Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability
Abstract
1. Introduction
2. Materials and Methods
2.1. Dye Solution Preparation
2.2. Fungal Strain Collection and Culture Condition
2.3. Preparation of Fungal Biosorbents Variants
2.4. Characterization of Fungal Biosorbents
2.5. Biosorption Assay
2.6. Optimization of Biosorption at Different Physicochemical Parameters
2.6.1. Effect of Initial Dye Concentration and Contact Time
2.6.2. Effect of pH and Temperature
2.7. Evaluation of Reusability of Fungal Biosorbent
3. Results and Discussion
3.1. Effect of Immobilization
3.2. Effect of Dye Concentration and Contact Time for Living Biomass
Sorbent (Physicochemical or Biological) | Optimized Condition: Initial Dye Concentration (mg/L), Time (min), Sorbent Amount (g), pH, Temperature (°C) | Biosorption Capacity (mg/g), Decolorization (%) | Adsorption Kinetics | Reference |
---|---|---|---|---|
Poly(acrylic acid) hydrogel composite (PAA-K hydrogel) with kaolin clay conventional method | 30, 250, 1, 7, 35 | 6.25, 50% | Pseudo-second-order model, Freundlich and Langmuir Model | [46] |
Poly(acrylic acid) hydrogel composite (PAA-K hydrogel) with kaolin clay ultrasound method | 30, 375, 1, 7, 35 | 12.5, 84% | Pseudo-second-order model, Freundlich and Langmuir isotherm | |
Activated carbon(AC) derived from guava tree wood | 25, 20, 0.8, 7, - | 90, 99% | Pseudo-second-order model, Freundlich isotherm | [47] |
Trichoderma asperellum- free cells | 100, 350, 0.25 5, 30 ± 2 | 12.97, - | - | [42] |
Trichoderma asperellum alginate-immobilized forms | 100, 350, 0.25, 5, 30 ± 2 | 60.64, - | - | |
Salix alba leaves (SAL) | 50, 210 0.15, 6, 25 | 15.89, 95.2% | Pseudo-second-order model, Langmuir isotherm | [48] |
Sponge-immobilized Trametes versicolor (CB8/S2) | 400, 360, 0.5, 4.3, 22.5 | 379.4, 88% | - | Our study |
Sponge-immobilized Pleurotus ostreatus (BWPH/S2) | 200, 360, 0.5, 4.3, 22.5 | 302.5, 80% | - | Our study |
Sorbent (Physicochemical or Biological) | Optimized Condition: Initial Dye Concentration (mg/L), Time (min), Sorbent Amount (g), pH, Temperature (°C) | Biosorption Capacity (mg/g), Decolorization (%) | Adsorption Kinetics | Reference |
---|---|---|---|---|
Coriolopsis sp. (1c3) filamentous fungi-free- mycelium forms | 100, 2880, 1, 5, - | -, 58.3% | - | [49] |
Coriolopsis sp. (1c3) filamentous fungi-filamentous biofilm | 100, 2880, 1 g biomass on muslin cloth, 5, - | -, 85.1% | - | |
Biochar derived from palm kernel shell (BC-PKS) | 50–500, 1440, 0.5, - 25 | 24.45, - | Pseudo-second-order model, Langmuir isotherm | [50] |
Ceriporia lacerata (CLB)- powdered mycelial biomass | 100, 780, 0.01, - 20 | 239.25, - | Pseudo-second-order model, Koble–Corrigan model | [12] |
Adiantum capillus-veneris plant leaves | 30, 90, 0.06, 3, - | 9.05, 90.36% | Pseudo-second-order model, Freundlich isotherm | [51] |
Sponge-immobilized Trametes versicolor (CB8/S2) | 300, 360, 0.5, 4.3, 22.5 | 54, 40% | - | Our study |
Sponge-immobilized Pleurotus ostreatus (BWPH/S2) | 400, 360, 0.5, 4.3, 22.5 | 31.6, 21% | - | Our study |
3.3. Principal Component Analysis
3.4. Effect of Autoclaved-Dead Biomass
3.5. Effect of Temperature and pH
3.6. Mycelial Matrix and Dyes Sorption Characterization
3.6.1. FT-IR Spectroscopy
3.6.2. Scanning Electron Microscopy
3.7. Reusability of Immobilized Mycelial Pellets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
BG | Brilliant Green |
BWPH | Free Pleurotus ostreatus—live biomass |
BWPH-A | Free Pleurotus ostreatus—autoclaved biomass |
BWPH/S2 | Immobilized Pleurotus ostreatus live biomass on sponge |
BWPH/S2-A | Immobilized Pleurotus ostreatus on sponge—autoclaved biomass |
CB8 | Free Trametes versicolor—live biomass |
CB8-A | Free Trametes versicolor—autoclaved Biomass |
CB8/S2 | Immobilized Trametes versicolor live biomass on sponge |
CB8/S2-A | Immobilized Trametes versicolor on sponge—autoclaved biomass |
CV | Crystal Violet |
FT-IR | Fourier transform infrared spectroscopy |
PCA | Principal Component Analysis |
S2 | Support 2—sponge |
WRF | White Rot Fungi |
References
- Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Tavlieva, M.P.; Genieva, S.D.; Georgieva, V.G.; Vlaev, L.T. Kinetic Study of Brilliant Green Adsorption from Aqueous Solution onto White Rice Husk Ash. J. Colloid Interface Sci. 2013, 409, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Jegatheesan, V.; Shu, L.; Jegatheesan, L. Producing Fit-for-purpose Water and Recovering Resources from Various Sources: An Overview. Environ. Qual. Manag. 2021, 31, 9–28. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A Review on Treatment Technologies for Printing and Dyeing Wastewater (PDW). J. Water Process Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.; Kalyani, D.C.; Doong, R.A.; Govindwar, S.P. Biodegradation of Crystal Violet by Agrobacterium Radiobacter. J. Environ. Sci. 2011, 23, 1384–1393. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Decoloration Treatment of a Hazardous Triarylmethane Dye, Light Green SF (Yellowish) by Waste Material Adsorbents. J. Colloid Interface Sci. 2010, 342, 518–527. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of Hazardous Dye Crystal Violet from Wastewater by Waste Materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef]
- Saeed, A.; Sharif, M.; Iqbal, M. Application Potential of Grapefruit Peel as Dye Sorbent: Kinetics, Equilibrium and Mechanism of Crystal Violet Adsorption. J. Hazard. Mater. 2010, 179, 564–572. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; He, X.; Han, G.; Tian, Q.; Hu, W. Removal of Crystal Violet from Aqueous Solution Using Powdered Mycelial Biomass of Ceriporia Lacerata P2. J. Environ. Sci. 2011, 23, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Kamati, S.N.; Yan, J.; Fan, J. A Review on Progresses in Reactive Dye-Containing Wastewater Treatment. Water Pract. Technol. 2024, 19, 2712–2733. [Google Scholar] [CrossRef]
- Azari, A.; Nabizadeh, R.; Nasseri, S.; Mahvi, A.H.; Mesdaghinia, A.R. Comprehensive Systematic Review and Meta-Analysis of Dyes Adsorption by Carbon-Based Adsorbent Materials: Classification and Analysis of Last Decade Studies. Chemosphere 2020, 250, 126238. [Google Scholar] [CrossRef]
- Ghosh, S.; Rusyn, I.; Dmytruk, O.V.; Dmytruk, K.V.; Onyeaka, H.; Gryzenhout, M.; Gafforov, Y. Filamentous Fungi for Sustainable Remediation of Pharmaceutical Compounds, Heavy Metal and Oil Hydrocarbons. Front. Bioeng. Biotechnol. 2023, 11, 1106973. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Rahayu, F.; Mustafa, I.; Marjani; Rochman, F.; Qazi, R.A.; Zeb, K.; Ullah, N. Newly Isolated Ligninolytic Bacteria and Its Applications for Multiple Dye Degradation. Water Air Soil Pollut. 2023, 234, 359. [Google Scholar] [CrossRef]
- Alsukaibi, A.K.D. Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M.; Tesfaye, E.L. Oxidative Ligninolytic Enzymes and Their Role in Textile Dye Biodegradation: A Comprehensive Review. Water Pract. Technol. 2024, 19, 3598–3630. [Google Scholar] [CrossRef]
- Pundir, A.; Thakur, M.S.; Prakash, S.; Kumari, N.; Sharma, N.; Parameswari, E.; He, Z.; Nam, S.; Thakur, M.; Puri, S.; et al. Fungi as Versatile Biocatalytic Tool for Treatment of Textile Wastewater Effluents. Environ. Sci. Eur. 2024, 36, 185. [Google Scholar] [CrossRef]
- Azin, E.; Moghimi, H. Efficient Mycosorption of Anionic Azo Dyes by Mucor Circinelloides: Surface Functional Groups and Removal Mechanism Study. J. Environ. Chem. Eng. 2018, 6, 4114–4123. [Google Scholar] [CrossRef]
- Mihai, S.; Bondarev, A.; Necula, M. The Potential of Biogenic Materials as Sustainable and Environmentally Benign Alternatives to Conventional Adsorbents for Dyes Removal: A Review. Processes 2025, 13, 589. [Google Scholar] [CrossRef]
- Upadhyay, R.; Przystaś, W.; Dave, B. Myco-Remediation of Synthetic Dyes: A Comprehensive Review on Contaminant Alleviation Mechanism, Kinetic Study and Toxicity Analysis. Int. J. Environ. Sci. Technol. 2025, 22, 521–538. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Agarwala, R.; Mulky, L. Adsorption of Dyes from Wastewater: A Comprehensive Review. ChemBioEng Rev. 2023, 10, 326–335. [Google Scholar] [CrossRef]
- Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective Removal of Anionic Textile Dyes Using Adsorbent Synthesized from Coffee Waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef]
- Maurya, N.S.; Mittal, A.K.; Cornel, P.; Rother, E. Biosorption of Dyes Using Dead Macro Fungi: Effect of Dye Structure, Ionic Strength and pH. Bioresour. Technol. 2006, 97, 512–521. [Google Scholar] [CrossRef]
- Pandey, P.; Singh, R.P.; Singh, K.N.; Manisankar, P. Evaluation of the Individuality of White Rot Macro Fungus for the Decolorization of Synthetic Dye. Environ. Sci. Pollut. Res. 2013, 20, 238–249. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A. Biosorption of Reactive Dye by Loofa Sponge-Immobilized Fungal Biomass of Phanerochaete Chrysosporium. Process Biochem. 2007, 42, 1160–1164. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Parra-Saldivar, R.; Hu, H.; Wang, W.; Zhang, X.; Iqbal, H.M.N. Immobilized Ligninolytic Enzymes: An Innovative and Environmental Responsive Technology to Tackle Dye-Based Industrial Pollutants—A Review. Sci. Total Environ. 2017, 576, 646–659. [Google Scholar] [CrossRef]
- Upadhyay, R.; Khan, I.U.-H.; Przystaś, W. An Evaluation of Decolorization Mechanism of Synthetic Dyes Belonging to the Azo, Anthraquinone and Triphenylmethane Group, as a Sustainable Approach, by Immobilized CB8 Strain (Trametes versicolor). Desalination Water Treat. 2023, 284, 268–277. [Google Scholar] [CrossRef]
- Iqbal, M.; Edyvean, R.G.J. Biosorption of Lead, Copper and Zinc Ions on Loofa Sponge Immobilized Biomass of Phanerochaete Chrysosporium. Miner. Eng. 2004, 17, 217–223. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Edyvean, R.G.J.; O’Sullivan, B.; Styring, P. Production of Fungal Biomass Immobilized Loofa Sponge (FBILS)-Discs for the Removal of Heavy Metal Ions and Chlorinated Compounds from Aqueous Solution. Biotechnol. Lett. 2005, 27, 1319–1323. [Google Scholar] [CrossRef]
- Jureczko, M.; Przystaś, W.; Urbaniak, M.; Banach-Wiśniewska, A.; Stępień, Ł. Tolerance to cytostatic drugs bleomycin and vincristine by White Rot Fungi. Arch. Environ. Prot. 2020, 46, 99–104. [Google Scholar] [CrossRef]
- Jureczko, M.; Przystaś, W. Removal of Two Cytostatic Drugs: Bleomycin and Vincristine by White-Rot Fungi—A Sorption Study. J. Environ. Health Sci. Eng. 2021, 19, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; Cema, G.; Ziembińska-Buczyńska, A. Significance of pH Control in Anammox Process Performance at Low Temperature. Chemosphere 2017, 185, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; Cema, G.; Ziembińska-Buczyńska, A. Influence of Temperature and pH on the Anammox Process: A Review and Meta-Analysis. Chemosphere 2017, 182, 203–214. [Google Scholar] [CrossRef]
- Legorreta-Castañeda, A.; Lucho-Constantino, C.; Beltrán-Hernández, R.; Coronel-Olivares, C.; Vázquez-Rodríguez, G. Biosorption of Water Pollutants by Fungal Pellets. Water 2020, 12, 1155. [Google Scholar] [CrossRef]
- Qiang, X.; Guo, X.; Quan, Q.; Su, H.; Huang, D. Improving the Adsorption Performance of Loofah Sponge towards Methylene Blue by Coating Ca2+ Crosslinked Sodium Alginate Layers on Its Fiber Surface. Coatings 2020, 10, 814. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Cicek, S.; Gungor, A.A. Removing Trypan Blue Dye Using Nano-Zn Modified Luffa Sponge. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 2–8. [Google Scholar] [CrossRef]
- Nouri, H.; Azin, E.; Kamyabi, A.; Moghimi, H. Biosorption Performance and Cell Surface Properties of a Fungal-Based Sorbent in Azo Dye Removal Coupled with Textile Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 2545–2558. [Google Scholar] [CrossRef]
- Chew, S.Y.; Ting, A.S.Y. Common Filamentous Trichoderma Asperellum for Effective Removal of Triphenylmethane Dyes. Desalination Water Treat. 2016, 57, 13534–13539. [Google Scholar] [CrossRef]
- Terangpi, P.; Chakraborty, S. Adsorption Kinetics and Equilibrium Studies for Removal of Acid Azo Dyes by Aniline Formaldehyde Condensate. Appl. Water Sci. 2017, 7, 3661–3671. [Google Scholar] [CrossRef]
- Drumm, F.C.; Franco, D.S.P.; Georgin, J.; Grassi, P.; Jahn, S.L.; Dotto, G.L. Macro-Fungal (Agaricus Bisporus) Wastes as an Adsorbent in the Removal of the Acid Red 97 and Crystal Violet Dyes from Ideal Colored Effluents. Environ. Sci. Pollut. Res. 2021, 28, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Moturi, B.; Singara Charya, M. Decolourisation of Crystal Violet and Malachite Green By Fungi. Sci. World J. 2010, 4. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Patil, A.P.; Patil, R.; Naik, J.B.; Gogate, P.R.; Sonawane, S.H. Removal of Brilliant Green from Wastewater Using Conventional and Ultrasonically Prepared Poly(Acrylic Acid) Hydrogel Loaded with Kaolin Clay: A Comparative Study. Ultrason. Sonochem. 2013, 20, 914–923. [Google Scholar] [CrossRef]
- Mansour, R.A.; El Shahawy, A.; Attia, A.; Beheary, M.S. Brilliant Green Dye Biosorption Using Activated Carbon Derived from Guava Tree Wood. Int. J. Chem. Eng. 2020, 2020, 8053828. [Google Scholar] [CrossRef]
- Fiaz, R.; Hafeez, M.; Mahmood, R. Removal of Brilliant Green (BG) from Aqueous Solution by Using Low Cost Biomass Salix Alba Leaves (SAL): Thermodynamic and Kinetic Studies. J. Water Reuse Desalination 2020, 10, 70–81. [Google Scholar] [CrossRef]
- Munck, C.; Thierry, E.; Gräßle, S.; Chen, S.H.; Ting, A.S.Y. Biofilm Formation of Filamentous Fungi Coriolopsis sp. on Simple Muslin Cloth to Enhance Removal of Triphenylmethane Dyes. J. Environ. Manag. 2018, 214, 261–266. [Google Scholar] [CrossRef]
- Kyi, P.P.; Quansah, J.O.; Lee, C.-G.; Moon, J.-K.; Park, S.-J. The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar. Appl. Sci. 2020, 10, 2251. [Google Scholar] [CrossRef]
- Gul, S.; Gul, S.; Gul, H.; Khitab, F.; Khattak, R.; Khan, M.; Ullah, R.; Ullah, R.; Wasil, Z.; Krauklis, A.; et al. Dried Leaves Powder of Adiantum Capillus-Veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. Separations 2023, 10, 165. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological Methods for Textile Dye Removal from Wastewater: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1836–1876. [Google Scholar] [CrossRef]
- Ejaz, U.; Zehra, U.E.; Javed, H.; Sohail, M. Removal of Triphenylmethane Azo Dye by Immobilized Fungus: A Comparative Study with Physical Adsorption Processes. Arab. J. Sci. Eng. 2025, 1–11. [Google Scholar] [CrossRef]
- Sintakindi, A.; Ankamwar, B. Fungal Biosorption as an Alternative for the Treatment of Dyes in Waste Waters: A Review. Environ. Technol. Rev. 2021, 10, 26–43. [Google Scholar] [CrossRef]
- Kaushik, P.; Malik, A. Alkali, Thermo and Halo Tolerant Fungal Isolate for the Removal of Textile Dyes. Colloids Surf. B Biointerfaces 2010, 81, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Grassi, P.; Reis, C.; Drumm, F.C.; Georgin, J.; Tonato, D.; Escudero, L.B.; Kuhn, R.; Jahn, S.L.; Dotto, G.L. Biosorption of Crystal Violet Dye Using Inactive Biomass of the Fungus Diaporthe Schini. Water Sci. Technol. 2019, 79, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Sukla Baidya, K.; Kumar, U. Adsorption of Brilliant Green Dye from Aqueous Solution onto Chemically Modified Areca Nut Husk. S. Afr. J. Chem. Eng. 2021, 35, 33–43. [Google Scholar] [CrossRef]
- Wu, K.; Pan, X.; Zhang, J.; Zhang, X.; Salah zene, A.; Tian, Y. Biosorption of Congo Red from Aqueous Solutions Based on Self-Immobilized Mycelial Pellets: Kinetics, Isotherms, and Thermodynamic Studies. ACS Omega 2020, 5, 24601–24612. [Google Scholar] [CrossRef]
- Du, L.-N.; Wang, B.; Li, G.; Wang, S.; Crowley, D.E.; Zhao, Y.-H. Biosorption of the Metal-Complex Dye Acid Black 172 by Live and Heat-Treated Biomass of Pseudomonas sp. Strain DY1: Kinetics and Sorption Mechanisms. J. Hazard. Mater. 2012, 205–206, 47–54. [Google Scholar] [CrossRef]
- Bairagi, H.; Khan, M.M.R.; Ray, L.; Guha, A.K. Adsorption profile of lead on Aspergillus versicolor: A mechanistic probing. J. Hazard. Mater. 2011, 186, 756–764. [Google Scholar] [CrossRef]
- Pecková, V.; Legerská, B.; Chmelová, D.; Horník, M.; Ondrejovič, M. Comparison of Efficiency for Monoazo Dye Removal by Different Species of White-Rot Fungi. Int. J. Environ. Sci. Technol. 2021, 18, 21–32. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption Isotherms and Kinetics Studies of Malachite Green on Chitin Hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef]
- Dolphen, R.; Thiravetyan, P. Adsorption of Melanoidins by Chitin Nanofibers. Chem. Eng. J. 2011, 166, 890–895. [Google Scholar] [CrossRef]
- Tepe, O. Adsorption of remazol brillant green 6B (RBG 6B) on chitin: Process optimization using response surface methodology. Glob. NEST J. 2018, 20, 257–268. [Google Scholar] [CrossRef]
- Ayangbenro, A.; Babalola, O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
Experiment Number | Coded Values | Natural Values | |
---|---|---|---|
Temp. (°C) | pH | ||
1 | 0/0 | 35 | 6 |
2 | −α/0 | 15 | 6 |
3 | −1/−1 | 20.85 | 3.2 |
4 | 0/0 | 35 | 6 |
5 | 1/1 | 49.15 | 8.8 |
6 | 0/0 | 35 | 6 |
7 | 0/α | 35 | 10 |
8 | 0/0 | 35 | 6 |
9 | 0/−α | 35 | 2 |
10 | 1/−1 | 49.15 | 3.2 |
11 | α/0 | 55 | 6 |
12 | −1/1 | 20.85 | 8.8 |
Biosorbent | Biomass Type | Brilliant Green Sorption (%) | Crystal Violet Sorption (%) |
---|---|---|---|
Trametes versicolor (CB8) | Live | 14.2 | 15.6 |
Immobilized Trametes versicolor (CB8/S2) | Live | 90.3 **** | 43.9 ** |
Immobilized Trametes versicolor (CB8/S2-A) | Autoclaved dead | 48.4 *** | 22.8 * |
Pleurotus ostreatus (BWPH) | Live | 23.9 | 12.1 |
Immobilized Pleurotus ostreatus (BWPH/S2) | Live | 81.7 * | 39.3 * |
Immobilized Pleurotus ostreatus (BWPH/S2-A) | Autoclaved dead | 30.3 - | 18.9 - |
Sponge (S2) | No fungal biomass | 49.9 *** | 6.5 - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, R.; Przystaś, W.; Turczyn, R.; Jureczko, M. Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability. Water 2025, 17, 2600. https://doi.org/10.3390/w17172600
Upadhyay R, Przystaś W, Turczyn R, Jureczko M. Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability. Water. 2025; 17(17):2600. https://doi.org/10.3390/w17172600
Chicago/Turabian StyleUpadhyay, Ruchi, Wioletta Przystaś, Roman Turczyn, and Marcelina Jureczko. 2025. "Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability" Water 17, no. 17: 2600. https://doi.org/10.3390/w17172600
APA StyleUpadhyay, R., Przystaś, W., Turczyn, R., & Jureczko, M. (2025). Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability. Water, 17(17), 2600. https://doi.org/10.3390/w17172600