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Abstract: In this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback,
vacation, and breakdown is considered. The server provides service in two phases as mandatory
according to the general bulk service rule, with minimum bulk size ′a′ and maximum bulk size ′b′.
In the first essential service (FES) completion epoch, if the server fails, with probability ′δ′, then the
renewal of the service station is considered. On the other hand, if there is no server failure, with
a probability ′1 − δ′, then the server switches to a second essential service (SES) in succession. A
customer who requires further service as feedback is given priority, and they join the head of the
queue with probability β. On the contrary, a customer who does not require feedback leaves the
system with a probability ′1− β′. If the queue length is less than ′a′ after SES, the server may leave for
a single vacation with probability ′1 − β′. When the server finds an inadequate number of customers
in the queue after vacation completion, the server becomes dormant. After vacation completion,
the server requires some time to start service, which is attained by including setup time. The setup
time is initiated only when the queue length is at least ′a′. Even after setup time completion, the
service process begins only with a queue length ‘N’ (N > b). The novelty of this paper is that it
introduces an essential two-phase bulk service, immediate Bernoulli feedback for customers, and
renewal service time of the first essential service for the bulk arrival and bulk service queueing model.
We aim to develop a model that investigates the probability-generating function of the queue size at
any time. Additionally, we analyzed various performance characteristics using numerical examples
to demonstrate the model’s effectiveness. An optimum cost analysis was also carried out to minimize
the total average cost with appropriate practical applications in existing data transmission and data
processing in LTE-A networks using the DRX mechanism.

Keywords: multiple control policy; renewal time; breakdown; Bernoulli feedback

MSC: 60K25; 68M20; 90B22

1. Introduction

Several academicians have tested queue systems with vacations and their numerous
combos. Some of those studies are queue structures with vacation queue fashions via
Tian and Zhang [1]. In many actual applications, there can be a couple of arrivals into
the machine. These types of systems are labeled as bulk arrival queue structures. For
bulk carrier queue structures with multiple vacations, Arumuganathan and Jeyakumar
obtained consistent national conditions for numerous performance measures and value
optimization [2]. Jeyakumar and Senthilnathan recently obtained the steady-state queue
size distribution for the MX/G (a, b)/1 queue system with multiple vacations [3]. In all
queue models with vacations that have been studied in this context, the server remains
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on vacation, even whilst the queue period is excessive enough to initiate the primary
provider. The modeling of actual-time systems can benefit from those vacation methods.
Baba examined the M/PH/1 line with working vacations and interruptions [4]. The
MX/G (a, b)/1 queue model with vacation interruption was also researched by Haridass
and Arumuganathan [5]. Through real-time applications, they deduced diverse queue
device functions. Gao and Liu investigated the M/G/1 queue under a Bernoulli agenda
with a single working vacation and vacation interruption [6]. Customers arrive at
a queue served by a single server, and their arrivals follow a Poisson process. The
duration of the service provided by the server conforms to an exponential distribution.
However, the server takes periodic vacations which are scheduled based on a Bernoulli
process. During the vacations, the server can be interrupted and resume service if a
customer arrives, preventing the vacation from being completed, as studied by Tao
et al. [7]. A countless-buffer bulk arrival queue with a bulk-size-dependent provider
was tested by Pradhan and Gupta [8]. Madan et al. studied the consistent state of two
MX/M (a, b)/1 queue models with random breakdowns. In 2003, they took into account
the reality that the repair time is deterministic for one version and exponential for
every other. It has been cited in the literature on queue fashions with server breakdown
that, excluding Madan et al., each creator who discusses server breakdown in the
context of a bulk provider queue version deals with a server that can only serve one
customer at a time. The server may also interrupt right away if trouble arises. Yet, in
the majority of instances, it is impossible to disturb the server before it has completed
providing its bulk services [9]. Jeyakumar and Senthilnathan also studied breakdown
without carrier disruption in a bulk carrier queue model and a bulk arrival queue model.
They developed a model using closedown time and constructed probability-generating
functions for the completion epochs of services, vacations, and renewals [10]. Wu
et al. investigated an M/G/1 queue system with an N-policy, a solitary vacation, an
unreliable service station, and a replaceable repair facility [11,12].

Hanumantha Rao Sama et al. introduced an unstable server and delayed repair for a
bulk arrival Markovian queueing system with state-dependent arrival and an N-policy [13].
Ankamma Rao et al. examined a two-phase queueing model, denoted M/M/1, incorporat-
ing server startup, time-out, and breakdowns [14]. Samuel U. Enogwe et al. investigated
a non-Markovian queueing system that incorporates two distinct types of service mech-
anisms: balking and Bernoulli server vacation. The model is referred to as a bivariate
Markov process and includes the elapsed service time and vacation time as supplementary
variables [15]. GnanaSekar and Indhira Kandaiyan delved into the dynamics of a retrial
queueing system with distinctive features, including delayed repair, a feedback mechanism,
and the incorporation of a working vacation policy, as outlined in their article. If the
essential and sufficient requirements are viable, the system can be stabilized [16]. Server
breakdown based on service modes was introduced by Niranjan. In this paper, the author
used supplementary variable techniques to derive important performance measures [17].
Blondia analyzed energy harvesting in the queueing model for a wireless sensor node [18].
C.K. Deena Merit and Haridass worked on a simulation analysis of the bulk queueing
system with a working breakdown [19]. An application of a queueing system in 4G/5G
networks was presented by V. Deepa et al. [20]. Niranjan et al. introduced two types of
breakdown with two phases of service in bulk queueing systems [21]. In this study, we
examine an MX/G (a, b)/1 queuing system with an optional additional service and numer-
ous vacations, and setup time is examined by Ayyappan and Deepa [22]. Niranjan et al.
analyzed a non-Markovian bulk queueing system with renewal and startup/shutdown
times [23]. Nithya and Haridass conducted a maximum entropy analysis of a queueing
system that controls both arrival and bulk service, incorporating breakdowns and multiple
vacation periods [24]. In their article, Enogwe and Obiora-Ilouno explored the impacts
of three pivotal factors—reneging, server breakdown, and server vacation—on various
stages of a queueing system with bulk arrivals and a single server [25]. Khan IE and Para-
masivam R analyzed the quality control policy for the Markovian model with feedback,
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balking, and maintaining reneged clients using an iterative method for the nth customer
in the system [26]. Ammar, Rajadurai P analyzed an innovative type of retry queueing
system with functional breakdown services presented in this inquiry. Priority and regular
clients are two different categories that are taken into consideration [27]. Gabi Hanukov
and Shraga Shoval introduce a compelling vacation queue model that accounts for dy-
namic server service rates affected by factors like human fatigue and machinery wear. The
analysis employed multidimensional methods to explore the impact of different vacation
policies on system efficiency. The findings underscore the significant positive effect of
strategic vacation scheduling on mean customer waiting time, suggesting potential benefits
even when switching to a temporary server during times of higher main-server service
rates [28]. Xing et al. investigated traffic accident patterns in undersea tunnels, offering
valuable insights into the evolution of vehicle congestion queuing. The authors present
precise queue-length estimation models based on shockwave theory and real-time data
input, demonstrating optimal accuracy with a 30 s time interval. The results highlight the
effectiveness of the model, with an accuracy of 92.34% for the maximum queue-length
estimation model and 83.50% for the real-time whole-process queue-length estimation
model. The proposed approach outperforms the input–output model, indicating its po-
tential for supporting timely and effective control measures in undersea tunnel traffic
management [29]. Mohan Chaudhry et al. addresses a finite-space, single-server queueing
system with a unique (a, b)-bulk service rule and finite-buffer capacity ‘N’. It introduces
a novel approach utilizing embedded Markov chains, Markov renewal theory, and semi-
Markov processes to derive probability distributions for queue lengths at post-departure
and random epochs. This investigation establishes a functional relationship between the
probability-generating function representing the queue-length distribution and the Laplace–
Stieltjes transform (LST) of the queueing-time distribution. This connection facilitates the
derivation of waiting-time distributions for individual random customers. The use of LSTs
facilitates a comprehensive discussion of the probability density function of waiting times,
emphasizing numerical implementations for practical applications [30]. Laurentiu Rece
et al. introduce a novel approach using queueing theory models to optimize production
department size, production costs, and provisioning. This method employs queuing math-
ematical models to form the basis for an experimental algorithm and a numerical approach.
This research effectively employed these models in designing a practical industrial en-
gineering unit, aligning with technological flow and equipment schemes. The focus on
minimizing costs in terms of server count is addressed using the Monte Carlo method,
showcasing the practicality of iterative methods like Jacobi and Gauss–Seidel in solving the
associated linear system for Jackson queueing networks [31]. Mustafa Demircioglu et al.
investigated the influence of disasters on a discrete-time single-server queueing system
featuring general independent arrivals and service times. Disasters, modeled as a Bernoulli
process, lead to the simultaneous removal of all customers. This study employs a two-
dimensional Markovian state description, providing expressions for probability-generating
functions, and average values, variances, and tail probabilities for both system content and
customer sojourn time are analyzed under a first-come-first-served policy. The derivation
of customer loss probability due to disaster occurrences is also addressed, with numerical
illustrations enhancing the understanding of the proposed models [32]. In all the above
queueing models, essential two-phase bulk service is not considered. It is mandatory
to analyze many real-time systems such as communication systems, the manufacturing
industry, production systems, network systems, etc. Multiple control policies and renewal
of service stations in first-phase customer feedback are the technical terms introduced in
this paper which will be useful the studying the performance analysis of DRX mechanisms
in network systems.

2. Motivation

Long term evolution-advanced (LTE-A) networks are characterized by two critical
elements: power saving and quality of service (QoS). ‘Discontinuous reception’ (DRX) is a
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widely utilized mechanism in mobile communication networks to improve power efficiency.
By employing DRX, mobile devices can conserve battery life effectively while maintaining
seamless connectivity. This method is crucial in enhancing the overall performance and
longevity of mobile devices. The first essential service starts using power saving and LTE.
The data signals are passed, the data transfer is authenticated, and the minimum value is
1024 mbps and the maximum 4096 mbps. In LTE-A networks, data transfer between the
mobile device and the network is orchestrated through a series of negotiated phases for
the user equipment (UE). During the data transfer, sometimes the system may be affected
by a virus. The service will not be abruptly interrupted; instead, it will be sustained
for the ongoing bulk of data, attached or else transferred by carrying out some technical
arrangements. After the service is completed, the antivirus is activated and detects the
problems in the system. If there are no issues, the process is continued. In this paper, we
propose the development of a novel appliance that adapts its functionality based on the
type of traffic being processed by the user equipment (UE).

The second essential service is proposed to switch the DRX mechanism combined with
the quality of service, and it helps to check the quantity and quality of data that are going to
be transferred. The minimum value is 1000 mbps and maximum 4000 mbps as it transfers
data at a speed of 1 GB to 4 GB; as of today, the 4th generation. For example, during the
wireless connection, it asks for a passcode for the essential verification of data and confirms
whether the data are strong enough for communication and transfer of information. If the
transfer of data is not successful, as the data are delayed or the customer is not satisfied after
the data are sent, they go for feedback, and the system is checked and verified on the server
side and rectified for further huge data transfers using DRX. Following data transmission,
in the absence of accessible data for processing, the server will be allocated to secondary
tasks such as system updates and clearing temporary files. During the data transfer check,
the setup time indicates the progress of the necessary service. The data are thoroughly
examined and verified before being allowed to proceed. Once the setup time has elapsed,
the data meet the threshold value, prompting the server to resume the service. The above
scenario may be represented as a ‘multiple control policy in an unreliable two-phase bulk
queueing system with active Bernoulli feedback and vacation’.

3. System Analysis
3.1. Arrival Process

The arrival process refers to the specific way in which entities enter the system. Cus-
tomers are added to the system in large quantities according to a Poisson process with
a defined arrival rate λ1, as described in our work. The inter-arrival time adheres to a
certain pattern. The distribution of group size follows a geometric distribution, while the
distribution of the exponential follows an exponential distribution.

3.2. Service Process

The service process indicates how the server provides service for the customers. In
this model, the server provides service in batches according to the general bulk service rule.
The service process is split into two phases called FES and SES. The service process will be
completed only if each customer undergoes both phases of service. Service time follows
the general distribution.

3.3. Bernoulli Feedback

Customer feedback is an important phenomenon in network systems. In this model,
after the completion of each service, customers have the option to obtain additional service
as feedback. Upon completion of SES, the customer who requires feedback can be taken
immediately for service with a specified probability.



Mathematics 2024, 12, 75 5 of 20

3.4. Renewal Time

Due to proactive technical measures that have been set in place, the service process
will seamlessly continue in the event of a server failure while serving customers in the
ongoing batch. The server will undergo repairs upon the completion of the ongoing service.
The duration needed to restore the server is referred to as the renewal time. If a server
failure occurs after the completion of the current batch of customer FES, the renewal process
for the service station comes into play. Throughout the renewal time, maintenance or repair
activities may be conducted on the server.

3.5. Vacation

Upon completing SES, the server embarks on a vacation if the queue length falls below
‘a’. Following the vacation period, if the queue length remains below ‘a’, the server remains
idle until the queue length reaches the threshold ‘a’. To optimize this idle interval, the
server is allocated a secondary task (vacation) that has the potential to enhance the quality
of subsequent service.

3.6. Setup Time

Upon the completion of the vacation period, the server may need a certain duration
known as setup time before commencing the next service.

3.7. Model Description

With active Bernoulli feedback, server failure, and vacation as factors, this study
examines various control approaches for a two-phase bulk arrival and bulk service queueing
model. The system experiences a large influx of customers, with several customers entering
at once, following the Poisson process at a rate of λ1. The bulk size distribution of the
arrival is geometric. The bulk service process is split into two phases called FES and SES
with minimum server capacity ′a′ and maximum server capacity ′b′ by Neuts introduction
of the general rule for bulk service [33]. The server will be turned on only if the queue
length reaches the value ‘a’. In the event of a server failure during the FES epoch, the
service process persists without interruption for the ongoing group of customers, facilitated
by technical precautions. The server is designed to deliver a pivotal two-phase service. In
the initial FES phase, if the server experiences failure with a probability of ‘δ’, the renewal
of the service station is triggered. Conversely, if there is no server failure with a probability
of ‘1 – δ’, the server transitions to a successive phase called SES. Customers who require
further service as feedback will be given priority and join at the head of the queue with
probability β. On the contrary, the customer who does not require feedback may leave
the system with a probability ′1 − β′. If the queue length is less than ′a′ after SES, the
server may leave for a single vacation with probability ′1 − β′. When the server finds
an inadequate number of customers in the queue after vacation completion, the server
becomes dormant. After vacation completion, the server requires some time to start service
which is the setup time. The setup time will be initiated only when the queue length is at
least ′a′. Even after setup time completion, the service process will be started only with the
queue length ‘N’ (N > b).

4. Notations

Let Y be the group size random variable of the arrival, Y(z) be the probability gener-
ating function of Y, λ1 be the Poisson arrival rate, gk be the probability that ‘k’ customers
arrive in a bulk.
Nq(t)—The count of customers waiting for service at a given time ‘t’;
Ns(t)—The count of customers under service at a given time ‘t’;
β—Feedback probability;
δ—Probability of server failure.
The detailed set of notations for different state are given in Table 1.
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Table 1. Notations.

Cumulative
Distribution Function

Probability
Distribution Function

Laplace–Stieltjes
Transform

Remaining Service
Time

First essential service S(y) s(y)
∼
S(θ) S0(y)

Second essential service S2(y) s2(y)
∼
S2(θ) S2

0(y)

Vacation V(y) v(y)
∼
V(θ) V0(y)

Renewal time R(y) r(y)
∼
R(θ) R0(y)

Preparatory work A(y) a(y)
∼
A(θ) A0(y)

B(t) = 0—when theserver is busy with FES, 1—when the server is busy with SES,
2—when the server is on vacation, 3—when the server is in repair, 4—when the server
is in a dormant period, 5—when the server is in setup time. The state probabilities are
defined as follows:

Pij(y, t)dt = P
{

Ns(t) = i, Nq(t) = j, y ≤ S0(t) ≤ y + dt, B(t) = 0
}

a ≤ i ≤ b; j≥ 1 (1)

Wij(y, t)dt = P
{

Ns(t) = i, Nq(t) = j ,y ≤ S2
0(t) ≤ y + dt, B(t) = 1

}
(2)

Qn(y, t)dt = P
{

Nq(t) = n, y ≤ V0(t) ≤ y + dt, B(t) = 2
}

0 ≤ n ≤ a − 1 (3)

Rn(y, t)dt = P
{

Nq(t) = n, y ≤ R0(t) ≤ y + dt, B(t) = 3
}

(4)

Dn(t) = P
{

Nq(t) = n, B(t) = 4} 0 ≤ n ≤ a − 1 (5)

An(y, t)dt = P
{

Nq(t) = n, y ≤ A0(t) ≤ y + dt, B(t) = 5
}

n ≥ a (6)

5. Steady-State Queue Size Distribution

The following equations are derived by using the ‘supplementary variable technique’ [34].

−Pi0
′(y) = −λ1Pi0(y) + (1 − β)(

b

∑
m=a

Wmi(0)s(y)) + β(Wi0(0)s(y)) a ≤ i ≤ b (7)

Equation (7) indicates what the different probabilities for the server in FES for ‘i’
customers in service and ‘0’ customers in the queue in the remaining service time x − ∆t
at time t + ∆t are. In RHS, the first term indicates there is no arrival at that time and the
second term indicates that, when SES is completed, if ‘i’ customers are in the queue then ‘i’
customers go for FES and zero customers are waiting in the queue with probability (1 − β)
since there is no feedback. The next term indicates that, when SES is completed, if the
customer needs feedback then the ‘i’ customers again go for FES with the probability β.
Similarly, we give the following equations for SES, vacation, repair time, dormant period,
and set-up time in Equations (8)–(20).

−Pij
′(y) = −λ1Pij(y) +

j

∑
k=1

Pi,j−k(y)λ1gk + β
(
Wij(0)s(y)

)
a ≤ i ≤ b − 1 j ≥ 1 (8)

−Pbj
′(y) = −λ1Pbj(y) + (1 − β)

(
b

∑
m=a

Wm,b+j(0)s(y)

)
+ β

(
Wbj(0)s(y)

)
+

j

∑
k=1

Pb,j−k(y)λ1gk 1 ≤ j ≤ N − b − 1 (9)

−Pbj
′(y) = −λ1Pbj(y) + (1 − β)

(
∑b

m=a Wm,b+j(0)s(y)
)
+ β

(
Wbj(0)s(y)

)
+ ∑

j
k=1 Pb,j−k(y)λ1gk

+Ab+j(0)s(x) j ≥ N − b
(10)

−Wi0
′(y) = −λ1Wi0(y) + (1 − δ)

b

∑
m=a

Pmi(0)s2(y) + R0(0)s2(y) (11)
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−Wij
′(y) = −λ1Wij(y) +

j

∑
k=1

Wi,j−k(y)λ1gk + (1 − δ)Wij(0)s2(y) a ≤ i ≤ b − 1 j ≥ 1 (12)

−Wbj
′(y) = −λ1Wij(y) +Rj(0)s2(y) + (1 − δ)

(
Pbj(0)s2(y)

)
j ≥ 1 (13)

−Q0
′(y) = −λ1Q0(y) + (1 − β)(

b

∑
m=a

Wm0(0)v(y)) (14)

−Qn
′(y) = −λ1Qn(y) + (1 − β)(

b

∑
m=a

Wmn(0)v(y)) +
n

∑
k=1

Qn−k(y)λ1gk 1 ≤ n ≤ a − 1 (15)

−An
′(y) = −λ1 An(y) + Qn(0)a(y) +

n

∑
k=1

An−k(y)λ1gk +
a−1

∑
m=0

Tmλ1gi−ma(y) n ≥ a (16)

−R0
′(y) = −λ1R0(y) + δ

b

∑
m=a

Pm0(0)r(y) (17)

−Rn
′(y) = −λ1Rn(y) + δ

b

∑
m=a

Pmn(0)r(y) +
n

∑
k=1

Rn−k(y)λ1gk n ≥ 1 (18)

0 = −λ1T0 + Q0(0) (19)

0 = −λ1Tn + Qn(0) +
n

∑
k=1

Tn−k(0)λ1gk 0 ≤ n ≤ a − 1 (20)

The Laplace–Stieltjes transforms of Pin(y), Qn(y>), Win(y), Rn (y), and An(y) are defined as

∼
Pin(θ) =

∫ ∞

0
e−θy Pin(y)dy (21)

∼
Win(θ) =

∫ ∞

0
e−θxWin(x)dy (22)

∼
Qn(θ) =

∫ ∞

0
e−θyQn(y)dy (23)

∼
Rn(θ) =

∫ ∞

0
e−θyRn(y)dy (24)

∼
An(θ) =

∫ ∞

0
e−θy An(y)dy (25)

By applying the Laplace–Stieltjes transform to both sides of Equations (7)–(20), we obtain

θ
∼
Pi0(θ)− Pi0(0) = λ1

∼
Pi0(θ)− β

(
Wi0(0)

∼
S(θ)

)
− (1 − β)

(
b

∑
m=a

Wmi(0)
∼
S(θ)

)
a ≤ i ≤ b (26)

θ
∼
Pij(θ)− Pij(0) = λ1

∼
Pij(θ)−

j

∑
k=1

∼
Pi,j−k(θ)λ1gk−β

(
Wij(0)

∼
S(θ)

)
a ≤ i ≤ b − 1 j ≥ 1 (27)

θ
∼
Pbj(θ)− Pbj(0) = λ1

∼
Pbj(θ)− β

(
Wbj(0)

∼
S(θ)

)
− (1 − β)

(
b
∑

m=a
Wm,b+j(0)

∼
S(θ)

)
−∑

j
k=1

∼
Pb,j−k(θ)λ1gk 1 ≤ j ≤ N − b − 1

(28)

θ
∼
Pbj(θ)− Pbj(0) = λ1

∼
Pbj(θ)− β

(
Wbj(0)

∼
S(θ)

)
− (1 − β)

(
∑b

m=a Wm,b+j(0)
∼
S(θ)

)
−∑

j
k=1

∼
Pb,j−k(θ)λ1gk − Ab+j(0)

∼
S(θ) j ≥ N − b

(29)
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θ
∼
Wi0(θ)− Wi0(0) = λ1

∼
Wi0(θ)− R0(0)

∼
S2(θ)− (1 − δ)

b

∑
m=a

Pmi(0)
∼
S2(θ) (30)

θ
∼
Wij(θ)− Wij(0) = λ1

∼
Wij(θ)− (1 − δ)Wij(0)

∼
S2(θ) a ≤ i ≤ b − 1 (31)

θ
∼
Wbj(θ)− Wbj(0) = λ1

∼
Wbj(θ)− (1 − δ)

(
Pbj(0)

∼
S2(θ)

)
− Rj(0)

∼
S2(θ) j ≥ 1 (32)

θ
∼
Q0(θ)− Q0(0) = λ1

∼
Q0(θ)− (1 − β)

(
b

∑
m=a

Wm0(0)
∼
V(θ)

)
(33)

θ
∼
Qn(θ)− Qn(0) = λ1

∼
Qn(θ)− ∑n

k=1

∼
Q,n−k(θ)λ1gk−(1 − β)

(
∑b

m=a Wmn(0)
∼
V(θ)

)
1 ≤ n ≤ a − 1

(34)

θ
∼
An(θ)− An(0) = λ1

∼
An(θ)− Qn(0)

∼
A(θ)−

n

∑
k=1

∼
An−k(θ)λ1gk −

a−1

∑
m=0

Tmλ1gi−m
∼
A(θ) n ≥ a (35)

θR0(θ)− R0(0) = λ1
∼
R0(θ)− δ

b

∑
m=a

Pm0(0)
∼
R(θ) (36)

θRn(θ)− Rn(0) = λ1
∼
Rn(θ)− δ

b

∑
m=a

Pmn(0)
∼
R(θ)−

n

∑
k=1

∼
Rn−k(θ)λ1gk n ≥ 1 (37)

To derive the probability-generating function (PGF) for the queue size at any given
time, the following PGFs are defined:

∼
Pi(z, θ) =

∞

∑
j=0

∼
Pi,j(θ)zj Pi(z, 0) =

∞

∑
j=0

Pij (0)zj

∼
A(z, θ) =

∞

∑
n=a

∼
An (θ)zn A (z, 0) =

∞

∑
n=a

An(0)z
n

∼
Wi(z, θ) =

∞

∑
j=0

∼
Wi,j(θ)zj Wi(z, 0) =

∞

∑
j=0

Wij (0)zj

∼
Q(z, θ) =

a−1

∑
n=0

∼
Qn(θ) zn a ≤ i ≤ b

Q(z, 0) =
a−1

∑
n=0

Qn (0)zn T (z) =
a−1

∑
n=0

Tn zn

∼
R(z, θ) =

∞

∑
n=0

∼
Rn (θ)zn R (z, 0) =

∞

∑
n=0

Rn(0)z
n (38)

By multiplying Equations (26)–(37) with suitable powers of zn and summing over n,
then by using (38), we obtain

(θ− λ1 + λ1y(z))
∼
Pi(z, θ) = Pi(z, 0)− β Wi(z, 0)

∼
S(θ)− (1 − β)

(
b

∑
m=a

Wmi(0)
∼
S(θ)

)
a ≤ i ≤ b − 1 (39)

(θ− λ1 + λ1y(z))
∼
Pb(z, θ) = Pb(z, 0)zb –

(
βzb − (1 − β)

)∼
S(θ)Wb(z, 0)

−
∼
S(θ)


(1 − β)

(
∑b−1

m=a Wm(z, 0)− ∑b−1
j=0 Wmj(0)zj

)
+
(

R(z, 0)− ∑b−1
j=0 Rj(0)zj

)
+
(

A(z, 0)− ∑b−1
j=0 Aj(0)zj

)
 (40)
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(θ− λ1 + λ1y(z))
∼
Wi(z, θ) = Wi(z, 0)−

∼
S2(θ)

(
(1 − δ)

b

∑
m=a

Pmi(0) + R(0)

)
a ≤ i ≤ b − 1 (41)

(θ− λ1 + λ1y(z))
∼
Wb(z, θ) = Wb(z, 0)− (1 − δ)

(
Pb(z, 0)

∼
S2(θ)

)
+ R(z, 0)

∼
S2(θ) j ≥ 1 (42)

(θ− λ1 + λ1y(z))
∼
Q(z, θ) = Q(z, 0)−

∼
V(θ)(1 − β)

(
b

∑
m=a

a−1

∑
n=0

Wmn(0)zn

)
(43)

(θ− λ1 + λ1y(z))
∼
R(z, θ) = R(z, 0)− δ

∼
R(θ)

b

∑
m=a

Pm(z, 0) (44)

(θ− λ1 + λ1y(z))
∼
A(z, θ) = A(z, 0)−

∼
A(θ)

((
Q(z, 0)− ∑a−1

n=0 Qn(0)zn
)

+∑a−1
m=0 Tmλ1gi−m

)
(45)

6. Probability-Generating Function of the Queue Size at Any Time

Let P(z) be the probability-generating function

P(z) =
b−1

∑
m=a

∼
Pm(z, 0) +

∼
Pb(z, 0) + +

∼
Q(z, 0) + T(z) +

∼
R(z, 0) +

b−1

∑
m=a

∼
Wm(z, 0) +

∼
Wb(z, 0) (46)

Substituting θ = λ1 − λ1 Y (z) in Equations (39)–(45), following algebraic manipulations,
the PGF of the queue size is expressed and simplified as defined in Equation (46).

P(z) =

M1



(∼
S(λ1 − λ1Y(z))− 1

)
K1

+

(∼
A(λ1 − λ1Y(z))− 1

)
K2

+

(∼
V(λ1 − λ1Y(z))− 1

)
(1 − β)∑a−1

n=0 wnzn

K1δ

(∼
R(λ1 − λ1Y(z))

(∼
S2(λ1 − λ1Y(z))− 1

)
+ M2

)



+K3


(δM2 + δ

∼
R(λ1 − λ1Y(z))

∼
S(λ1 − λ1Y(z)))

+

(∼
S(λ1 − λ1Y(z))− 1

)
+

(∼
S2(λ1 − λ1Y(z))− 1

)
(1 − δ)

∼
S(λ1 − λ1Y(z))


M1(−λ1 + λ1Y(z))

(47)

where

M1 = zb − βzb − (1 − β)
∼
S(λ1 − λ1Y(z))×

(∼
S2(λ1 − λ1Y(z))(1 − δ) + δ

∼
R(λ1 − λ1Y(z))

)

M2 =

(∼
R(λ1 − λ1Y(z))− 1

)∼
S(λ1 − λ1Y(z)) +

∼
R(λ1 − λ1Y(z))

∼
S(λ1 − λ1Y(z))

∼
S2(λ1 − λ1Y(z))

K1 = β
∼
S2(λ1 − λ1Y(z))

(
b−1

∑
i=a

di + r0

)
− (1 − β)

b−1

∑
i=a

wi dn =
b−1

∑
n=0

(An + pn+Rn)

K2 =
∼
V(λ1 − λ1Y(z))

(
(1 − β)

a−1

∑
i=0

wizi

)
−

a−1

∑
i=0

(
qi +

a−1

∑
m=0

Tmλ1gi−m

)

K3 =
∼
A(λ1 − λ1Y(z))K2 +

(
δ
∼
R(λ1 − λ1Y(z))

+(1 − β)

)
×

∼
S2(λ1 − λ1Y(z))

(
b−1

∑
i=a

di

)
−

b−1

∑
n=0

(dn)z
n
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6.1. Steady-State Condition

The steady-state condition for the proposed queueing model is derived as

ρ =

λ1E(Y)(1 − β)

(
S1 + (1 − δ)(W1)

+δ(R1)

)
b(1 − β)

(48)

where E(Y) = mean bulk size, S1 = expected FES time, W1 = expected SES time,
R1 = expected renewal time.

6.2. Result

If we let Πn = ∑a−1
i=0

[
∑
(a−1)−i
j=0 αn−i−j(βj + k j)]pi , then qn =

Πn+∑n−a
i=1 αiqn−i

1−α0
, where

n = a + 1, a + 2, a + 3, . . . , N − 1

The unknown constants Tn involved in P(z) are expressed in terms dn in the
following theorem.

Theorem 1. Let Bj be the collection of a set of positive integers (not necessarily distinct) A, such

that the sum of elements in A is j, then, Tn = 1
λ ∑n

j=0 qn−j∑
n(Bj)

j=1 ∏
l∈A

gl .

Proof . From Equations (19) and (20), we have

λ1T0 = Q0(0) = q0
λ1Tn = Qn(0) + λ1∑n

k=1 Tn−kgk 1 ≤ n ≤ a − 1

When n = 1,
λ1T1= Q1(0) + λ1T0g1

= q1 + q0g1

When n = 2,
λ1T2= Q2(0) + λ1∑2

k=1 T2−kgk;
= Q2(0) + λ1T1g1+λ1T0g2
= q2+q1g1+q0(g1

2+g2)

When n = 3,

λ1T3 = Q3(0) + λ1∑3
k=1 T3−kgk

= Q3(0) + λ1T2g1+λ1T1g2+λ1T0g3
= q3+q2g1+q1(g1

2+g2) + q0(g1
3+2g1g2+g3)

T3=
1
λ1

(
∑3

j=0 q3−j∑
n(Bj)

j=1 ∏
l∈A

gl

)
where

B1 = {{1}}, B2 = {{1, 1}, {2}}, and B3 = {{3}, {1, 1, 1}{1, 2}, {2, 1}}

By induction, we obtain

T(z) =
a−1

∑
n=0

Tnzn=
1

λ1

a−1

∑
n=0

 n

∑
j=0

qn−j

n(Bj)

∑
j=1

∏
l∈A

gl

zn


Therefore,

Tn=
1
λ1

 n

∑
j=0

qn−j

n(Bj)

∑
j=1

∏
l∈A

gl


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Hence the proof. □

7. Performance Measures
7.1. Expected Number of Customers in the Queue

The average number of customers in the queue at an arbitrary time can be obtained
from the given expression below:

E(Q) = lim
Z→1

P′(z)

E(Q) =
2(H (λ1))− 2(G (λ1))− 3(H (λ1))

24
(

N9
′′)2 (49)

where

S1 = λ1E(S)E(Y) W1 = λ1E(S2)E(Y) S2 = λ1
2E(S2)(E(Y))2 W2 = λ1

2E(S2
2)(E(Y))2

S3 = E(S)λ1Y′′(1) W3 = E(S2)λ1Y′′(1) S4 = λ1
3E(S3)(E(Y))3 W4 = λ1

3E(S2
3)(E(Y))3

S5 = E(S)λ1Y′′′(1) S5 = E(S2)λ1Y′′′(1)λ1Y′′′(1) V1 = λ1 E(V)E(Y) R1 = λ1E(R)E(Y)
V2 = λ1

2E(V2)(E(Y))2 R2 = λ1
2E(R2)(E(Y))2 V3 = E(V)λ1Y′′(1) R(3) = E(R)λ1Y′′(1)

V4 = λ1
3E(V3)(E(Y))3 R4 = λ1

3E(R3)(E(Y))3 V5 = E(V)λ1Y′′′(1) R5 = E(R)λ1Y′′′(1)
A1 = λ1E(A)E(Y) D1 = λ1E(S2)E(Y) Y′′(1) A2 = λ1

2E(A2)(E(Y))2 D2 =

λ1
2E(S2

2)E(Y) Y′′(1)
A3 = E(A)λ1Y′′(1) D3 = λ1

2E(V2)E(Y) Y′′(1) A4 = λ1
3E(A3)(E(Y))3 D4 =

λ1
2E(R2)E(Y) Y′′(1)

A5 = E(A)λ1Y′′′(1) D5 = λ1
2E(A2)E(Y) Y′′(1)

F(λ1) = (N5
′ + N6

′ + N7
′ + N8

′) N9
′v G(λ1) = (N5

′′ + N6
′′ + N7

′′ + N8′′) N9
′′′

H(λ1) = (N5
′′′ + N6

′′′ + N7
′′′ + N8′′′) N9

′′ N1
′′ = 2M1

′(S1)(k1); N2
′′ = 2M1

′(A1)k2
N1

′′′ = 6M1
′k1

′(S1) + 3M1
′k1(S3 + S2) + 3M1

′′k1(S1)
N2

′′′ = 5M1
′(A1)k2

′ + 2M1
′k2(A2 + A3) + 2M1

′′k2(A1)
N3

′′ = 2(V1)(1 − β)M1
′ f1N3

′′′ = n f1
{

5(V1)(1 − β)M1
′}+ f1

{
3(V1)(1 − β)M1

′′ + 3(V2 + V3)(1 − β)M1
′}

N4
′′ = 2δM1

′(k1)W2; N5
′ = δM1

′(k1)M2

N4
′′′ = δ


3M1

′(S2 + S3)
+3M1

′(k1)(R1)(W2 + W1)
+4M1

′k1
′(W2) + M1

′′k1(W2 + W1)
+2M1

′k1
′((R1) + 1)(W1)


N5

′′ = δ

(
M1
(
k1 M2

′′ + 2M2
′k1

′ + k1
′′M2

)
M1

′(k1 M2
′′ + 2k1

′M2
)
+ M1

′′k1 M2

)
N5

′′′ = δ

(
M1

′(3k1 M2
′′ + 6k1

′M2
′ + k1

′′M2
)

M1
′′(3k1 M2

′ + k1
′M2) + M1

′′′k1 M2

)
N6

′ = δ
(
k3
(

M2
′ + S1 + R1

)
+ k3

′(1 + M2)
)

N6
′′ = δ

(
k3
(

M2
′′ + S2 + S3 + 2(S1)R1 + R2 + R3

)
+ 2k3

′(M2
′ + S1 + R1

)
+ k3

′′(M2 + 1)
)

N6
′′′ = δ


k3

R5 + M2
′′′ − λ1Y′′′(1) + (S1)λ1Y′′(1)

+2D1 + S4 + 3(S1)(R2 + R3) + D4

+3(R1)(S2 + S3)
(

λ1
2E(Y))2 + 1

)


2k3
′(M2

′′ + (S2 + S3) + 2(R1)S1
+R2 + R3) + 3k3

′′(S1 + R1 + M2
′)

 N7
′ = k3S(1); N7

′′ =

k3(S2 + S3) + 2k3
′(S1)

N′′′ = k3(S4 + S5 + D1) + 3k3
′′(S1)+2k3

′(S2 + S3) N8
′ = (1 − δ)(k3)W1

N8
′′ = (1 − δ)

⌊
k3(W1(S1 + 2(S2) + 2(S3))

+2k3
′(W1)

⌋

N8
′′′ = (1 − δ)


k3

 2W1(S2 + S3)
+2(W2 + W3)S1

+3(D2) + W4 + S5


3k3

′(W2 + W3 + S1(W1))
k3

′(S1)W1


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N9
′′ = 2M1

′(λ1E(Y)) N9
′′′ = 3M1

′λ1Y′′′(1) + 3M1
′′(λ1E(Y)) N9

′v = λ1(4M1
′Y′′′(1)+

6M1
′′Y′′(1) + 4M1

′′′(E(Y))
r2 = W1(1 − δ) + δR1 k1 = (1 − β) f1 − c2 K1

′ = (E1)c1 M1
′ = (1 − β)(b − S1 − r2) f1 =

∑a−1
i=0 wi

K1
′′ = (W2 + W3) c1 K1

′′′ = (W5 + W4 + 3D2) c1 r3 = (1 − δ)(W2+
W3)+δ(R2 + R3)

M1
′′ = (1 − β)

(
b(b − 1)− (S2 + S3)

−2S1r2 − r3

)
M2

′ = 2R1 + (S1 + W1)

M1
′′′ = (1 − β)


b(b − 1)(b − 2)
−3(S2 + S3)r2

−(S4 + S5 + 3D1)− 3(S1)r3
−(1 − δ)(W5 + W4 + D2)

−δ(R4 + R5 + D4)

 c1 = ∑b−1
i=a di + r0

c2 = ∑a−1
i=0

(
qi + ∑a−1

m=0 Dmλ1gi−m

)
M2

′′ = 2R1S1 + 2(R2 + R3) + R1
(

W2 + W3
W1 + S1

)
+W3 + w2 + 2(S1)W1 + S2 + S3

M2
′′′ = 3R1(S2 + S3) + (R2 + R3(W2 + W3)) + (3R2 + 3R3 + R5 + R4 + D4)S1+

R1(S5 + D1 + S4) + W5 + 3D2 + (S1)W2 + W4 + 2(S2 + S3)W1 + 2S1(W2 + W3)
K2

′ = ((V1 + i)(1 − β) f1)− c2 + i(i − 1))− c2 K2
′′ = (1 − β) f1(V2 + V3+

2i(V1) f2 = ∑a−1
n=0 (dn + Rn)

K2
′′′ = (1 − β) f1[V5 + V4 + 3(D3) + 3(V2 + V3)i + 3(V1)i(i − 1) + i(i − 1)(i − 2)]− c2

K3
′ = K2

′ + A1( f1(1 − β)− c2) + (δR1 + (1 − β)W1)c1− n f 2
K3

′′ = 2A1K2
′ + (A2 + A3)k2 + δ(R2 + R3) + (1 − β)(W2 + W3)(c1)− n(n − 1) f 2

K3
′′′ = 2(A2 + A3)K2

′ + 2A1K2
′′ + K2

′′′ + (A4 + A5 + 3(D5))k2 + δ(R5 + R4 + 3(D4))
+(1 − β)(W5 + W4 + 3(D2))(c1)− f2n(n − 1)(n − 2))

7.2. Expected Waiting Time of a Customer in the Queue

By using Little’s formula we have obtained the result

E (W) =
E(Q)

λ1E(Y)
(50)

7.3. Expected Duration of the Dormant Period

When one observes the epochs marking the beginning of both the busy and vacation
phases, they are said to have passed through an idle period. I will stand in for the ‘idle
period’ random variable. The likelihood that the system state visits ‘j’ during an idle time
is denoted as α(j), j = 0, 1, 2, . . ., a − 1.

Let

Ij=

{
1, i f the state ′ j′ during an idle period.

0, otherwise
(51)

Conditioning on the queue size in the service completion epoch, we have α0 = π0.

αj = P
(

Ij = 1
)
= πj +

c−1

∑
k=0

πk P
(

Ij−k
1 = 1

)
;

Thus, the expected duration of the dormant period is obtained from

E(I) =
1

λ1

c−1

∑
j=0

αj, (52)

where 1
λ1

is the expected staying time in the state ‘j’ during a dormant period.
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7.4. Duration of the Server’s Expected Busy Period

The active period random parameter is denoted by B. The time when the server is
either serving users or being repaired is denoted by T. After that,

E(T) = E(S) + E (W) + δE(R) (53)

E(S) = expected FES time, E(W) = expected SES time, E(R) = expected renewal time.
We define a random variable J as

J = 0, if there is feedback after the service completion;
J = 1, if there is a departure after the service completion and there are fewer than ‘a’
customers after the first service;
J = 2, if there is a departure after the service completion and there are at least ‘a’ consumers
following the conclusion of the service.

Then,

E(B) =
E (T)

(1 − β)∑a−1
i=0 di

(54)

8. Cost Model

The suggested queueing model’s overall average cost can be minimized by making
the following assumptions.

γh : holding cost per customer

γ0 : operating cost per unit of time

γs : startup cost per cycle

γr : reward cost per cycle due to vacation

Since the length of the cycle is the sum of the idle period and busy period,

E(Tc) = E(length o f Idle period) + E(length o f the Busy Period) (55)

E(Tc) =
1

λ1

c−1

∑
j=0

αj, +
E (T)

(1 − β)∑a−1
i=0 di

(56)

Total Average Cost = [γs − γrE(I)]
1

E(Tc)
+ γhE(Q) + γ0ρ (57)

where ρ = λ1E(Y)[E(B)+δE(R)]
b .

It is quite difficult to derive an analytical method for finding the optimal value a*
(minimum bulk size in bulk arrival and bulk service queueing model) to minimize the total
average cost (TAC). The simple direct search method is used to find the optimal policy for a
threshold value a* to minimize the TAC, which is defined as
Step 1: Fix the value of maximum bulk size ′b′and threshold value ‘N’;
Step 2: Select the value ‘a’ which will satisfy the following relation:

TAC(a∗) ≤ TAC(a), 1 ≤ a ≤ N (58)

Step 3: The value a∗ is optimum, since it gives minimum TAC.
By following the steps outlined above, one may determine the best value of ‘a’ to

minimize the TAC function. In the section that follows, numerical examples will be given
to back up the preceding answer.

9. Numerical Illustration

Numerical justification for the theoretical findings of the proposed model is provided
under the specified assumptions and notations (Table 2):
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Table 2. Parameters and Notations.

Parameter Distribution Notations

Arrival rate Poisson distribution λ1
First essential service 2-Erlang distribution µ1

Second essential service 2-Erlang distribution µ2
Vacation Exponential distribution
Renewal Exponential distribution η

Setup time Exponential distribution α

The bulk size distribution of the arrival is geometric with a mean of 2.
Minimum server capacity a
Maximum server capacity b
Threshold value N
Startup cost Rs. 4
Holding cost per customer Rs. 3
Operating cost per unit time Rs. 5
Reward per unit time due to vacation Rs. 1
Renewal cost per unit time Rs. 2
Setup time cost per unit time Rs. 0.50

9.1. Results and Discussion

Here, we cover the research that looks at how various factors affect performance
metrics and how different metrics fare when subjected to set threshold values.

9.1.1. Impact of Arrival Rate on Performance Metrics

With the assumptions given in Table 2, from Table 3 and Figure 1, it is clear that if the
arrival rate increases, the expected number of customers in the queue, expected duration
of the busy period of the server, and expected waiting time of a customer in the queue
increase whereas the expected duration of the dormant period decreases.
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Table 3. Arrival rate versus performance metrics.

λ1 E(Q) E(B) E(I) E(W)

3.0 3.7541 5.2123 2.5454 1.2212
3.4 4.5432 6.5216 2.1181 2.3321
4.0 5.6632 7.9934 1.5432 4.1254
4.5 7.1123 9.1211 1.1214 5.4313
5.0 8.8246 11.2321 0.5432 6.2242
5.6 9.6542 12.4532 0.3243 7.3232
6.0 10.4342 14.2321 0.1211 9.1214

E(Q)—Expected number of customers in the queue; E(B)—Expected duration of the busy period of the server;
E(W)—Expected waiting time of a customer in the queue; E(I)—Expected duration of the dormant period. (For
minimum server capacity a = 2, maximum server capacity b = 4, vacation rate = 10, renewal rate η = 8, breakdown
probability δ = 0.2, feedback probability β = 0.5).

9.1.2. Impact of Breakdown Probability on Performance Metrics

The influence of performance metrics for various failure rates is shown in Table 4 and
Figure 2. It can be seen that when the failure rate increases, the predicted inactive period
duration and the estimated client waiting time in the queue will also increase.

Table 4. Breakdown of probability versus performance measures.

δ E(Q) E(B) E(I) E(W)

0.5 10.2343 8.5472 8.2231 9.1227
0.6 11.4532 9.2345 7.8535 11.2236
0.7 13.1231 11.4532 5.1232 13.5645
0.8 15.2941 12.6341 3.2212 15.6543
0.9 16.3987 13.9871 2.1545 16.6432

E(Q)—Expected number of customers in the queue; E(B)—Expected duration of the busy period of the server;
E(W)—Expected waiting time of a customer in the queue; E(I)—Expected duration of the dormant period.
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Table 5. Renewal ratio versus performance measures.

Renewal Rate E(Q) E(B) E(I) E(W)

2 6.932 6.6532 4.1534 5.2345
4 6.134 6.2543 5.6734 3.4564
6 5.513 5.2321 7.4765 1.5643
8 4.927 4.1431 8.2451 1.1457
10 3.623 2.9256 10.1543 0.4381

E(Q)—Expected number of customers in the queue; E(B)—Expected duration of the busy period of the server;
E(W)—Expected waiting time of a customer in the queue; E(I)—Expected duration of the dormant period.
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9.1.4. Effects of Threshold Values ‘a’ and ‘N’ on Total Average Cost

In Table 6 and Figure 4, the effects of the bulk size ‘a’ on the TAC with b = 8 are given.
From Table 6 and Figure 5, one can see that, to minimize the overall cost the minimum bulk
size ‘a’ should be fixed as 3. Similarly, Table 7 and Figures 5–7 suggest to fix the threshold
value ‘a’ to minimize the total average cost for various arrival rates, service rates, and
vacation rates, and to minimize the overall cost the minimum bulk size should be fixed at
a = 5 and N = 6.

Table 6. Threshold Value ‘a’ vs. Total Average Cost.

a E(Q) E(B) E(I) TAC

2 1.3563 6.2874 2.8963 1.2753
3 1.4389 6.6421 3.7524 0.8754
4 1.5129 7.7943 4.7327 0.6798
5 1.8319 8.4862 5.5639 0.9875
6 2.0345 13.5782 5.8032 0.9234
7 2.2427 18.4592 7.6731 0.9875
8 2.8193 24.5728 8.6932 0.9109
9 3.6738 26.8432 9.4589 1.5098
10 3.8921 30.1732 10.5821 1.4326

E(Q)—Expected number of customers in the queue; E(B)—Expected duration of the busy pe-
riod of the server; E(I)—Expected duration of the dormant period. Arrival rate λ1 = 2;
maximum server capacity b = 8, service rate of FES µ1 = service rate of SES µ2 = 2.0,
vacation rate = 1, break down probability δ = 3, renewal rate η = 4, set up time α = 6.
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Table 7. Threshold value versus TAC.

Threshold Value ′N′ to Start Bulk Service

Th
re

sh
ol

d
va

lu
e
′ a
′ t

o
st

ar
ts

er
vi

ce a

N 2 3 4 5 6 7 8 9 10

TAC

1 4.861 4.732 4.746 4.965 5.583 5.951 6.247 6.365 7.483

2 4.567 4.518 4.872 5.432 5.673 6.084 6.247 6.941

3 4.452 4.672 4.792 4.864 5.272 5.431 5.934

4 4.295 4.643 4.821 5.093 5.187 5.531

5 4.283 4.314 4.421 5.042 5.467

6 4.315 4.410 4.989 5.035

7 4.357 4.745 5.021

8 4.578 4.995

9 4.982

Minimum TAC occurs when a = 5 and N = 6.
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9.2. Optimal Cost

Here, we take a look at a numerical example to see how the DRX mechanism might
help LTE networks save power. Fixing the values for the thresholds and utilizing the
acquired result to minimize the median cost of the entire system is possible. Table 7
shows the impact of different threshold values ‘a’ and ‘N’ on the TAC; setting a = 5 and
N = 4.283 yields the lowest total average cost.

10. Conclusions

Here, we have examined two-phase bulk service with active Bernoulli feedback,
vacation, and breakdown, as well as bulk arrival in bulk. By utilizing supplementary
variable approaches under steady-state settings, we may derive the probability-generating
function of the queue size at any given moment. To gauge performance, we estimate things
like the number of customers expected to be in line, how long the server’s busy phase will
be, how long customers are expected to wait in line, and how long the dormant period
will be. We provide concrete numerical examples to ensure that the analytical results are
genuine. An application of the proposed queueing model in 4G/5G networks using the
DRX mechanism has been given. Additionally, optimum cost analysis has been carried
out to minimize the total average cost of the system and make better decisions to fix the
threshold value for the service. The uniqueness of the considered model is in the sense
that we have introduced an essential two-phase bulk service, renewal time, and two-level
control policy for the bulk queueing system. All the introduced parameters are more useful
for studying many real-time applications in network systems.
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