Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = myogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2236 KiB  
Communication
The Anti-Myogenic Role of Tetranectin and Its Inhibition by Epigallocatechin-3-Gallate Enhances Myogenesis
by Amar Akash and Jihoe Kim
Cells 2025, 14(15), 1160; https://doi.org/10.3390/cells14151160 - 28 Jul 2025
Viewed by 215
Abstract
Tetranectin (TN) is a plasminogen-binding protein found in human serum. Although it has been suggested to be closely related to various stem cell differentiation, including myogenesis, the role of TN in muscle development remains unclear. In this study, we identified TN as an [...] Read more.
Tetranectin (TN) is a plasminogen-binding protein found in human serum. Although it has been suggested to be closely related to various stem cell differentiation, including myogenesis, the role of TN in muscle development remains unclear. In this study, we identified TN as an anti-myogenic factor during the differentiation of C2C12 satellite cells. The exogenous supplementation of TN inhibited myogenic differentiation, whereas differentiation was significantly enhanced in the TN-depleted medium. Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, significantly enhanced myogenic differentiation by reducing TN levels in the medium and downregulating TN gene expression during the differentiation process. These results demonstrate that EGCG promotes myogenesis by inhibiting TN at both the transcriptional and functional levels, highlighting TN as a promising therapeutic target for muscle regeneration disorders. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

18 pages, 4381 KiB  
Article
Glucocorticoid-Induced Muscle Satellite Cell-Derived Extracellular Vesicles Mediate Skeletal Muscle Atrophy via the miR-335-5p/MAPK11/iNOS Pathway
by Pei Ma, Jiarui Wu, Ruiyuan Zhou, Linli Xue, Xiaomao Luo, Yi Yan, Jiayin Lu, Yanjun Dong, Jianjun Geng and Haidong Wang
Biomolecules 2025, 15(8), 1072; https://doi.org/10.3390/biom15081072 - 24 Jul 2025
Viewed by 369
Abstract
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) [...] Read more.
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) induced MSC-derived extracellular vesicles (EVs) impair myogenesis in muscle fiber-like cells (MFLCs) via inducible nitric oxide synthase (iNOS) suppression. High-throughput sequencing revealed a marked upregulation of miR-335-5p in MSC-derived EVs following Dex treatment. Mechanistically, EV miR-335-5p targeted MAPK11, leading to iNOS downregulation and subsequent UPS activation in MFLCs, which directly promoted muscle protein degradation. Collectively, our findings identify the EV miR-335-5p/MAPK11/iNOS axis as a critical mediator of GC-induced muscle atrophy, offering novel insights into therapeutic strategies targeting EV-mediated signaling in muscle wasting disorders. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 343
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

14 pages, 1118 KiB  
Article
The Effects of Early Temperature and Live Feeds on the Development of White Muscle in Greater Amberjack (Seriola dumerili)
by Rafael Angelakopoulos, Andreas Tsipourlianos, Alexia E. Fytsili, Nikolaos Mitrizakis, Themistoklis Giannoulis, Nikos Papandroulakis and Katerina A. Moutou
Fishes 2025, 10(7), 360; https://doi.org/10.3390/fishes10070360 - 20 Jul 2025
Viewed by 258
Abstract
Greater amberjack (Seriola dumerili) shows potential for Mediterranean aquaculture due to its swift growth, consumer appeal, and commercial value. However, challenges in juvenile production, such as growth dispersion and unsynchronized development, impede further expansion. This study explores the impact of rearing [...] Read more.
Greater amberjack (Seriola dumerili) shows potential for Mediterranean aquaculture due to its swift growth, consumer appeal, and commercial value. However, challenges in juvenile production, such as growth dispersion and unsynchronized development, impede further expansion. This study explores the impact of rearing temperature and live feed types on early white muscle development in greater amberjack larvae. Findings reveal substantial effects of temperature and diet on larval development, highlighting that the combination of 24 °C and a copepod + rotifer co-feeding scheme resulted in the highest axial growth rate, whereas rotifer-fed larvae at 20 °C exhibited a slower pace. Incorporating both histological and gene expression analyses, the study underscores temperature’s significant influence on white muscle development. Among larvae reared at 24 °C, the two live feed types led to phenotypic variations at metamorphosis, with rotifers supporting longer larvae featuring a smaller total cross-sectional area compared to copepods. Gene expression analysis indicates heightened mylpfb and myog expression at 24 °C during early larval stages, suggesting increased hyperplasia and myoblast differentiation. This study highlights the necessity of considering both temperature and feed type in larval rearing practices for optimal muscle development, and further research exploring combined diets during rearing could offer insights to enhance amberjack aquaculture sustainability. Full article
(This article belongs to the Special Issue Growth, Metabolism, and Flesh Quality in Aquaculture Nutrition)
Show Figures

Figure 1

25 pages, 6270 KiB  
Article
Ethanolic Extract of Glycine Semen Preparata Prevents Oxidative Stress-Induced Muscle Damage in C2C12 Cells and Alleviates Dexamethasone-Induced Muscle Atrophy and Weakness in Experimental Mice
by Aeyung Kim, Jinhee Kim, Chang-Seob Seo, Yu Ri Kim, Kwang Hoon Song and No Soo Kim
Antioxidants 2025, 14(7), 882; https://doi.org/10.3390/antiox14070882 - 18 Jul 2025
Viewed by 469
Abstract
Skeletal muscle atrophy is a debilitating condition characterized by the loss of muscle mass and function. It is commonly associated with aging, chronic diseases, disuse, and prolonged glucocorticoid therapy. Oxidative stress and catabolic signaling pathways play significant roles in the progression of muscle [...] Read more.
Skeletal muscle atrophy is a debilitating condition characterized by the loss of muscle mass and function. It is commonly associated with aging, chronic diseases, disuse, and prolonged glucocorticoid therapy. Oxidative stress and catabolic signaling pathways play significant roles in the progression of muscle degradation. Despite its clinical relevance, few effective therapeutic options are currently available. In this study, we investigated the protective effects of an ethanolic extract of Glycine Semen Preparata (GSP), i.e., fermented black soybeans, using in vitro and in vivo models of dexamethasone (Dexa)-induced muscle atrophy. In C2C12 myoblasts and myotubes, GSP significantly attenuated both oxidative stress-induced and Dexa-induced damages by reducing reactive oxygen species levels and by suppressing the expression of the muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1. Moreover, GSP upregulated key genes involved in muscle regeneration (Myod1 and Myog) and mitochondrial biogenesis (PGC1α), indicating its dual role in muscle protection and regeneration. Oral administration of GSP to mice with Dexa-induced muscle atrophy resulted in improved muscle fiber integrity, increased proportion of large cross-sectional area fibers, and partial recovery of motor function. Isoflavone aglycones, such as daidzein and genistein, were identified as active compounds that contribute to the beneficial effects of GSP through antioxidant activity and gene promoter enhancement. Thus, GSP is a promising nutraceutical that prevents or mitigates muscle atrophy by targeting oxidative stress and promoting myogenesis and mitochondrial function. Further studies are warranted to standardize the bioactive components and explore their clinical applications. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Article
Sex Differences in Human Myogenesis Following Testosterone Exposure
by Paolo Sgrò, Cristina Antinozzi, Guglielmo Duranti, Ivan Dimauro, Zsolt Radak and Luigi Di Luigi
Biology 2025, 14(7), 855; https://doi.org/10.3390/biology14070855 - 14 Jul 2025
Viewed by 285
Abstract
Previous research has demonstrated sex-specific differences in muscle cells regarding sex hormone release and steroidogenic enzyme expression after testosterone exposure. The present study aims to elucidate sex-related differences in intracellular processes involved in myogenesis and regeneration. Neonatal 46XX and 46XY human primary skeletal [...] Read more.
Previous research has demonstrated sex-specific differences in muscle cells regarding sex hormone release and steroidogenic enzyme expression after testosterone exposure. The present study aims to elucidate sex-related differences in intracellular processes involved in myogenesis and regeneration. Neonatal 46XX and 46XY human primary skeletal muscle cells were treated with increasing doses of testosterone (0.5, 2, 5, 10, 32, and 100 nM) for 24 h. The molecular pathways involved in muscle metabolism and growth, as well as the release of myokines involved in satellite cell activation, were analyzed using western blot, real-time PCR, and a Luminex assay. The unpaired Student’s t-test and one-way ANOVA for repeated measures were used to determine significant variations within and between groups. An increase in the expression and release of MYF6, IGF-I, IGF-II, and CXCL1, as well as a decrease in GM-CSF, IL-9, and IL-12, was observed in 46XX cells. Conversely, testosterone up-regulated GM-CSF and CXCL1 in 46XY cells but did not affect the release of the other myokines. Preferential activation of the MAPK pathway was observed in 46XX cells, while the PI3K/AKT pathway was preferentially activated in 46XY cells. In conclusion, our findings demonstrate differential responses to androgen exposure in 46XX and 46XY cells, resulting in the activation of muscle cell growth and energy metabolic pathways in a sex-specific manner. Full article
Show Figures

Figure 1

18 pages, 1501 KiB  
Review
The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis: State of the Art 2025
by Elisa Duranti
Muscles 2025, 4(3), 22; https://doi.org/10.3390/muscles4030022 - 9 Jul 2025
Viewed by 624
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease that degeneratively damages both upper and lower motor neurons, eventually resulting in muscular paralysis and death. Although ALS is broad in scope and commonly thought of as a motor neuron disease, more active research sheds [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive disease that degeneratively damages both upper and lower motor neurons, eventually resulting in muscular paralysis and death. Although ALS is broad in scope and commonly thought of as a motor neuron disease, more active research sheds light on the that role skeletal muscle plays in the development and progression of the disease. Muscle tissue in ALS patients and in animal models demonstrates severe regenerative deficits, including impaired myogenesis and impaired myoblast fusion. In ALS, muscle stem cells, known as satellite cells, show poor performance in activation, proliferation, and differentiation and thus contribute to ALS muscle wasting. Moreover, the pathological tissue environment that inhibits myoblast fusion is made up of proinflammatory cytokines, oxidative stress, and a lack of trophic signals from the neuromuscular junction, which greatly disrupts homeostatic regulation. It is likely that skeletal muscle is instead a dynamic player, fueling neuromuscular degeneration as opposed to a passive responder to denervation. One must appreciate the cellular and molecular changes that complicate muscle regeneration in ALS for effective treatment to be developed, permitting simultaneous interventions with both muscle and neurons. Full article
Show Figures

Figure 1

23 pages, 2571 KiB  
Communication
Duchenne Muscular Dystrophy Patient iPSCs—Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation
by Urs Kindler, Lampros Mavrommatis, Franziska Käppler, Dalya Gebrehiwet Hiluf, Stefanie Heilmann-Heimbach, Katrin Marcus, Thomas Günther Pomorski, Matthias Vorgerd, Beate Brand-Saberi and Holm Zaehres
Cells 2025, 14(13), 1033; https://doi.org/10.3390/cells14131033 - 7 Jul 2025
Viewed by 815
Abstract
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle [...] Read more.
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle stem cells that play an important role in adult muscle maintenance and regeneration. The absence or mutation of dystrophin in DMD is hypothesized to impair SC asymmetric division, leading to cell cycle arrest. Methods: To overcome the limited availability of biopsies from DMD patients, we used our 3D skeletal muscle organoid (SMO) system, which delivers a stable population of myogenic progenitors (MPs) in dormant, activated, and committed stages, to perform SMO cultures using three DMD patient-derived iPSC lines. Results: The results of scRNA-seq analysis of three DMD SMO cultures versus two healthy, non-isogenic, SMO cultures indicate reduced MP populations with constant activation and differentiation, trending toward embryonic and immature myotubes. Mapping our data onto the human myogenic reference atlas, together with primary SC scRNA-seq data, indicated a more immature developmental stage of DMD organoid-derived MPs. DMD fibro-adipogenic progenitors (FAPs) appear to be activated in SMOs. Conclusions: Our organoid system provides a promising model for studying muscular dystrophies in vitro, especially in the case of early developmental onset, and a methodology for overcoming the bottleneck of limited patient material for skeletal muscle disease modeling. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

19 pages, 2294 KiB  
Article
NGF, BDNF, and NO in Myopic Subjects: Relationships Between Aqueous Levels and Lens Epithelial Cells’ Activation
by Maria De Piano, Andrea Cacciamani, Fabio Scarinci, Rosanna Squitti, Pamela Cosimi, Marisa Bruno, Guido Ripandelli, Paola Palanza and Alessandra Micera
Int. J. Mol. Sci. 2025, 26(13), 6350; https://doi.org/10.3390/ijms26136350 - 1 Jul 2025
Viewed by 434
Abstract
Several soluble mediators are activated during myogenesis and progression, and severe neurodegeneration, with related biomarkers, characterizes high myopia-related retinal atrophy. Targets of oxidative stress, epigenetics and neurogenic inflammation have been reported in the prospecting of some bioindicators to mirror retinal insults occurring in [...] Read more.
Several soluble mediators are activated during myogenesis and progression, and severe neurodegeneration, with related biomarkers, characterizes high myopia-related retinal atrophy. Targets of oxidative stress, epigenetics and neurogenic inflammation have been reported in the prospecting of some bioindicators to mirror retinal insults occurring in high myopia. The aim of the present study was to assess the expression of a few selected biomarkers belonging to the neurotrophin (NGF and BDNF), oxidative (NO, KEAP1/NRF2), and epigenetic (DNMT3 and HD1) pathways. Sixty-five (65; 76.25 ± 9.40 years) specimens—aqueous, anterior capsule (AC), and lens epithelial cells (LEC)—were collected at the time of cataract surgery and used for ELISA (aqueous) and transcripts analysis (AC/LEC). Biosamples were grouped as emmetrope (23; 81.00 ± 6.70 years); myopia (24; 75.96 ± 7.30); and high (pathological) myopia (18; 70.56 ± 11.68 years), depending on axial length (AL) and refractive error (RE). Comparisons and correlations were carried out between myopic and high-myopic subgroups. NGF and BDNF were lowered in myopic samples; NGF and BDNF transcripts were differentially expressed in LEC, and their expression correlated positively with NGF and negatively with BDNF, with the expression of the αSMA phenotype. NGF and BDNF correlated negatively with NO and nitrites. Oxidative stress (iNOS/NOX1/NOX4 and KEAP1/NRF2) and epigenetic (DNMTα3/HD1) transcripts were upregulated in myopic LEC, compared with emmetropic ones. Herein, we prospect the contribution of NGF and BDNF in both neuroinflammation and neuroprotection occurring in this chronic disease. Full article
(This article belongs to the Special Issue Retinal Degenerative Diseases: 2nd Edition)
Show Figures

Figure 1

17 pages, 8138 KiB  
Article
Function and Molecular Mechanism of Circhomer1 in Myogenesis
by Zonggang Yu, Kaiming Wang, Bohe Chen, Jingwen Liu, Wenwu Chen and Haiming Ma
Int. J. Mol. Sci. 2025, 26(13), 6264; https://doi.org/10.3390/ijms26136264 - 28 Jun 2025
Viewed by 387
Abstract
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved [...] Read more.
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved in many biological processes, but further research is needed in skeletal muscle. In this study, we detected the authenticity, stability, and spatio-temporal expression characteristics of circHOMER1 and its effect on the proliferation, apoptosis, and differentiation of muscle cells, and analyzed its possible molecular mechanism. The results showed that circHOMER1 exists in the skeletal muscle of the Ningxiang pig, is more stable than linear RNA, and is significantly upregulated in adipose tissue and during the early growth of myoblasts. In terms of function, overexpression of circHOMER1 significantly promoted the expression levels of proliferation marker genes and proteins and significantly increased the EdU positive cell rate, optical density (OD) value (at 450 nm), and proportion of S-phase cells. Overexpression of circHOMER1 also significantly promoted the expression levels of apoptosis marker genes and proteins and significantly increased the proportions of cells in Q2 (with late apoptosis) and Q3 (with early apoptosis). Overexpression of circHOMER1 significantly inhibited the expression levels of differentiation marker genes and proteins, significantly inhibited the differentiation index, and decreased the proportion of 5-nucleus muscle fibers. Conversely, opposite results were obtained after circHOMER1 interference. In terms of molecules mechanism, subcellular localization analysis showed that circHOMER1 was mainly distributed in cytoplasm, and mechanism analysis showed that circHOMER1 participated in myoblast development by forming a 4-element interaction network with 4 miRNAs, 2 lncRNAs, and 20 mRNAs, and possibly regulated myoblast development by encoding 79 amino acids. To sum up, we verified that circHOMER1 promoted the proliferation and apoptosis of myoblasts and inhibited their differentiation. It may regulate the development of myoblasts through ceRNA or by encoding small peptides. These results provided a reference for the regulation mechanism of muscle development and the breeding of Ningxiang pigs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1248 KiB  
Article
Exploring the Role of Oleic Acid in Muscle Cell Differentiation: Mechanisms and Implications for Myogenesis and Metabolic Regulation in C2C12 Myoblasts
by Francesco Vari, Elisa Bisconti, Ilaria Serra, Eleonora Stanca, Marzia Friuli, Daniele Vergara and Anna Maria Giudetti
Biomedicines 2025, 13(7), 1568; https://doi.org/10.3390/biomedicines13071568 - 26 Jun 2025
Viewed by 523
Abstract
Background/Objectives: Myogenesis, the process by which myoblasts differentiate into multinucleated muscle fibers, is tightly regulated by transcription factors, signaling pathways, and metabolic cues. Among these, fatty acids have emerged as key regulators beyond their traditional role as energy substrates. Oleic acid, a [...] Read more.
Background/Objectives: Myogenesis, the process by which myoblasts differentiate into multinucleated muscle fibers, is tightly regulated by transcription factors, signaling pathways, and metabolic cues. Among these, fatty acids have emerged as key regulators beyond their traditional role as energy substrates. Oleic acid, a monounsaturated fatty acid, has been shown to modulate muscle differentiation, potentially influencing myogenic pathways. This study examines the role of oleic acid in promoting C2C12 myoblast differentiation and its associated molecular mechanisms, comparing it to standard horse serum (HS)-based differentiation protocols. Methods: C2C12 murine myoblasts were cultured under proliferative conditions and differentiated using DMEM supplemented with either 2% HS or oleic acid (C18:1, n-9). The molecular signaling pathway was evaluated by measuring the expression of p38 MAPK, β-catenin, GLUT4, and NDRG1. Results: Oleic acid promoted the differentiation of C2C12 cells, as evidenced by a progressively elongated morphology, as well as the induction of muscle-specific myogenin, myosin heavy chain (MHC), and MyoD. Moreover, oleic acid reduced the expression of Atrogin-1 and MuRF1 ubiquitin E3 ligase. BODIPY staining revealed the enhanced accumulation of lipid droplets in oleic acid-treated cells. The Western blot analysis demonstrated robust activation of p38 MAPK and β-catenin pathways in response to oleic acid, compared with HS. Additionally, oleic acid upregulated GLUT4 expression and increased the phosphorylation of insulin receptor and NDRG1, indicating an enhanced glucose uptake capacity. Conclusions: These findings demonstrate that oleic acid promotes C2C12 myoblast differentiation and improves glucose uptake via GLUT4. Oleic acid emerges as a promising metabolic regulator of myogenesis, offering potential therapeutic applications for muscle regeneration in muscle-related pathologies. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

21 pages, 2395 KiB  
Review
Exploring lncRNA-Mediated Mechanisms in Muscle Regulation and Their Implications for Duchenne Muscular Dystrophy
by Abdolvahab Ebrahimpour Gorji, Zahra Roudbari, Kasra Ahmadian, Vahid Razban, Masoud Shirali, Karim Hasanpur and Tomasz Sadkowski
Int. J. Mol. Sci. 2025, 26(13), 6032; https://doi.org/10.3390/ijms26136032 - 24 Jun 2025
Viewed by 825
Abstract
Duchenne muscular dystrophy (DMD) manifests as a hereditary condition that diminishes muscular strength through the progressive degeneration of structural muscle tissue, which is brought about by deficiencies in the dystrophin protein required for the integrity of muscle cells. DMD is among four different [...] Read more.
Duchenne muscular dystrophy (DMD) manifests as a hereditary condition that diminishes muscular strength through the progressive degeneration of structural muscle tissue, which is brought about by deficiencies in the dystrophin protein required for the integrity of muscle cells. DMD is among four different types of dystrophinopathy disorders. Current studies have established that long non-coding RNAs (lncRNAs) play a significant role in determining the trajectory and overall prognosis of chronic musculoskeletal conditions. LncRNAs are different in terms of their lengths, production mechanisms, and operational modes, but they do not produce proteins, as their primary activity is the regulation of gene expression. This research synthesizes current literature on the role of lncRNAs in the regulation of myogenesis with a specific focus on certain lncRNAs leading to DMD increments or suppressing muscle biological functions. LncRNAs modulate skeletal myogenesis gene expression, yet pathological lncRNA function is linked to various muscular diseases. Some lncRNAs directly control genes or indirectly control miRNAs with positive or negative effects on muscle cells or the development of DMD. The research findings have significantly advanced our knowledge about the regulatory function of lncRNAs on muscle growth and regeneration processes and DMD diseases. Full article
(This article belongs to the Special Issue Roles and Mechanisms of Non-Coding RNAs in Human Health and Disease)
Show Figures

Figure 1

28 pages, 6764 KiB  
Article
Multi-Modal Analysis of Satellite Cells Reveals Early Impairments at Pre-Contractile Stages of Myogenesis in Duchenne Muscular Dystrophy
by Sophie Franzmeier, Shounak Chakraborty, Armina Mortazavi, Jan B. Stöckl, Jianfei Jiang, Nicole Pfarr, Benedikt Sabass, Thomas Fröhlich, Clara Kaufhold, Michael Stirm, Eckhard Wolf, Jürgen Schlegel and Kaspar Matiasek
Cells 2025, 14(12), 892; https://doi.org/10.3390/cells14120892 - 13 Jun 2025
Viewed by 1064
Abstract
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis [...] Read more.
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis rather than resulting from the pathologic environment. In this study, we isolated SCs from a porcine DMD model and age-matched wild-type (WT) piglets for comprehensive analysis. Using immunofluorescence, differentiation assays, traction force microscopy (TFM), RNA-seq, and label-free proteomic measurements, SCs behavior was characterized, and molecular changes were investigated. TFM revealed significantly higher average traction forces in DMD than WT SCs (90.4 ± 10.5 Pa vs. 66.9 ± 8.9 Pa; p = 0.0018). We identified 1390 differentially expressed genes and 1261 proteins with altered abundance in DMD vs. WT SCs. Dysregulated pathways uncovered by gene ontology (GO) enrichment analysis included sarcomere organization, focal adhesion, and response to hypoxia. Multi-omics factor analysis (MOFA) integrating transcriptomic and proteomic data, identified five factors accounting for the observed variance with an overall higher contribution of the transcriptomic data. Our findings suggest that SC impairments result from their inherent genetic abnormality rather than from environmental influences. The observed biological changes are intrinsic and not reactive to the pathological surrounding of DMD muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle: Structure, Physiology and Diseases)
Show Figures

Figure 1

20 pages, 1740 KiB  
Article
Regulation of Myogenesis by MechanomiR-200c/FoxO3 Axis
by Junaith S. Mohamed and Aladin M. Boriek
Cells 2025, 14(12), 868; https://doi.org/10.3390/cells14120868 - 9 Jun 2025
Viewed by 538
Abstract
Cyclic mechanical stretch has been shown to inhibit myoblast differentiation while promoting proliferation. However, the underlying molecular mechanisms are not well understood. Here, we report that mechanical stretch inhibits the differentiation of mouse primary myoblasts by promoting the cell cycle program and by [...] Read more.
Cyclic mechanical stretch has been shown to inhibit myoblast differentiation while promoting proliferation. However, the underlying molecular mechanisms are not well understood. Here, we report that mechanical stretch inhibits the differentiation of mouse primary myoblasts by promoting the cell cycle program and by inhibiting the expression of the myogenic regulator MyoD. Stretch alters the miRNA expression profile as evidenced by miRNA microarray analysis. We identified miR-200c as one of the highly downregulated mechanosensitive miRNAs (mechanomiRs) whose expression level was increased during differentiation. This suggests that mechanomiRs-200c is a myogenic miRNA. Overexpression of mechanomiR-200c revoked the effect of stretch on myoblast differentiation, and the introduction of the mechanomiR-200c antagomir restored the stretch effect. This suggests that stretch blocks differentiation, in part, through mechanomiR-200c. The gene encoding the transcription factor FoxO3 is a known direct target of mechanomiR-200c. Interestingly, MyoD binds to the mechanomiR-200c promoter in differentiating myoblasts, whereas stretch appears to reverse such binding. Our data further demonstrate that the levels of mechanomiR-200c are robustly elevated during the early stage of the muscle repair process in young mice, but not in the injured muscle of aged mice. Overall, we identified a novel pathway, MyoD/mechanomiR-200c/FoxO3a, and the potential mechanism by which stretch inhibits myoblast differentiation. Full article
Show Figures

Figure 1

14 pages, 1542 KiB  
Brief Report
Brief Weekly Magnetic Field Exposure Enhances Avian Oxidative Muscle Character During Embryonic Development
by Jasmine Lye Yee Yap, Kwan Yu Wu, Yee Kit Tai, Charlene Hui Hua Fong, Neha Manazir, Anisha Praiselin Paul, Olivia Yeo and Alfredo Franco-Obregón
Int. J. Mol. Sci. 2025, 26(11), 5423; https://doi.org/10.3390/ijms26115423 - 5 Jun 2025
Viewed by 842
Abstract
Maternal metabolic dysfunction adversely influences embryonic muscle oxidative capacity and mitochondrial biogenesis, increasing the child’s long-term risks of developing obesity and metabolic syndrome in later life. This pilot study explored the mechanistic basis of embryonic muscle metabolic programming, employing non-invasive magnetic field exposures. [...] Read more.
Maternal metabolic dysfunction adversely influences embryonic muscle oxidative capacity and mitochondrial biogenesis, increasing the child’s long-term risks of developing obesity and metabolic syndrome in later life. This pilot study explored the mechanistic basis of embryonic muscle metabolic programming, employing non-invasive magnetic field exposures. Brief (10 min) exposure to low-energy (1.5 milliTesla at 50 Hertz) pulsing electromagnetic fields (PEMFs) has been shown in mammals to promote oxidative muscle development, associated with enhanced muscular mitochondriogenesis, augmented lipid metabolism, and attenuated inflammatory status. In this study, quail eggs were used as a model system to investigate the potential of analogous PEMF therapy to modulate embryonic muscle oxidative capacity independently of maternal influence. Quail eggs were administered five 10-min PEMF exposures to either upward-directed or downward-directed magnetic fields over 13 days. Embryos receiving magnetic treatment exhibited increased embryo weight, size, and survival compared to non-exposed controls. Upward exposure was associated with larger embryos, redder breast musculature, and upregulated levels of PPAR-α and PGC-1α, transcriptional regulators promoting oxidative muscle development, mitochondriogenesis, and angiogenesis, whereas downward exposure augmented collagen levels and reduced angiogenesis. Exposure to upward PEMFs may hence serve as a method to promote embryonic growth and oxidative muscle development and improve embryonic mortality. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop