Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin
Abstract
1. Introduction
2. Biological Soil Amendments of Animal Origin
2.1. Physical Heat Treatment of Animal Manure
2.2. Chemical Treatment of Animal Manure
2.3. Biological Heat Treatment of Animal Manure
3. Pathogen Survival in BSAAOs
4. Adjacent Land Use and Risks of Windborne Transmission
Case Studies of Windborne Transmission
5. Soil Amendment Remediation
6. Fungal Biocontrol
6.1. White-Rot Fungi
6.2. Ligninolytic Activity of White-Rot Fungi
6.3. Inhibitory Effects of White-Rot Fungi
7. Limitations of Using White-Rot Fungi for Bioremediation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bintsis, T. Foodborne pathogens. AIMS Microbol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Ramos, T.M.; Jay-Russell, M.T.; Millner, P.D.; Shade, J.; Misiewicz, T.; Sorge, U.S.; Pires, A.F. Assessment of biological soil amendments of animal origin use, research needs, and extension opportunities in organic production. Front. Sustain. Food Syst. 2019, 3, 00073. [Google Scholar] [CrossRef]
- Batz, M.B.; Hoffmann, S.; Morris, J.G., Jr. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012, 75, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S.; et al. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef]
- Litt, K.P.; Kelly, A.; Omar, A.; Johnson, G.; Vinyard, T.B.; Kniel, K.; Sharma, M. Temporal and agricultural factors influence Escherichia coli survival in soil and transfer to cucumbers. Appl. Environ. Microbiol. 2021, 87, e02418-20. [Google Scholar] [CrossRef]
- United States Department of Agriculture. National Organic Program. Available online: https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program (accessed on 28 May 2022).
- California Leafy Greens Handler Marketing Agreement. Commodity Specific Food Safety Guidelines for the Production and Harvest of Lettuce and Leafy Greens. Available online: https://lgma.ca.gov/food-safety-program (accessed on 12 April 2022).
- United States Food and Drug Administration. Fact Sheet Biological Soil Amendments of Animal Origin. Produce Safety Rule (21 CFR 112). Available online: https://www.fda.gov/files/food/published/Fact-Sheet--Biological-Soil-Amendments-of-Animal-Origin_Download.pdf (accessed on 10 August 2024).
- Sharma, M.; Reynnells, R. Importance of soil amendments: Survival of bacterial pathogens in manure and compost used as organic fertilizers. Microbiol. Spectr. 2016, 4, 1–13. [Google Scholar] [CrossRef]
- Omar, A.; Sharma, M.; Kniel, K. Advances in understanding sources of pathogenic contamination of fresh produce: Soil and soil amendments. In Burleigh Dodds Series in Agricultural Science, 1st ed.; Chapter 11; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Sharma, M.; Millner, P.D.; Hashem, F.; Vinyard, B.T.; East, C.L.; Handy, E.T.; White, K.; Stonebraker, R.; Cotton, C.P. Survival of Escherichia coli in manure-amended soils is affected by spatiotemporal, agricultural and weather factors in the Mid-Atlantic United States. Appl. Environ. Microbiol. 2019, 85, e02392-18. [Google Scholar] [CrossRef]
- Bicudo, J.R.; Goyal, S.M. Pathogens and manure management systems: A Review. Environ. Technol. 2003, 24, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Martens, W.; Böhm, R. Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresour. Technol. 2009, 100, 5374–5378. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.K.; Bradshaw, R.; Nyarko, E.; Millner, P.D.; Neher, D.; Weicht, T.; Bergholz, T.M.; Sharma, M. Survival and growth of wild-type and rpoS- deficient Salmonella Newport strains in soil extracts prepared with heat-treated poultry pellets. J. Food Prot. 2019, 82, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Limoges, M.; Neher, D.A.; Weicht, T.R.; Millner, P.D.; Sharma, M.; Donnelly, C. Differential survival of generic E. coli and Listeria spp. in northeastern U.S. soils amended with dairy manure compost, poultry litter compost, and heat-treated poultry pellets and fate in raw edible radish crops. J. Food Prot. 2022, 85, 1708–1715. [Google Scholar] [CrossRef]
- Watkins, B.D.; Hengemuehle, S.M.; Person, H.L.; Yokoyama, M.T.; Masten, S.J. Ozonation of swine manure wastes to control odors and reduce the concentrations of pathogens and toxic fermentation metabolites. Ozone Sci. Eng. 1997, 19, 425–437. [Google Scholar] [CrossRef]
- Viancelli, A.; Kunz, A.; Fongaro, G.; Kich, J.D.; Barardi, C.R.M.; Suzin, L. Pathogen inactivation and the chemical removal of phosphorus from swine wastewater. Water Air Soil. Pollut. 2015, 226, 226–263. [Google Scholar] [CrossRef]
- Decrey, L.; Kazama, S.; Kohn, T. Ammonia as an in situ sanitizer: Influence of virus genome type on inactivation. Appl. Environ. Microbiol. 2016, 82, 1. [Google Scholar] [CrossRef] [PubMed]
- Pourcher, A.M.; Françoise, P.B.; Virginie, F.; Agnieszka, G.; Vasilica, S.; Gérard, M. Survival of fecal indicators and enteroviruses in soil after land- spreading of municipal sewage sludge. Appl. Soil Ecol. 2007, 35, 473–479. [Google Scholar] [CrossRef]
- Morgan, J.A.; Hoet, A.E.; Wittum, T.E.; Monahan, C.M.; Martin, J.F. Reduction of pathogen indicator organisms in dairy wastewater using an ecological treatment system. J. Environ. Qual. 2008, 37, 272–279. [Google Scholar] [CrossRef]
- Taylor, A.; Flatt, A.; Beutel, M.; Wolff, M.; Brownson, K.; Stamets, P. Removal of Escherichia coli from synthetic stormwater using microfiltration. Ecol. Eng. 2015, 78, 79–86. [Google Scholar] [CrossRef]
- FEECO International. From Raw Manure to Dry Granules; Granulating Manure. Available online: https://feeco.com/raw-manure-dry-granules (accessed on 13 January 2021).
- Liu, Z.; Wang, X. Manure treatment and utilization in production systems. In Animal Agriculture; Chapter 26; Elsevier: Amsterdam, The Netherlands, 2020; pp. 455–467. [Google Scholar] [CrossRef]
- Shah, M.K.; Bradshaw, R.; Nyarko, E.; Handy, E.T.; East, C.; Millner, P.D.; Bergholz, T.M.; Sharma, M. Salmonella enterica in soils amended with heat-treated poultry pellets survived longer than bacteria in unamended soils and more readily transferred to and persisted on spinach. Appl. Environ. Microbiol. 2019, 85, e00334-19. [Google Scholar] [CrossRef]
- Cox, N.A.; Burdick, D.; Bailey, J.S.; Thomson, J.E. Effect of the steam conditioning and pelleting process on the microbiology and quality of commercial-type poultry feeds. Poult. Sci. J. 1986, 65, 704–709. [Google Scholar] [CrossRef]
- Spiehs, M.J.; Goyal, S.M. Best management practices for pathogen control in manure management systems. In Horticulture Information Leaflet; University of Minnesota Extension: St. Paul, MN, USA, 2007; Available online: https://extension.umn.edu/manure-management/pathogen-control-manure (accessed on 1 May 2025).
- Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Survival of murine norovirus and hepatitis A virus in different types of manure and biosolids. Foodborne Pathog. Dis. 2010, 7, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.H.; Turner, C. Manure Management: Treatment Strategies for Sustainable Agriculture, 2nd ed.; Silsoe Research Institute: Silsoe, UK, 2003; ISBN 0953128261. [Google Scholar]
- Symbiona. Aerobic Biological Treatment; For Removal of Dissolved Organic Substances. Available online: https://www.symbiona.com/p/aerobic-biological-treatment/ (accessed on 18 June 2024).
- Heinonen-Tanski, H.; Petri, L.; Niskanen, E.M.; Mielonen, M.M.; Rasanen, H.; Valta, T.; Rinne, K.; Joki-Tokola, E. Aeration improves the hygiene of cattle slurry and the quality of grass forage and silage. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1998, 48, 212–221. [Google Scholar] [CrossRef]
- Oeschner, H.; Doll, L. Inactivation of Pathogens by Using the Aerobic Thermophilic Stabilization Process. In Proceedings of the 8th International Symposium on Animal, Agricultural, and Food Processing Wastes, Des Moines, IA, USA, 9–11 October 2000; pp. 522–531. [Google Scholar]
- Větrovský, T.; Baldrian, P.; Gabriel, J. Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-Glucosidase. Appl. Biochem. Biotechnol. 2012, 169, 100–109. [Google Scholar] [CrossRef]
- Tewolde, H.; McLaughlin, M.R.; Way, T.R.; Jenkins, J.N. Optimum poultry litter rates for maximum profit versus yield in cotton production. Crop Sci. 2016, 56, 3307–3317. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, X. Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A review. Agriculture 2014, 4, 1–29. [Google Scholar] [CrossRef]
- Rees, H.; Chow, T.; Zebarth, B.; Xing, Z.; Toner, P.; Lavoie, J.; Daigle, J.-L. Impact of supplemental poultry manure application on potato yield and soil properties on a loam soil in north-western New Brunswick. Can. J. Soil Sci. 2014, 94, 49–65. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Doyle, M.P.; Erickson, M.C.; Jiang, X.; Millner, P.; Sharma, M. Composting to inactivate foodborne pathogens for crop soil application: A review. J. Food Prot. 2018, 81, 1821–1837. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.Z.; Gabirel, E.; Gutierrez, A.; East, C.; Kniel, K.; Jay-Russel, M.; Sharma, M. Organic fertilizers support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to romaine lettuce. In Proceedings of the Annual Meeting of International Association of Food Protection (IAFP), Long Beach, CA, USA, 13–17 July 2024. [Google Scholar]
- Nguyen, C.; Aminabadi, P.; Xiong, R.Z.; Magallon, G.; Zwieniecka, A.; Castaneda, M.; Diaz-Ramirez, J.; Sharma, M.; Jay-Russell, M. Microbiological risk assessment of biological soil amendments of animal origin and corn sheep liquor on the attenuation of Escherichia coli in organic Romaine lettuce production of California’s low dessert region: 2022–2023 season. In Proceedings of the Annual Meeting of International Association of Food Protection (IAFP), Long Beach, CA, USA, 13–17 July 2024. [Google Scholar]
- Kharel, K.; Bardsley, C.A.; Appolon, C.B.; Dunn, L.L.; Kumar, G.D.; Prabha, K.; Sharma, M.; Danyluk, M.D.; Schneider, K.R. The effect of heat- treated poultry pellets and composted poultry litter on E. coli survival in south- eastern US soils: Florida and Georgia. J. Food Prot. 2025, 88, 100439. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, M.L.; Walters, L.D.; Avery, S.M.; Munro, F.; Moore, A. Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures. Appl. Environ. Microbiol. 2005, 71, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Avery, L.M.; Hill, P.; Killham, K.; Jones, D.L. Escherichia coli O157 survival following the surface and sub-surface application of human pathogen contaminated organic waste to soil. Soil Biol. Biochem. 2004, 36, 2101–2103. [Google Scholar] [CrossRef]
- Franz, E.; Semenov, A.V.; Termorshuizen, A.J.; De Vos, O.J.; Bokhorst, J.G.; Van Bruggen, A.H.C. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 2008, 10, 313–327. [Google Scholar] [CrossRef]
- Teichmann, J.; Litt, P.K.; Sharma, M.; Nyarko, E.; Kniel, K.E. Influence of poultry litter amendment type and irrigation events on survival and persistence of Salmonella Newport. J. Food Prot. 2020, 83, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Mokhtari, A.; Chen, Y.; Oryang, D.; Ingram, D.T.; Sharma, M.; Millner, P.D.; Van Doren, J.M. A predictive model for survival of Escherichia coli O157:H7 and generic E. coli in soil amended with untreated animal manure. Risk Anal. 2020, 40, 1367–1382. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.L.; Sharma, V.; Chapin, T.K.; Friedrich, L.M.; Larson, C.C.; Rodrigues, C.; Jay-Russell, M.; Schneider, K.R.; Danyluk, M.D. The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States. PLoS ONE 2022, 17, e0268231. [Google Scholar] [CrossRef]
- Çekiç, S.K.; De, J.; Jubair, M.; Schneider, K.R. Persistence of indigenous Escherichia coli in raw bovine manure-amended soil. J. Food Prot. 2017, 80, 1562–1573. [Google Scholar] [CrossRef]
- Acheamfour, C.L.; Parveen, S.; Hashem, F.; Sharma, M.; Gerdes, M.E.; May, E.B.; Rogers, K.; Haymaker, J.; Duncan, R.; Foust, D.; et al. Levels of Salmonella enterica and Listeria monocytogenes in alternative irrigation water vary based on water source on the eastern shore of Maryland. Microbiol. Spectr. 2021, 9, e00669-21. [Google Scholar] [CrossRef]
- Neher, D.A.; Cutler, A.J.; Weicht, T.R.; Sharma, M.; Millner, P.D. Composts of poultry litter or dairy manure differentially affect survival of enteric bacteria in fields with spinach. J. Appl. Microbiol. 2019, 126, 1910–1922. [Google Scholar] [CrossRef]
- United States Department of Agriculture Economic Research Service. Land Use and Land Cover Estimates for the United States. Available online: https://www.ers.usda.gov/about-ers/partnerships/strengthening-statistics-through-the-icars/land-use-and-land-cover-estimates-for-the-united-states (accessed on 18 December 2022).
- Oni, R.A.; Sharma, M.; Buchanan, R.L. Survival of Salmonella enterica in dried turkey manure and persistence on spinach leaves. J. Food Prot. 2015, 78, 1791–1799. [Google Scholar] [CrossRef]
- Berry, E.D.; Wells, J.E.; Bono, J.L.; Woodbury, B.L.; Kalchayanand, N.; Norman, K.N.; Suslow, T.V.; López-velasco, G.; Millner, P.D.; Schaffner, D.W. Effect of proximity to a cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens and evaluation of the potential for airborne transmission. Appl. Environ. Microbiol. 2015, 81, 1101–1110. [Google Scholar] [CrossRef]
- Nguyen, X.D.; Zhao, Y.; Evans, J.D.; Lin, J.; Purswell, J.L. Survival of Escherichia coli in airborne and settled poultry litter particles. Animals 2022, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Outbreak of, E. coli Infections Linked to Romaine Lettuce. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/ecoli/2018/o157h7-11-18/index.html (accessed on 14 April 2022).
- Food and Drug Administrations. Memorandum to the File on the Environmental Assessment; Yuma 2018 E. coli O157:H7 Outbreak Associated with Romaine Lettuce. Available online: https://www.fda.gov/media/120690/download (accessed on 15 April 2022).
- Centers for Disease Control and Prevention. Outbreak of Salmonella Newport Infections Linked to Onions. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/salmonella/newport-07-20/index.html (accessed on 18 April 2022).
- Food and Drug Administration. Factors Potentially Contributing to the Contamination of Red Onions Implicated in the Summer 2020 Outbreak of Salmonella Newport. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-red-onions-implicated-summer-2020-outbreak-salmonella (accessed on 16 April 2022).
- Food and Drug Administration. Investigation Report: Factors Potentially Contributing to the Contamination of Peaches Implicated in the Summer 2020 Outbreak of Salmonella enteritidis. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-peaches-implicated-summer-2020-outbreak-salmonella (accessed on 23 August 2024).
- Palansooriya, K.; Shaheen, S.; Chen, S.; Tsang, D.; Hashimoto, Y.; Hou, D.; Bolan, N.; Rinklebe, J.; Ok, Y. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Wu, H.; Lai, C.; Zeng, G.; Liang, J.; Chen, J.; Xu, J.; Dai, J.; Li, X.; Liu, J.; Chen, M.; et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review. Crit. Rev. Biotechnol. 2016, 37, 754–764. [Google Scholar] [CrossRef]
- Perez-Mercado, L.F.; Lalander, C.; Joel, A.; Ottoson, J.; Dalahmeh, S.; Vinnerås, B. Biochar filters as an on-farm treatment to reduce pathogens when irrigating with wastewater-polluted sources. J. Environ. Manag. 2019, 248, 109295. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for wastewater treatment—Conversion technologies and applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Dorbert, A. Quantifying Fungal Growth in Nutrient Limited Systems for Bioremediation Purposes; University of Delaware: Newark, DE, USA, 2022; Available online: https://udspace.udel.edu/handle/19716/31082 (accessed on 1 January 2025).
- Field, J.A.; de Jong, E.; Costa, G.F.; de Bont, J.A.M. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 1992, 58, 2219–2226. [Google Scholar] [CrossRef]
- Lamar, R.T.; Dietrich, D.M. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl. Environ. Microbiol. 1990, 56, 3093–3100. [Google Scholar] [CrossRef]
- Jelic, A.; Cruz-Morató, C.; Marco-Urre, E.; Sarrà, M.; Perez, S.; Vincent, T.; Petrović, M.; Barcelo, D. Degradation of carbamazepine by Trametes versicolor in an air-pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 2012, 46, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Shreve, M.J.; Brockman, A.; Harlleb, M.; Prebihalo, S.; Dorman, F.L.; Brennan, R.A. The white-rot fungus reduces the estrogenic activity of a mixture of emerging contaminants in wastewater treatment plant effluent. Int. Biodeterior. Biodegrad. 2016, 109, 132–140. [Google Scholar] [CrossRef]
- Chan-Cupul, W.; Heredia-Abarca, G.; Rodriguez-Vázquez, R. Atrazine degradation by fungal co-culture enzymes extracts under different soil conditions. J. Environ. Sci. Health 2016, 51(Part B), 298–308. [Google Scholar] [CrossRef] [PubMed]
- Chirnside, A.E.M. Biodegradation of a food-processing wastewater utilizing Phanerochaete chrysosporium. In The Tenth International In Situ and On-Site Bioremediation Symposium; Paper H-04; Battelle Memorial Institute: Columbus, OH, USA, 2009; ISBN 978-0-9819730-1-2. [Google Scholar]
- Rodriguez-Couto, S. Industrial and environmental applications of white-rot fungi. Mycosphere 2017, 8, 456–466. [Google Scholar] [CrossRef]
- Pointing, S.B. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar] [CrossRef]
- Singh, H. Mycoremediation: Fungal Bioremediation; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 9780471755012. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Ultrastructural features of wood decay. In Wood Microbiology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 245–269. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Parmar, S.; Shrivastav, S.; Bhattacharya, S. Insights on broad spectrum applications and pertinence of biofiltration in various fields. In An Innovative Role of Biofiltration in Wastewater Treatment Plants (WWTPs), Chapter 10, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Couto, R.S.; Toca-Herrera, J.L. Laccase production at reactor scale by filamentous fungi. Biotechnol. Adv. 2007, 25, 558–569. [Google Scholar] [CrossRef]
- Zhang, X.; Song, H.; Chen, Y.; Zhung, M.; Liu, W. Microbially mediated cleavage of Reactive Black 5 in attached growth bioreactors with immobilized Shewanella indica strain on different carriers. Int. Biodeterior. Biodegrad. 2021, 157, 105142. [Google Scholar] [CrossRef]
- Chirnside, A.E.M.; Harris, J.P.; Gregory, N. Degradation of harmful bacteria in simulated wastewater by the white rot fungus Pleurotus ostreatus. In Proceedings of the World Environmental and Water Resources Congress, Cincinnati, OH, USA, 19–23 May 2013; Available online: http://udspace.udel.edu/handle/19716/11573 (accessed on 1 January 2025).
- Umstead, R.B. Development of Fungal Bioreactors for Water Related Treatment and Disinfection Applications. Master’s Thesis, Virginia Polytechnical Institute and State University, Blacksburg, VA, USA, 2016. [Google Scholar] [CrossRef]
- Gao, D.; Du, L.; Yang, J.; Wu, W.; Liang, H. A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 2001, 30, 70–77. [Google Scholar] [CrossRef]
- Linko, S. Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10-L bioreactor. Enzyme Microb. Technol. 1988, 10, 410–417. [Google Scholar] [CrossRef]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef]
- Wu, F.; Ozaki, H.; Terashima, Y.; Imada, T.; Ohkouchi, Y. Activities of ligninolytic enzymes of the white rot fungus, Phanerochaete chrysosporium and its recalcitrant substance degradability. Water Sci. Technol. 1996, 34, 69–78. [Google Scholar] [CrossRef]
- Barron, G.L.; Thorn, R.G. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 1987, 65, 774–778. [Google Scholar] [CrossRef]
- Carroll, C.G.; Wicklow, T.D. The Fungal Community: Its Organization and Role in the Ecosystem; The CRC Press: Boca Raton, FL, USA, 1992; pp. 535–539. [Google Scholar]
- Reddy, C.A.; Mathew, Z. Bioremediation with white rot fungi. In Fungi in Bioremediation; Gadd, G.M., Ed.; British Mycological Society Symposium Series 23; Cambridge University Press: Cambridge, UK, 2001; pp. 52–78. [Google Scholar]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into lignin degradation and its potential industrial applications. Adv. Appl. Microbiol. 2013, 82, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Landi, N.; Raggucci, S.; Russo, R.; Valletta, M.; Pizzo, E.; Ferreras, M.J.; Di Maro, A. The ribotoxin-like protein Ostreatin from Pleurotus ostreatus fruiting bodies: Confirmation of a novel ribonuclease family expressed in basidiomycetes. Int. J. Biol. Macromol. 2020, 161, 1329–1336, 0141-8130. [Google Scholar] [CrossRef]
- Ragucci, S.; Landi, N.; Citores, L.; Iglesias, R.; Russo, R.; Clemente, A.; Saviano, M.; Pedone, V.P.; Chambery, A.; Ferreras, M.J.; et al. The biological action and structural characterization of eryngitin 3 and 4, ribotoxin-like proteins from Pleurotus eryngii fruiting bodies. Int. J. Mol. Sci. 2023, 24, 14435. [Google Scholar] [CrossRef] [PubMed]
- Barron, G.L. Predatory fungi, wood decay, and the carbon cycle. Biodiversity 2003, 4, 3–9. [Google Scholar] [CrossRef]
- Mikiashvili, N.; Wasser, S.P.; Nevo, E.; Elisashvili, V. Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J. Microbiol. Biotechnol. 2006, 22, 999–1002. [Google Scholar] [CrossRef]
- Knop, D.; Yarden, O.; Hadar, Y. The ligninolytic peroxidases in the genus Pleurotus: Divergence in activities, expression, and potential applications. Appl. Microbiol. Biotechnol. 2015, 99, 1025–1038. [Google Scholar] [CrossRef]
- Ergun, S.O.; Urek, R.O. Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann. Agrar. Sci. 2017, 15, 273–277. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Yu, D.; Zhu, P.; Zhao, G.; Liu, C.; Zhao, H. Ligninolytic characteristics of Pleurotus ostreatus cultivated in cotton stalk media. Front. Microbiol. 2022, 13, 1035040. [Google Scholar] [CrossRef]
- Hewage, I.S.R.; Golovko, O.; Hultberg, M. Spawn-based pellets of Pleurotus ostreatus as an applied approach for the production of laccase in different types of water. J. Microbiol. Methods 2025, 229, 107092. [Google Scholar] [CrossRef]
- Keyser, P.; Kirk, T.K.; Zeikus, J.G. Ligninolytic enzyme system of Phanaerochaete chrysosporium: Synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 1978, 135, 790–797. [Google Scholar] [CrossRef]
- Grgic, I.; Perdih, A. Stimulation of ligninolytic enzyme production in Phanerochaete chrysosporium by polyoxyalkanes. J. Appl. Microbiol. 2002, 94, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, X.; Cook, S.; Begonia, M.; Lee, K.S.; Hwang, H.M. Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J. Microbiol. Biotechnol. 2008, 24, 2205–2212. [Google Scholar] [CrossRef]
- Gassara, F.; Brar, S.K.; Tyagi, R.D.; Verma, M.; Surampalli, R.Y. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 2010, 49, 388–394. [Google Scholar] [CrossRef]
- Baik, J.; Purkayastha, A.; Park, K.H.; Kang, T.J. Functional Characterization of Melanin Decolorizing Extracellular Peroxidase of Bjerkandera adusta. J. Fungi 2021, 7, 762. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Wang, J.; Wang, Z.; Zhan, H.; Yu, X.; Zheng, Y.; Xiao, T.; Zhou, L.-W. Biodegradation of Benzo[a]pyrene by a white-rot fungus Phlebia acerina: Surfactant-enhanced degradation and possible genes involved. J. Fungi 2023, 9, 978. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Madamwar, D. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl. Biochem. Biotechnol. 2002, 102, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Palani, S. Determination of the Efficacy of Fungal Bioreactors to Remove E. coli from Aqueous Dairy Manure (Order No. 28085953). Available online: https://udspace.udel.edu/items/830256be-e1ba-456b-91fb-81a76271fa6b (accessed on 7 December 2025).
- Ding, C.; Wang, X.; Li, M. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Appl. Microbiol. Biotechnol. 2019, 103, 5641–5652. [Google Scholar] [CrossRef]
- Bautista-Zamudio, P.A.; Flórez-Restrepo, M.A.; López-Legarda, X.; Monroy-Giraldo, L.C.; Segura-Sánchez, F. Biodegradation of plastics by white-rot fungi: A review. Sci. Total Environ. 2023, 901, 165950. [Google Scholar] [CrossRef]
- Torres-Farradá, G.; Thijs, S.; Rineau, F.; Guerra, G.; Vangronsveld, J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J. Fungi 2024, 10, 167. [Google Scholar] [CrossRef]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M.N. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Mohanty, A.K.; Misra, M. Microplastics in ecosystems: Their implications and mitigation pathways. Environ. Sci. Adv. 2022, 1, 9–29. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. Solid-state fermentation for laccases production and their applications. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 211–234. ISBN 9780444639905. [Google Scholar] [CrossRef]
- Liu, L.; Jin, Y.; Lian, H.; Yin, Q.; Wang, H. Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot. J. Fungi 2024, 10, 641. [Google Scholar] [CrossRef]
- Omar, A.N.; Chirnside, A.E.M.; Kniel, K.E. A continuous flow through system utilizing white-rot fungi, Pleurotus ostreatus, and its effects on the inhibition of Escherichia coli. In Proceedings of the Annual Meeting of International Association of Food Protection, Pittsburgh, PA, USA, 31 July–4 August 2022. [Google Scholar]
- Omar, A.N.; McCaughan, K.J.; Chirnside, A.E.M.; Sharma, M.; Kniel, K.E. Novel ZVI-Biochar-Mycoremediation filtration utilizing white-rot fungi Phanerochaete chrysosporium to inhibit pathogenic bacteria in agricultural water. In Proceedings of the Annual Meeting of International Association of Food Protection, Long Beach, CA, USA, 13–17 July 2024. [Google Scholar]
- Omar, A.N.; Chirnside, A.; Kniel, K.E. Evaluation of white rot fungus to control growth of Escherichia coli in cattle manure. J. Food Prot. 2024, 87, 100206. [Google Scholar] [CrossRef]
- Phukhamsakda, C.; Nilsson, R.H.; Bhunjun, C.S.; de Farias, A.R.G.; Wijesinghe, S.E.; Raza, M.; Bao, D.F.; Lu, L.; Tibpromma, S.; Dong, W.; et al. The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Divers. 2022, 114, 327–386. [Google Scholar] [CrossRef]
- Bonugli-Santos, R.C.; dos Santos Vasconcelos, M.R.; Passarini, M.R.Z.; Vieira, G.A.L.; Lopes, V.C.P.; Mainardi, P.H.; dos Santos, J.A.; de Azevedo, D.L.; Otero, I.V.R.; da Silva Yoshida, A.M.; et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. 2015, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Fermor, T.R.; Wood, D.A. Degradation of bacteria by Agaricus bisporus and other fungi. Microbiol. Soc. 1981, 126, 377–387. [Google Scholar] [CrossRef]
| Treatments | Treatment Process | Soil Amendments | Organism | Reported Reduction | Survival Duration | Reference |
|---|---|---|---|---|---|---|
| Thermal | Heat-treated | HTPPs * | Salmonella Newport | 3–5 log CFU/g | >91 days | [14] |
| Heat-treated | HTPPs * | E. coli | 4 log CFU/g | >120 days | [5] | |
| Heat-treated | Dairy manure and poultry litter compost, HTPP * | E. coli | 1.69 log CFU/g | >104 days | [15] | |
| Listeria spp. | Not detected | N/A | ||||
| Chemical | Ozonation | Swine manure | E. coli | 3 log CFU/mL | >3 days | [16] |
| Total coliforms | 1 log CFU/mL | >3 days | ||||
| Ca(OH)2 Phosphorus removal | Swine slurry | E. coli | 1 log CFU/mL | 3 h | [17] | |
| Salmonella spp. | 1 log CFU/mL | 3 h | ||||
| NH4+ and NH3 | HEAM ** | Viruses | 4 log PFU/mL | 6 h | [18] | |
| Biological | Conventional sludge treatment | Municipal sewage | E. coli | 40 MPN g−1 d.m. | >60 days | [19] |
| Enterococcus spp. | 40 MPN g−1 d.m. | >60 days | ||||
| Untreated | Aqueous dairy manure | Total coliforms | 0.15–2.0 × 105 L−1 | >42 days | [20] | |
| Mycelial-infused woodchips | E. coli | 0–3.5 × 105 L−1 | >42 days | |||
| Untreated | E. coli | 20% reductions | 30 min | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, A.N.; Chirnside, A.E.M.; Kniel, K.E. Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin. Microorganisms 2025, 13, 2847. https://doi.org/10.3390/microorganisms13122847
Omar AN, Chirnside AEM, Kniel KE. Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin. Microorganisms. 2025; 13(12):2847. https://doi.org/10.3390/microorganisms13122847
Chicago/Turabian StyleOmar, Alexis N., Anastasia E. M. Chirnside, and Kalmia E. Kniel. 2025. "Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin" Microorganisms 13, no. 12: 2847. https://doi.org/10.3390/microorganisms13122847
APA StyleOmar, A. N., Chirnside, A. E. M., & Kniel, K. E. (2025). Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin. Microorganisms, 13(12), 2847. https://doi.org/10.3390/microorganisms13122847

