Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (189)

Search Parameters:
Keywords = myc family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6361 KiB  
Article
The Study of Chromobox Protein Homolog 4 in 3D Organoid Models of Colon Cancer as a Potential Predictive Marker
by Vincenza Ciaramella, Valentina Belli, Francesco Izzo, Andrea Belli, Antonio Avallone, Alfonso De Stefano, Andrea Soricelli and Anna Maria Grimaldi
Int. J. Mol. Sci. 2025, 26(15), 7385; https://doi.org/10.3390/ijms26157385 - 30 Jul 2025
Viewed by 148
Abstract
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal [...] Read more.
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal cancer (CC) remain unclear. In this study, we show that CBX genes are significantly dysregulated in CC tissues and cell models compared to normal colorectal tissue. Among them, CBX4 and CBX8 emerged as the most upregulated isoforms in tumors. Functional analyses revealed that CBX4 overexpression enhances CC cell proliferation, while its silencing reduces tumor growth. Similarly, pharmacological inhibition of CBX4 in patient-derived tumor organoids led to decreased proliferation, supporting its pro-tumorigenic role. Immunofluorescence analysis further revealed alterations in NF-κB signaling upon CBX4 inhibition, along with reduced mRNA levels of pathway components including NF-κB, TNF, IL-1, and c-Myc. These findings point to a potential interplay between CBX4 and inflammation-related pathways in CC. Overall, our study highlights the oncogenic role of CBX4 in colorectal cancer and supports its potential as a novel therapeutic target and early biomarker for disease progression. Full article
Show Figures

Figure 1

21 pages, 5459 KiB  
Article
NAC Gene Family in Lagerstroemia indica: Genome-Wide Identification, Characterization, Expression Analysis, and Key Regulators Involved in Anthocyanin Biosynthesis
by Zilong Gao, Zhuomei Chen, Jinfeng Wang and Weixin Liu
Curr. Issues Mol. Biol. 2025, 47(7), 542; https://doi.org/10.3390/cimb47070542 - 11 Jul 2025
Viewed by 341
Abstract
NAC (NAM, ATAF1/2, CUC1/2) is a plant-specific transcription factor (TF) family that plays important roles in various physiological and biochemical processes of plants. However, the NAC gene family in Lagerstroemia indica and its role in anthocyanin metabolism are still unexplored. In our study, [...] Read more.
NAC (NAM, ATAF1/2, CUC1/2) is a plant-specific transcription factor (TF) family that plays important roles in various physiological and biochemical processes of plants. However, the NAC gene family in Lagerstroemia indica and its role in anthocyanin metabolism are still unexplored. In our study, a total of 167 NACs were identified in the L. indica genome via genome-wide analysis and bioinformatics techniques. Amino acid sequence analysis showed that all 167 NAC proteins contained a conserved NAM domain. This domain primarily comprised random coils, extended strands, and alpha helices. Most NACs were found on the nucleus and dispersed over 23 of the 24 plant chromosomes. Based on phylogenetic analysis, the NACs can be categorized into ten subgroups. Furthermore, the promoter homeotropic elements predicted the cis-acting elements in the promoters of these genes related to hormones, development, environmental stress response, and other related responses, demonstrating the diverse regulatory mechanisms underlying gene functions. In addition, a co-expression network was established through RNA sequencing. This network helped identify seven key LiNACs, genes related to anthocyanin expression (CHS) and transcription factors (MYB and bHLH). To identify potential anthocyanin regulatory factors present in L. indica petals, protein interaction prediction was performed, which revealed that LiNACs might participate in anthocyanin regulation by interacting with other proteins, such as MYB, ABF, ABI, bZIP, MYC, etc. Our results provided novel insights and could help in the functional identification of LiNACs in L. indica and the regulation of anthocyanin synthesis. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

16 pages, 8263 KiB  
Article
Genome-Wide Identification of PP2C Gene Family in Oat (Avena sativa L.) and Its Functional Analyses in Response to ABA and Abiotic Stresses
by Panpan Huang, Kuiju Niu, Jikuan Chai, Wenping Wang, Yanming Ma, Yanan Cao and Guiqin Zhao
Plants 2025, 14(13), 2062; https://doi.org/10.3390/plants14132062 - 5 Jul 2025
Viewed by 480
Abstract
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene [...] Read more.
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene family in oat (Avena sativa L.) has remained unexplored. Leveraging the recently published oat genome, we identified 194 AsaPP2C genes, which were unevenly distributed across all 21 chromosomes. A phylogenetic analysis of PP2C classified these genes into 13 distinct subfamilies (A-L), with conserved motif compositions and exon-intron structures within each subfamily, suggesting evolutionary functional specialization. Notably, a promoter analysis revealed an abundance of stress-responsive cis-regulatory elements (e.g., MYB, MYC, ARE, and MBS), implicating AsaPP2Cs in hormones and biotic stress adaptation. To elucidate their stress-responsive roles, we analyzed transcriptomic data and identified seven differentially expressed AsaPP2C (Asa_chr6Dg00217, Asa_chr6Ag01950, Asa_chr3Ag01998, Asa_chr5Ag00079, Asa_chr4Cg03270, Asa_chr6Cg02197, and Asa_chr7Dg02992) genes, which were validated via qRT-PCR. Intriguingly, these genes exhibited dynamic expression patterns under varying stress conditions, with their transcriptional responses being both time-dependent and stress-dependent, highlighting their regulatory roles in oat stress adaptation. Collectively, this study provides the first comprehensive genomic and functional characterization of the PP2C family in oat, offering valuable insights into their evolutionary diversification and functional specialization. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

27 pages, 12960 KiB  
Article
Genome-Wide Identification of the bHLH Gene Family in Kiwifruit (Actinidia chinensis) and the Responses of AcbHLH84 and AcbHLH97 Under Drought Stress
by Ke Zhao, Rong Xu, Tuo Yin, Xia Chen, Renzhan Ding, Xiaozhen Liu and Hanyao Zhang
Agronomy 2025, 15(7), 1598; https://doi.org/10.3390/agronomy15071598 - 30 Jun 2025
Viewed by 385
Abstract
Drought stress is one of the primary environmental factors affecting plant survival rates and productivity, and it is a key bottleneck restricting the development of the world kiwifruit industry. Therefore, studying the drought resistance-related genes and drought resistance mechanisms of kiwifruit is essential. [...] Read more.
Drought stress is one of the primary environmental factors affecting plant survival rates and productivity, and it is a key bottleneck restricting the development of the world kiwifruit industry. Therefore, studying the drought resistance-related genes and drought resistance mechanisms of kiwifruit is essential. The bHLH (basic helix-loop-helix) TF family plays a crucial role in the resistance of kiwifruit to abiotic stresses such as drought stress. In this study, we analyzed the response of the AcbHLH gene in kiwifruit under drought stress based on the kiwifruit genome database, transcriptome data, and metabolome data. One hundred eighty-seven AcbHLH genes were identified via bioinformatics and divided into eighteen subfamilies via phylogenetic analysis. The cis-acting elements of the AcbHLH gene are mainly hormone-related cis-acting elements. Under drought stress, 64 AcbHLH genes were significantly different, 5 AcbHLH genes whose expression significantly differed were randomly selected for qRT-PCR verification, and the correlation between the qRT-PCR results and the transcriptome data was high. The determination of plant hormone contents revealed that the contents of plant hormones, such as JA, changed markedly before and after drought stress. Through the combined analysis of transcriptome and metabolome data, it was speculated that AcbHLH84 and AcbHLH97 have functions similar to those of the MYC2 transcription factor and are the main downstream effectors in the JA signaling pathway; these functions could be activated and participate in the JA signaling pathway and that the activation of the JA signaling pathway would inhibit the production of reactive oxygen species. In turn, the drought resistance of kiwifruit is improved. The AcbHLH84 and AcbHLH97 genes could be candidate genes for breeding new transgenic drought-resistant kiwifruit varieties. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

21 pages, 3440 KiB  
Article
Identification and Expression Profiles Reveal Key Myelocytomatosis (MYC) Involved in Drought, Chilling, and Salt Tolerance in Solanum lycopersicum
by Chenchen Kang, Na Cui, Baozhen Zhao, Qingdao Zou, Yiming Zhang, Shiquan Bi, Zhongfen Wu, Meini Shao and Bo Qu
Horticulturae 2025, 11(6), 693; https://doi.org/10.3390/horticulturae11060693 - 16 Jun 2025
Viewed by 1149
Abstract
Tomato (Solanum lycopersicum) is a vital crop in China, yet its growth and quality are compromised by environmental stresses. This study investigated the role of myelocytomatosis (MYC) transcription factors (SlMYCs) in tomato stress tolerance. We identified 23 potential SlMYC [...] Read more.
Tomato (Solanum lycopersicum) is a vital crop in China, yet its growth and quality are compromised by environmental stresses. This study investigated the role of myelocytomatosis (MYC) transcription factors (SlMYCs) in tomato stress tolerance. We identified 23 potential SlMYC genes and analyzed their physicochemical properties, evolutionary relationships, gene structures, conserved domains, expression profiles, interaction networks, promoter sequences, and 3D models using bioinformatics. Phylogenetic analysis classified the SlMYCs into three groups with similar structural characteristics. Protein interaction networks revealed significant connections between SlMYCs and proteins involved in drought, chilling, and salt tolerance, particularly emphasizing the jasmonic acid signaling pathway. Experimental treatments with methyl jasmonate (MeJA) and simulated stress conditions showed that several SlMYC genes were responsive to these stimuli, with SlMYC1 and SlMYC2 demonstrating consistent expression patterns across various tissues. Further network analyses and molecular docking studies indicated potential binding interactions for these two genes. The findings confirmed that SlMYC1 and SlMYC2 contributed to tomato’s abiotic stress tolerance, highlighting their potential for breeding programs aimed at improving stress resilience in tomato varieties. This research laid the groundwork for enhancing tomato varieties under environmental stressors. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

18 pages, 4899 KiB  
Review
Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation
by Hyein Jung and Yeongju Lee
Cancers 2025, 17(11), 1871; https://doi.org/10.3390/cancers17111871 - 3 Jun 2025
Viewed by 1835
Abstract
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome [...] Read more.
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome these limitations by inducing selective degradation of TFs via the ubiquitin–proteasome system. This review highlights recent advances in TF-targeting PROTACs, focusing on key oncogenic TFs such as androgen receptor (AR), estrogen receptor alpha (ERα), BRD4, c-Myc, and STAT family members. Strategies for ligand design—including small molecules, peptides, and nucleic acid-based elements—are discussed alongside the use of various E3 ligases such as VHL, CRBN, and IAP. Several clinically advanced PROTACs, including ARV-110 and ARV-471, demonstrate the therapeutic potential of this technology. Despite challenges in pharmacokinetics and E3 ligase selection, emerging data suggest that PROTACs can successfully target TFs, paving the way for new treatment strategies across oncology and other disease areas. Full article
(This article belongs to the Special Issue Recent Advances in PROteolysis TArgeting Chimeras (PROTACs))
Show Figures

Figure 1

21 pages, 2070 KiB  
Article
Type III Secretion System-Mediated Induction of Systemic Resistance by Pseudomonas marginalis ORh26 Enhances Sugar Beet Defence Against Pseudomonas syringae pv. aptata
by Marija Nedeljković, Aleksandra Mesaroš, Marija Radosavljević, Nikola Đorđević, Slaviša Stanković, Jelena Lozo and Iva Atanasković
Plants 2025, 14(11), 1621; https://doi.org/10.3390/plants14111621 - 26 May 2025
Viewed by 703
Abstract
The increasing demand for sustainable agricultural practises has sparked interest in microbes that promote plant immunity. Among these, Pseudomonas species have shown the potential to enhance induced systemic resistance (ISR) in crops. While type III secretion systems (T3SSs) in pathogenic bacteria have been [...] Read more.
The increasing demand for sustainable agricultural practises has sparked interest in microbes that promote plant immunity. Among these, Pseudomonas species have shown the potential to enhance induced systemic resistance (ISR) in crops. While type III secretion systems (T3SSs) in pathogenic bacteria have been widely studied for their role in local immunosuppression, their function in beneficial Pseudomonas species and on a systemic level remains largely unexplored. We show for the first time that the T3SS of a plant-beneficial Pseudomonas strain induces ISR by root colonisation. T3SS-positive Pseudomonas isolates were applied to the roots of sugar beet (Beta vulgaris L.) and systemic effects on plant immunity were assessed in leaves exposed to the pathogen P. syringae pv. aptata P21. Our results show that P. marginalis ORh26 reduced lesion size and pathogen proliferation in sugar beet leaves. ORh26 activated peroxidase and phenylalanine ammonia-lyase and upregulated NPR1 and MYC2 defence genes. Remarkably, a T3SS-deficient mutant of ORh26 failed to induce these effects. Genomic analysis identified T3SS structural genes and effector proteins, including a pectate lyase and an effector of the HopJ family, that may mediate these responses. This study reveals a previously uncharacterised role of T3SS in the induction of ISR and improves our understanding of plant–microbe interactions. Full article
Show Figures

Graphical abstract

18 pages, 14476 KiB  
Article
Functional Characterization of CpPIP1;1 and Genome-Wide Analysis of PIPs in Wintersweet (Chimonanthus praecox (L.) Link)
by Fei Ren, Zhu Feng, Guo Wei, Yimeng Lv, Jia Zhao, Yeyuan Deng, Shunzhao Sui and Jing Ma
Horticulturae 2025, 11(6), 581; https://doi.org/10.3390/horticulturae11060581 - 24 May 2025
Viewed by 447
Abstract
Plant aquaporin proteins (AQPs) are categorized into seven distinct families, among which, plasma membrane intrinsic proteins (PIPs) play pivotal roles in plant growth and physiological processes. In this study, we identified 11 CpPIP genes in wintersweet (Chimonanthus praecox (L.) Link) based on [...] Read more.
Plant aquaporin proteins (AQPs) are categorized into seven distinct families, among which, plasma membrane intrinsic proteins (PIPs) play pivotal roles in plant growth and physiological processes. In this study, we identified 11 CpPIP genes in wintersweet (Chimonanthus praecox (L.) Link) based on bioinformatic characterization of gene structural organization, chromosomal localization, and phylogenetic relationships. Subsequent phylogenetic reconstruction resolved two evolutionarily distinct CpPIP subclasses. We focused on the isolation and characterization of CpPIP1;1, which showed the highest expression in floral organs. During flowering, a significant increase was observed in the expression of the CpPIP1;1 gene in response to a gradual reduction in environmental temperature. Moreover, the overexpression of CpPIP1;1 in Arabidopsis thaliana resulted in early flowering and an enhanced tolerance to salt, drought, and cold stress. We subsequently transcriptionally fused the CpPIP1;1 promoter containing MYC and MYB low-temperature response elements to the β-glucuronidase (GUS) reporter gene and introduced this construct into Nicotiana tabacum. GUS activity assays of the transgenic plants revealed that the CpPIP1;1 promoter was effectively expressed in flowers. Furthermore, the promoter transcriptional activity was enhanced in response to salt, drought, cold, gibberellic acid, and methyl jasmonate treatments. Collectively, our findings in this study revealed that CpPIP1;1 plays a key role in the regulation of flowering and stress tolerance in wintersweet plants. Full article
Show Figures

Figure 1

45 pages, 15819 KiB  
Review
The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications
by Elias Antoniades, Nikolaos Keffes, Stamatia Vorri, Vassilios Tsitouras, Nikolaos Gkantsinikoudis, Parmenion Tsitsopoulos and John Magras
Cancers 2025, 17(9), 1566; https://doi.org/10.3390/cancers17091566 - 4 May 2025
Viewed by 2072
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved [...] Read more.
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family. Full article
(This article belongs to the Special Issue New Advances in the Treatment of Pediatric Solid Tumors)
Show Figures

Figure 1

20 pages, 1846 KiB  
Review
Insight into the Regulation of NDRG1 Expression
by Concetta Saponaro, Nicola Gammaldi, Viviana Cavallo, Maria Antonieta Ramírez-Morales, Francesco Alfredo Zito, Margherita Sonnessa, Francesco Vari, Ilaria Serra, Simona De Summa, Anna Maria Giudetti, Marco Trerotola and Daniele Vergara
Int. J. Mol. Sci. 2025, 26(8), 3582; https://doi.org/10.3390/ijms26083582 - 10 Apr 2025
Cited by 2 | Viewed by 1157
Abstract
The N-Myc Downstream Regulated Gene 1 (NDRG1) protein, a member of a family of four, has emerged as a key regulator of various physiological and pathological processes. Extensive knowledge has been gained on the modulation of NDRG1 expression during endoplasmic reticulum stress, autophagy, [...] Read more.
The N-Myc Downstream Regulated Gene 1 (NDRG1) protein, a member of a family of four, has emerged as a key regulator of various physiological and pathological processes. Extensive knowledge has been gained on the modulation of NDRG1 expression during endoplasmic reticulum stress, autophagy, and hypoxia. Moreover, new functions have emerged in recent years. Notably, NDRG1 regulates cell differentiation, metabolism, autophagy and vesicular transport. This has raised interest in the molecular mechanisms that control the cellular levels and activity of NDRG1. A series of studies have shown that NDRG1 can be finely regulated at the transcriptional, post-transcriptional, and translational levels. In addition, processes that mediate protein degradation and clearance also play key roles. Furthermore, three different NDRG1 proteoforms with distinct functions have been identified. An important question is the extent to which these proteoforms contribute to the regulation of cellular functions. Given the growing clinical interest in NDRG1, this review provides an overview of the regulatory mechanisms that control NDRG1 abundance, helping to deepen our understanding of the complex mechanisms underlying protein regulation. Full article
(This article belongs to the Special Issue The Interplay Between Cellular Stress and Human Diseases)
Show Figures

Figure 1

15 pages, 8707 KiB  
Article
Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties
by Qichen Wu, Yuejie Wang and Zixin Mu
Genes 2025, 16(4), 440; https://doi.org/10.3390/genes16040440 - 8 Apr 2025
Viewed by 723
Abstract
Background: Small heat shock proteins (sHsps), particularly Hsp20 family members, are pivotal for plant thermotolerance and abiotic stress adaptation. However, their evolutionary dynamics and functional roles in Lycium barbarum (goji berry), a commercially significant stress-tolerant crop, remain uncharacterized. This study [...] Read more.
Background: Small heat shock proteins (sHsps), particularly Hsp20 family members, are pivotal for plant thermotolerance and abiotic stress adaptation. However, their evolutionary dynamics and functional roles in Lycium barbarum (goji berry), a commercially significant stress-tolerant crop, remain uncharacterized. This study aims to comprehensively identify LbHsp20 genes, delineate their evolutionary patterns, and decipher their regulatory mechanisms under heat stress to accelerate molecular breeding of resilient cultivars. Methods: Forty-three LbHsp20 genes were identified from the goji genome using HMMER and BLASTP. Phylogenetic relationships were reconstructed via MEGA-X (maximum likelihood, 1000 bootstraps), while conserved motifs and domains were annotated using MEME Suite and InterProScan. Promoter cis-elements were predicted via PlantCARE. Heat-responsive expression profiles of candidate genes were validated by qRT-PCR in two contrasting lines (N7 and 1402) under 42 °C treatment. Results: The LbHsp20 family clustered into 14 subfamilies, predominantly cytoplasmic (subfamilies I–VII). Chromosomal mapping revealed a tandem duplication hotspot on Chr4 (12 genes) and absence on Chr9, suggesting lineage-specific gene loss. All proteins retained the conserved α-crystallin domain (ACD), with 19 members harboring the ScHsp26-like ACD variant. Promoters were enriched in stress-responsive elements (HSE, ABRE, MYC). Heat stress induced significant upregulation (>15-fold in LbHsp17.6A and LbHsp18.3) in N7, whereas 1402 showed weaker induction (<5-fold). Subfamily specific divergence was observed, with cytoplasmic subfamily I genes exhibiting the strongest heat responsiveness. Conclusions: This study unveils the evolutionary conservation and functional diversification of LbHsp20 genes in L. barbarum. The tandem duplication-driven expansion on Chr4 and subfamily specific expression patterns underpin their roles in thermotolerance. These findings establish a foundation for engineering climate-resilient goji varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 7640 KiB  
Article
Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation
by Jianzhong Li, Guoliang Li, Caishuo Zhu, Shaoxing Wang, Shifan Zhang, Fei Li, Hui Zhang, Rifei Sun, Lingyun Yuan, Guohu Chen, Xiaoyan Tang, Chenggang Wang and Shujiang Zhang
Plants 2025, 14(2), 268; https://doi.org/10.3390/plants14020268 - 18 Jan 2025
Cited by 1 | Viewed by 875
Abstract
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a [...] Read more.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants. bHLH constitutes one of the largest families of transcription factors in eukaryotes, of which MYC is a subfamily member. However, studies on bHLH-MYC transcription factors in mustard have yet to be reported. In this study, a total of 45 bHLH-MYC transcription factors were identified within the Brassica juncea genome, and a comprehensive series of bioinformatic analyses were conducted on their structures and properties: an examination of protein physicochemical properties, an exploration of conserved structural domains, an assessment of chromosomal positional distributions, an analysis of the conserved motifs, an evaluation of the gene structures, microsynteny analyses, three-dimensional structure prediction, and an analysis of sequence signatures. Finally, transcriptome analyses and a subcellular localization examination were performed. The results revealed that these transcription factors were unevenly distributed across 18 chromosomes, showing relatively consistent conserved motifs and gene structures and high homology. The final results of the transcriptome analysis and gene annotation showed a high degree of variability in the expression of bHLH-MYC transcription factors. Five genes that may be associated with trichome development (BjuVA09G22490, BjuVA09G13750, BjuVB04G14560, BjuVA05G24810, and BjuVA06G44820) were identified. The subcellular localization results indicated that the transcription and translation products of these five genes were expressed in the same organelle: the nucleus. This finding provides a basis for elucidating the roles of bHLH-MYC family members in plant growth and development, and the molecular mechanisms underlying trichome development in mustard leaves. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 6065 KiB  
Article
Functional Analysis of Durum Wheat GASA1 Protein as a Biotechnological Alternative Against Plant Fungal Pathogens and a Positive Regulator of Biotic Stress Defense
by Mohamed Taieb Bouteraa, Walid Ben Romdhane, Alina Wiszniewska, Narjes Baazaoui, Mohammad Y. Alfaifi, Anis Ben Hsouna, Miroslava Kačániová, Stefania Garzoli and Rania Ben Saad
Plants 2025, 14(1), 112; https://doi.org/10.3390/plants14010112 - 2 Jan 2025
Viewed by 1203
Abstract
Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the GASA (Gibberellic Acid-Stimulated Arabidopsis) [...] Read more.
Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the GASA (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress. Here, we examined the function of the newly identified TdGASA1 gene and its encoded protein in Triticum durum subjected to different biotic stress-related simulants, such as mechanical injury, methyl jasmonate (MeJA), indole-3-acetic acid (IAA), salicylic acid (SA), hydrogen peroxide (H2O2), as well as infection with pathogenic fungi Fusarium graminearum and Aspergillus niger. We found that in durum wheat, TdGASA1 transcripts were markedly increased in response to these stress simulants. Isolated and purified TdGASA1 protein exhibited significant antifungal activity in the growth inhibition test conducted on eight species of pathogenic fungi on solid and liquid media. Transgenic Arabidopsis lines overexpressing TdGASA1 obtained in this study showed higher tolerance to detrimental effects of H2O2, MeJA, and ABA treatment. In addition, these lines exhibited resistance to Fusarium graminearum and Aspergillus niger, which was linked to a marked increase in antioxidant activity in the leaves under stress conditions. This resistance was correlated with the upregulation of pathogenesis-related genes (AtPDF1.2a, AtERF1, AtVSP2, AtMYC2, AtPR1, AtACS6, AtETR1, and AtLOX2) in the transgenic lines. Overall, our results indicate that TdGASA1 gene and its encoded protein respond ubiquitously to a range of biotic stimuli and seem to be crucial for the basal resistance of plants against pathogenic fungi. This gene could therefore be a valuable target for genetic engineering to enhance wheat resistance to biotic stress. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

16 pages, 6152 KiB  
Article
Genome-Wide Identification and Analysis of the MYC Gene Family in Cotton: Evolution and Expression Profiles During Normal Growth and Stress Response
by Jingxi Chen, Long Wang, Xiufang Wang, Lu Lu, Peng Han, Caidie Zhang, Min Han, Siyu Xiang, Haibiao Wang, Lizhong Xuan, Zhibo Li, Hairong Lin, Xinhui Nie and Yuanlong Wu
Genes 2025, 16(1), 20; https://doi.org/10.3390/genes16010020 - 26 Dec 2024
Cited by 1 | Viewed by 1107
Abstract
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is [...] Read more.
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton. Methods: Bioinformatics analysis was used to mine the MYC gene family in cotton based on InterPro, cottongen, etc. Results: The gene structure, conserved motifs, and upstream open reading frames of 32 GhMYCs in Gossypium hirsutum were identified. Moreover, it was anticipated that the GT1-motif is the most abundant in GhMYCs, indicating that the GT1-motif plays a significant role in light-responsive GhMYCs. The expression patterns of GhMYCs under biotic stresses including V. dahliae and Aphid gossypii were evaluated, suggesting that GhMYCs in class-1 and -3 GhMYCs, which function as negative regulators, are involved in resistance to verticillium wilt and aphids. The class-3 GhMYCs genes were found to be mostly expressed in female tissues. Interestingly, it was also determined that the homeologous expression bias within GhMYCs in cotton was uncovered, and results showed that the gene expression of class-1A and class-2 GhMYCs in the Dt sub-genome may have a direct impact on gene function. Conclusions: This study provides a research direction for researchers and breeders to enhance cotton traits through manipulating individual or multiple homeologs, which laid a foundation for further study of the molecular characteristics and biological functions of GhMYC gene. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

14 pages, 5419 KiB  
Article
Genome-Wide Identification, Expression and Interaction Analysis of GLN Gene Family in Soybean
by Xin Hao, Yiyan Zhang, Hui Zhang, Gang Yang, Zhou Liu, Huiwei Lv and Xiaomei Zhou
Curr. Issues Mol. Biol. 2024, 46(12), 14154-14167; https://doi.org/10.3390/cimb46120847 - 15 Dec 2024
Cited by 2 | Viewed by 1024
Abstract
As a globally significant economic crop, the seed size of soybean (Glycine max [L.] Merr.) is jointly regulated by internal genetic factors and external environmental signals. This study discovered that the GLN family proteins in soybean are similar to the KIX-PPD-MYC transcriptional [...] Read more.
As a globally significant economic crop, the seed size of soybean (Glycine max [L.] Merr.) is jointly regulated by internal genetic factors and external environmental signals. This study discovered that the GLN family proteins in soybean are similar to the KIX-PPD-MYC transcriptional repressor complex in Arabidopsis, potentially influencing seed size by regulating the expression of the downstream gene GIF1. Additionally, β-1,3-glucanase (βGlu) plays a crucial role in antifungal activity, cell composition, flower development, pollen development, abiotic resistance, seed germination, and maturation in soybean. Through a detailed analysis of the structure, chromosomal localization, phylogenetic relationships, and expression situations in different tissues at different stages of the soybean GLN gene family members, this research certifies a theoretical foundation for subsequent research on the biological functions of GLN genes in soybean. This research incorporated a comprehensive genomic identification and expression analysis of the GLN gene family in soybean. The results indicate that the 109 soybean GLN genes are unevenly distributed across soybean chromosomes and exhibit diverse expression patterns in different tissues, suggesting they may have distinct functions in soybean morphogenesis. GO enrichment analysis shows that the GLN gene family may participate in a variety of biological activities, cellular components, and molecular biological processes, particularly in catalytic activity, cellular components, and metabolic processes. These findings provide important information for comprehending the role of the GLN gene family in soybean and offer potential targets for molecular breeding of soybean. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop