement of up to 10 dB or higher. The proposed DPA topology achieves Doherty load modulation and three-way power combining through a transformer, which requires only a low coupling factor, thus facilitating its implementation in double-sided PCBs or monolithic microwave integrated circuit (MMIC) processes. The design equations for the proposed DPA topology are proposed and analyzed in detail. A proof-of-concept PA at the 2.1–2.8 GHz band using commercial GaN transistors was designed and fabricated to validate the proposed concept. Within the operating frequency band, it achieves a saturated output power (Psat) of 44.5–46.5 dBm with a peak drain efficiency (DE) of 60–72%, and 43–52% DE at 10 dB OBO. Moreover, under a 20 MHz long-term evolution (LTE)-modulated signal, the PA demonstrates a 36.8–37.5 dBm average output power (Pavg) and 47–53% average drain efficiency (DEavg). Notably, the adjacent channel leakage ratio (ACLR) is as low as −35–−28.2 dBc without any digital predistortion (DPD). Full article
Show Figures

Figure 1

14 pages, 8770 KiB  
Communication
Design Techniques for Wideband CMOS Power Amplifiers for Wireless Communications
by Milim Lee, Junhyuk Yang, Jaeyong Lee and Changkun Park
Electronics 2024, 13(9), 1695; https://doi.org/10.3390/electronics13091695 - 27 Apr 2024
Cited by 2 | Viewed by 1865
Abstract
In this study, we designed a wideband CMOS power amplifier to support multi-band and multi-standard wireless communications. First, an input matching technique through LC network and a wideband design technique using a low Q-factor transformer were proposed. In addition, a design technique was [...] Read more.
In this study, we designed a wideband CMOS power amplifier to support multi-band and multi-standard wireless communications. First, an input matching technique through LC network and a wideband design technique using a low Q-factor transformer were proposed. In addition, a design technique was proposed to improve output matching using RC feedback. To verify the feasibility of the proposed design methodology for wideband CMOS power amplifiers, the designed power amplifier was fabricated using a 180 nm RFCMOS process. The size including all of the matching network and test pads was 1.38 × 0.90 mm2. In addition, the effectiveness of the proposed power amplifier was verified through the measured results using modulated signals of WCDMA, LTE, and 802.11n WLAN. Full article
(This article belongs to the Special Issue Advanced RF, Microwave Engineering, and High-Power Microwave Sources)
Show Figures

Figure 1

24 pages, 12821 KiB  
Article
Comparison of Linear and Nonlinear Twist Extrusion Processes with Crystal Plasticity Finite Element Analysis
by Ülke Şimşek, Kemal Davut, Hiroyuki Miyamoto and Tuncay Yalçinkaya
Materials 2024, 17(5), 1139; https://doi.org/10.3390/ma17051139 - 29 Feb 2024
Cited by 3 | Viewed by 1653
Abstract
The mechanical characteristics of polycrystalline metallic materials are influenced significantly by various microstructural parameters, one of which is the grain size. Specifically, the strength and the toughness of polycrystalline metals exhibit enhancement as the grain size is reduced. Applying severe plastic deformations (SPDs) [...] Read more.
The mechanical characteristics of polycrystalline metallic materials are influenced significantly by various microstructural parameters, one of which is the grain size. Specifically, the strength and the toughness of polycrystalline metals exhibit enhancement as the grain size is reduced. Applying severe plastic deformations (SPDs) has a noticeable result in obtaining metallic materials with ultrafine-grained (UFG) microstructure. SPD, executed through conventional shaping methods like extrusion, plays a pivotal role in the evolution of the texture, which is closely related to the plastic behavior and ductility. A number of SPD processes have been developed to generate ultrafine-grained materials, each having a different shear deformation mechanism. Among these methods, linear twist extrusion (LTE) presents a non-uniform and non-monotonic form of severe plastic deformation, leading to significant shifts in the microstructure. Prior research demonstrates the capability of the LTE process to yield consistent, weak textures in pre-textured copper. However, limitations in production efficiency and the uneven distribution of grain refinement have curbed the widespread use of LTE in industrial settings. This has facilitated the development of an improved novel method, that surpasses the traditional approach, known as the nonlinear twist extrusion procedure (NLTE). The NLTE method innovatively adjusts the channel design of the mold within the twist section to mitigate strain reversal and the rotational movement of the workpiece, both of which have been identified as shortcomings of twist extrusion. Accurate anticipation of texture changes in SPD processes is essential for mold design and process parameter optimization. The performance of the proposed extrusion technique should still be studied. In this context, here, a single crystal (SC) of copper in billet form, passing through both LTE and NLTE, is analyzed, employing a rate-dependent crystal plasticity finite element (CPFE) framework. CPFE simulations were performed for both LTE and NLTE of SC copper specimens having <100> or <111> directions parallel to the extrusion direction initially. The texture evolution as well as the cross-sectional distribution of the stress and strain is studied in detail, and the performance of both processes is compared. Full article
(This article belongs to the Special Issue Review and Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

16 pages, 4608 KiB  
Article
Exploring Interference Issues in the Case of n25 Band Implementation for 5G/LTE Direct-to-Device NTN Services
by Alexander Pastukh, Valery Tikhvinskiy and Evgeny Devyatkin
Sensors 2024, 24(4), 1297; https://doi.org/10.3390/s24041297 - 17 Feb 2024
Cited by 5 | Viewed by 3767
Abstract
This paper delves into an interference analysis, focusing on the forthcoming Starlink Generation 2 satellites, stated to operate within the 1990–1995 MHz frequency band. The aim is to assess the potential interference from this Starlink system to the satellite receivers of mobile satellite [...] Read more.
This paper delves into an interference analysis, focusing on the forthcoming Starlink Generation 2 satellites, stated to operate within the 1990–1995 MHz frequency band. The aim is to assess the potential interference from this Starlink system to the satellite receivers of mobile satellite systems (MSSs), which are set to function within the 1980–2010 MHz range, and satellite receivers of the NTN systems, which are planned to operate in the n256 bands, defined by the 3GPP specifications. Through simulation-based evaluations, both single-entry and aggregate interference levels from Starlink to MSSs and NTN systems are comprehensively explored. To estimate the interference impact, several protection criteria were used. The study is in line with the Recommendations of International Telecommunication Union (ITU-R) and common approaches that are used when performing compatibility studies between satellite systems. The findings of this study demonstrate the feasibility of utilizing the n25 band for NTN direct-to-device services. Full article
Show Figures

Figure 1

19 pages, 2091 KiB  
Article
Analysis of Relationships between Metabolic Changes and Selected Nutrient Intake in Women Environmentally Exposed to Arsenic
by Monika Sijko-Szpańska and Lucyna Kozłowska
Metabolites 2024, 14(1), 75; https://doi.org/10.3390/metabo14010075 - 22 Jan 2024
Viewed by 2654
Abstract
Nutrients involved in the metabolism of inorganic arsenic (iAs) may play a crucial role in mitigating the adverse health effects associated with such exposure. Consequently, the objective of this study was to analyze the association between the intake levels of nutrients involved in [...] Read more.
Nutrients involved in the metabolism of inorganic arsenic (iAs) may play a crucial role in mitigating the adverse health effects associated with such exposure. Consequently, the objective of this study was to analyze the association between the intake levels of nutrients involved in iAs metabolism and alterations in the metabolic profile during arsenic exposure. The study cohort comprised environmentally exposed women: WL (lower total urinary arsenic (As), n = 73) and WH (higher As, n = 73). The analysis included urinary untargeted metabolomics (conducted via liquid chromatography–mass spectrometry) and the assessment of nutrient intake involved in iAs metabolism, specifically methionine, vitamins B2, B6, and B12, folate, and zinc (based on 3-day dietary records of food and beverages). In the WL group, the intake of all analyzed nutrients exhibited a negative correlation with 5 metabolites (argininosuccinic acid, 5-hydroxy-L-tryptophan, 11-trans-LTE4, mevalonic acid, aminoadipic acid), while in the WH group, it correlated with 10 metabolites (5-hydroxy-L-tryptophan, dihyroxy-1H-indole glucuronide I, 11-trans-LTE4, isovalerylglucuronide, 18-oxocortisol, 3-hydroxydecanedioic acid, S-3-oxodecanoyl cysteamine, L-arginine, p-cresol glucuronide, thromboxane B2). Furthermore, nutrient intake demonstrated a positive association with 3 metabolites in the WL group (inosine, deoxyuridine, glutamine) and the WH group (inosine, N-acetyl-L-aspartic acid, tetrahydrodeoxycorticosterone). Altering the intake of nutrients involved in iAs metabolism could be a pivotal factor in reducing the negative impact of arsenic exposure on the human body. This study underscores the significance of maintaining adequate nutrient intake, particularly in populations exposed to arsenic. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 2256 KiB  
Article
Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
by S. P. Niranjan, S. Devi Latha, Miroslav Mahdal and Krishnasamy Karthik
Mathematics 2024, 12(1), 75; https://doi.org/10.3390/math12010075 - 25 Dec 2023
Cited by 5 | Viewed by 1559
Abstract
In this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback, vacation, and breakdown is considered. The server provides service in two phases as mandatory according to the general bulk service rule, with minimum bulk size a and [...] Read more.
In this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback, vacation, and breakdown is considered. The server provides service in two phases as mandatory according to the general bulk service rule, with minimum bulk size a and maximum bulk size b. In the first essential service (FES) completion epoch, if the server fails, with probability δ, then the renewal of the service station is considered. On the other hand, if there is no server failure, with a probability 1δ, then the server switches to a second essential service (SES) in succession. A customer who requires further service as feedback is given priority, and they join the head of the queue with probability β. On the contrary, a customer who does not require feedback leaves the system with a probability 1β. If the queue length is less than a after SES, the server may leave for a single vacation with probability 1β. When the server finds an inadequate number of customers in the queue after vacation completion, the server becomes dormant. After vacation completion, the server requires some time to start service, which is attained by including setup time. The setup time is initiated only when the queue length is at least a. Even after setup time completion, the service process begins only with a queue length ‘N’ (N > b). The novelty of this paper is that it introduces an essential two-phase bulk service, immediate Bernoulli feedback for customers, and renewal service time of the first essential service for the bulk arrival and bulk service queueing model. We aim to develop a model that investigates the probability-generating function of the queue size at any time. Additionally, we analyzed various performance characteristics using numerical examples to demonstrate the model’s effectiveness. An optimum cost analysis was also carried out to minimize the total average cost with appropriate practical applications in existing data transmission and data processing in LTE-A networks using the DRX mechanism. Full article
Show Figures

Figure 1

13 pages, 3325 KiB  
Article
Pathways to the Local Thermodynamic Equilibrium of Complex Autoionizing States
by Frédérick Petitdemange and Frank B. Rosmej
Atoms 2023, 11(11), 146; https://doi.org/10.3390/atoms11110146 - 15 Nov 2023
Viewed by 1818
Abstract
The generally accepted pathway to Local Thermodynamic Equilibrium (LTE) in atomic physics, where collision rates need to be much larger than radiative decay rates, is extended to complex autoionizing states. It is demonstrated that the inclusion of the non-radiative decay (autoionization rate) on [...] Read more.
The generally accepted pathway to Local Thermodynamic Equilibrium (LTE) in atomic physics, where collision rates need to be much larger than radiative decay rates, is extended to complex autoionizing states. It is demonstrated that the inclusion of the non-radiative decay (autoionization rate) on the same footing, like radiative decay, i.e., the LTE criterion ne,crit×CA+Γ (ne,crit is the critical electron density above which LTE holds, C is the collisional rate coefficient, and A is the radiative decay rate) is inappropriate for estimating the related critical density. An analysis invoking simultaneously different atomic ionization stages identifies the LTE criteria as a theoretical limiting case, which provides orders of magnitude too high critical densities for almost all practical applications. We introduced a new criterion, where the critical densities are estimated from the non-autoionizing capture states rather than from the autoionizing states. The new criterion is more appropriate for complex autoionizing manifolds and provides order of magnitude reduced critical densities. Detailed numerical calculations are carried out for Na-like states of aluminum, where autoionization to the Ne-like ground and excited state occurrences are in excellent agreement with the new criterion. In addition, a complex multi-electron atomic-level structure and electron–electron correlation are identified as simplifying features rather than aggravating ones for the concept of thermalization. Full article
(This article belongs to the Special Issue Atomic Physics in Dense Plasmas)
Show Figures

Figure 1

15 pages, 579 KiB  
Article
NLTE Analysis of High-Resolution H-Band Spectra, V: Neutral Sodium
by Zeming Zhou, Jianrong Shi, Shaolan Bi, Hongliang Yan, Junbo Zhang, Kaike Pan and Xiaodong Xu
Universe 2023, 9(11), 457; https://doi.org/10.3390/universe9110457 - 25 Oct 2023
Cited by 1 | Viewed by 1723
Abstract
In order to derive sodium abundances and investigate the effects of non-local thermodynamic equilibrium (NLTE) on the formation of H-band Na I lines, we update the sodium atomic model by incorporating collision rates with hydrogen from new quantum-mechanical calculations. The differential Na [...] Read more.
In order to derive sodium abundances and investigate the effects of non-local thermodynamic equilibrium (NLTE) on the formation of H-band Na I lines, we update the sodium atomic model by incorporating collision rates with hydrogen from new quantum-mechanical calculations. The differential Na abundances for 13 sample stars are obtained by analyzing high-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and optical spectra under both local thermodynamic equilibrium (LTE) and NLTE conditions. Consistent abundances from both bands suggest that our updated atomic model is valid for studying the formation of H-band Na I lines. Our calculations show that, in our stellar parameter space, NLTE effects are negative and can result in corrections larger than −0.4 dex on optical lines. The corrections on H-band Na I lines are typically small, within about 0.05 dex, but not negligible if accurate sodium abundance is desired. We note that the [Na/Fe] ratios favor the theoretical galactic chemical model. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

20 pages, 7118 KiB  
Article
Quad Element MIMO Antenna for C, X, Ku, and Ka-Band Applications
by Raj Kumar Mistri, Santosh Kumar Mahto, Ajit Kumar Singh, Rashmi Sinha, Ahmed Jamal Abdullah Al-Gburi, Thamer A. H. Alghamdi and Moath Alathbah
Sensors 2023, 23(20), 8563; https://doi.org/10.3390/s23208563 - 18 Oct 2023
Cited by 30 | Viewed by 3375
Abstract
This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3–15.5 GHz, [...] Read more.
This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3–15.5 GHz, encompassing the C band (4–8 GHz), X band (8–12.4 GHz), and a significant portion of the Ku band (12.4–15.5 GHz). Additionally, it covers two mm-wave bands, specifically 26.4–34.3 GHz and 36.1–48.9 GHz, which corresponds to 86% of the Ka-band (27–40 GHz). To enhance its performance, the design incorporates a partial ground plane and a top patch featuring a dual-sided reverse 3-stage stair and a straight stick symmetrically placed at the bottom. The introduction of a defected ground structure (DGS) on the ground plane serves to provide a wideband response. The DGS on the ground plane plays a crucial role in improving the electromagnetic interaction between the grounding surface and the top patch, contributing to the wideband characteristics of the antenna. The dimensions of the proposed MIMO antenna are 31.7 mm × 31.7 mm × 1.6 mm. Furthermore, the article delves into the assessment of various performance metrics related to antenna diversity, such as ECC, DG, TARC, MEG, CCL, and channel capacity, with corresponding values of 0.11, 8.87 dB, −6.6 dB, ±3 dB, 0.32 bits/sec/Hz, and 18.44 bits/sec/Hz, respectively. Additionally, the equivalent circuit analysis of the MIMO system is explored in the article. It’s worth noting that the measured results exhibit a strong level of agreement with the simulated results, indicating the reliability of the proposed design. The MIMO antenna’s ability to exhibit multiband response, good diversity performance, and consistent channel capacity across various frequency bands renders it highly suitable for integration into multi-band wireless devices. The developed MIMO system should be applicable on n77/n78/n79 5G NR (3.3–5 GHz); WLAN (4.9–5.725 GHz); Wi-Fi (5.15–5.85 GHz); LTE5537.5 (5.15–5.925 GHz); WiMAX (5.25–5.85 GHz); WLAN (5.725–5.875 GHz); long-distance radio telecommunication (4–8 GHz; C-band); satellite, radar, space communications and terrestrial broadband (8–12 GHz; X-band); and various satellite communications (27–40 GHz; Ka-band). Full article
(This article belongs to the Special Issue Metasurface-Based Antennas for 5G and Beyond)
Show Figures

Figure 1

28 pages, 1902 KiB  
Article
Unveiling the Evolutionary State of Three B Supergiant Stars: PU Gem, ϵ CMa, and η CMa
by Julieta Paz Sánchez Arias, Péter Németh, Elisson Saldanha da Gama de Almeida, Matias Agustin Ruiz Diaz, Michaela Kraus and Maximiliano Haucke
Galaxies 2023, 11(5), 93; https://doi.org/10.3390/galaxies11050093 - 29 Aug 2023
Cited by 4 | Viewed by 2580
Abstract
We aim to combine asteroseismology, spectroscopy, and evolutionary models to establish a comprehensive picture of the evolution of Galactic blue supergiant stars (BSG). To start such an investigation, we selected three BSG candidates for our analysis: HD 42087 (PU Gem), HD 52089 ( [...] Read more.
We aim to combine asteroseismology, spectroscopy, and evolutionary models to establish a comprehensive picture of the evolution of Galactic blue supergiant stars (BSG). To start such an investigation, we selected three BSG candidates for our analysis: HD 42087 (PU Gem), HD 52089 (ϵ CMa), and HD 58350 (η CMa). These stars show pulsations and were suspected to be in an evolutionary stage either preceding or succeding the red supergiant (RSG) stage. For our analysis, we utilized the 2-min cadence TESS data to study the photometric variability, and we obtained new spectroscopic observations at the CASLEO observatory. We used non-LTE radiative transfer models calculated with CMFGEN to derive their stellar and wind parameters. For the fitting procedure, we included CMFGEN models in the iterative spectral analysis pipeline XTgrid to determine their CNO abundances. The spectral modeling was limited to changing only the effective temperature, surface gravity, CNO abundances, and mass-loss rates. Finally, we compared the derived metal abundances with prediction from Geneva stellar evolution models. The frequency spectra of all three stars show stochastic oscillations and indications of one nonradial strange mode, fr= 0.09321 d1 in HD 42087 and a rotational splitting centred in f2= 0.36366 d1 in HD 52089. We conclude that the rather short sectoral observing windows of TESS prevent establishing a reliable mode identification of low frequencies connected to mass-loss variabilities. The spectral analysis confirmed gradual changes in the mass-loss rates, and the derived CNO abundances comply with the values reported in the literature. We were able to achieve a quantitative match with stellar evolution models for the stellar masses and luminosities. However, the spectroscopic surface abundances turned out to be inconsistent with the theoretical predictions. The stars show N enrichment, typical for CNO cycle processed material, but the abundance ratios did not reflect the associated levels of C and O depletion. We found HD 42087 to be the most consistent with a pre-RSG evolutionary stage, HD 58350 is most likely in a post-RSG evolution and HD 52089 shows stellar parameters compatible with a star at the TAMS. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

Back to TopTop