Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Heat Stress Treatment
2.2. Genome-Wide Characterization of the LbHsp20 Gene in L. barbarum
2.3. Analysis of the Conserved Motifs of the LbHsp20 Family in L. barbarum
2.4. Phylogenetic Analysis and Classification of the LbHsp20 Gene in L. barbarum
2.5. Chromosome Localization and Gene Duplication
2.6. RNA Isolation and Expression Analysis of the LbHsp20 Gene in L. barbarum
2.7. Search for Cis-Acting Elements in the Promoter of the LbHsp20 Gene of L. barbarum
3. Results
3.1. Identification and Analysis of LbHsp20 Gene Family Members in L. barbarum
3.2. Gene Structure of the LbHsp20 Gene
3.3. Phylogenetic Analysis of the LbHsp20 Family
3.4. Chromosomal Localization and Gene Duplication
3.5. Analysis of Cis-Elements in the LbHsp20 Promoter
3.6. Expression Profile of LbHsp20 Gene Induced by Heat Stresses
3.7. Expression Pattern of LbHsp20 Gene in Different Tissues
4. Discussion
4.1. Evolution and Classification of the LbHsp20 Gene Family
4.2. Structural Characterization of the LbHsp20 Protein
4.3. Mechanisms Regulating the Expression of the LbHsp20 Gene
4.4. Functional Differentiation of the LbHsp20 Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorno, F.; Wolters-Arts, M.; Grillo, S.; Scharf, K.-D.; Vriezen, W.H.; Mariani, C. Developmental and Heat Stress-Regulated Expression of HsfA2 and Small Heat Shock Proteins in Tomato Anthers. J. Exp. Bot. 2010, 61, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, Z.; Zhang, D.; Ma, N.; Wang, Y.; Zhang, T.; Zhao, Q.; Zhang, Z.; You, C.; Lu, X. Identification of Hsp20 Gene Family in Malus domestica and Functional Characterization of Hsp20 Class I Gene MdHsp18.2b. Physiol. Plant. 2024, 176, e14288. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Su, Z.; Shen, Z.; Song, H.; Cai, Z.; Xu, J.; Guo, L.; Zhang, Y.; Guo, S.; et al. Integrated Analysis of HSP20 Genes in the Developing Flesh of Peach: Identification, Expression Profiling, and Subcellular Localization. BMC Plant Biol. 2023, 23, 663. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hai, Z.; Wang, R.; Yu, Y.; Chen, X.; Liang, W.; Wang, H. Genome-Wide Analysis of HSP20 Gene Family and Expression Patterns Under Heat Stress in Cucumber (Cucumis sativus L.). Front. Plant Sci. 2022, 13, 968418. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, T.; Li, Y.; Zhao, X.; Liu, W.; Hu, Y.; Wang, J.; Zhou, Y. Comprehensive Analysis of Dendrobium Catenatum HSP20 Family Genes and Functional Characterization of DcHSP20–12 in Response to Temperature Stress. Int. J. Biol. Macromol. 2024, 258, 129001. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, Y.; Chen, B.; Zhi, C.; Qiao, L.; Liu, C.; Pan, Y.; Cheng, Z. Genome-Wide Identification of Small Heat Shock Protein (HSP20) Homologs in Three Cucurbit Species and the Expression Profiles of CsHSP20s Under Several Abiotic Stresses. Int. J. Biol. Macromol. 2021, 190, 827–836. [Google Scholar] [CrossRef]
- Waters, E.R. The Evolution, Function, Structure, and Expression of the Plant sHSPs. J. Exp. Bot. 2013, 64, 391–403. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Sarkar, N.K.; Kim, Y.-K.; Grover, A. Rice sHsp Genes: Genomic Organization and Expression Profiling Under Stress and Development. BMC Genom. 2009, 10, 393. [Google Scholar] [CrossRef]
- Sung, D.-Y.; Kaplan, F.; Lee, K.-J.; Guy, C.L. Acquired Tolerance to Temperature Extremes. Trends Plant Sci. 2003, 8, 179–187. [Google Scholar] [CrossRef]
- Charng, Y.; Liu, H.; Liu, N.; Hsu, F.; Ko, S. Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance During Long Recovery After Acclimation. Plant Physiol. 2006, 140, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dai, B.; Fan, M.; Yang, L.; Li, C.; Hou, G.; Wang, X.; Gao, H.; Li, J. Genome-Wide Profile Analysis of the Hsp20 Family in Lettuce and Identification of Its Response to Drought Stress. Front. Plant Sci. 2024, 15, 1426719. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, Q.; Zhai, Y.; Zhao, L.; Zhu, J.; Zhang, X.; Jia, Q.; Liang, Z.; Wang, D. Genome-Wide Analysis of the HSP20 Gene Family and Its Response to Heat and Drought Stress in Coix (Coix lacryma-jobi L.). BMC Genom. 2023, 24, 478. [Google Scholar] [CrossRef]
- Gao, T.; Mo, Z.; Tang, L.; Yu, X.; Du, G.; Mao, Y. Heat Shock Protein 20 Gene Superfamilies in Red Algae: Evolutionary and Functional Diversities. Front. Plant Sci. 2022, 13, 817852. [Google Scholar] [CrossRef]
- De Souza Resende, J.S.; Dos Santos, T.B.; Souza, S.G.H.D. Small Heat Shock Protein (Hsp20) Gene Family in Phaseolus Vulgaris L.: Genome-Wide Identification, Evolutionary and Expression Analysis. Plant Gene 2022, 31, 100370. [Google Scholar] [CrossRef]
- Lian, X.; Wang, Q.; Li, T.; Gao, H.; Li, H.; Zheng, X.; Wang, X.; Zhang, H.; Cheng, J.; Wang, W.; et al. Phylogenetic and Transcriptional Analyses of the HSP20 Gene Family in Peach Revealed That PpHSP20-32 Is Involved in Plant Height and Heat Tolerance. Int. J. Mol. Sci. 2022, 23, 10849. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, T.; Liu, Y.; Li, Y.; Wang, M.; Zhu, B.; Liao, D.; Yun, T.; Huang, W.; Zhang, W.; et al. Pumpkin (Cucurbita moschata) HSP20 Gene Family Identification and Expression Under Heat Stress. Front. Genet. 2021, 12, 753953. [Google Scholar] [CrossRef]
- Cui, F.; Taier, G.; Wang, X.; Wang, K. Genome-Wide Analysis of the HSP20 Gene Family and Expression Patterns of HSP20 Genes in Response to Abiotic Stresses in Cynodon Transvaalensis. Front. Genet. 2021, 12, 732812. [Google Scholar] [CrossRef]
- Haslbeck, M.; Vierling, E. A First Line of Stress Defense: Small Heat Shock Proteins and Their Function in Protein Homeostasis. J. Mol. Biol. 2015, 427, 1537–1548. [Google Scholar] [CrossRef]
- Guo, L.-M.; Li, J.; He, J.; Liu, H.; Zhang, H.-M. A Class I Cytosolic HSP20 of Rice Enhances Heat and Salt Tolerance in Different Organisms. Sci. Rep. 2020, 10, 1383. [Google Scholar] [CrossRef]
- Al-Whaibi, M.H. Plant Heat-Shock Proteins: A Mini Review. J. King Saud. Univ. Sci. 2011, 23, 139–150. [Google Scholar] [CrossRef]
- Waters, E.R.; Vierling, E. Plant Small Heat Shock Proteins—Evolutionary and Functional Diversity. New Phytol. 2020, 227, 24–37. [Google Scholar] [CrossRef]
- Wang, A.; Yu, X.; Mao, Y.; Liu, Y.; Liu, G.; Liu, Y.; Niu, X. Overexpression of a Small Heat-Shock-Protein Gene Enhances Tolerance to Abiotic Stresses in Rice. Plant Breed. 2015, 134, 384–393. [Google Scholar] [CrossRef]
- Zhong, L.; Shi, Y.; Xu, S.; Xie, S.; Huang, X.; Li, Y.; Qu, C.; Liu, J.; Liao, J.; Huang, Y.; et al. Heterologous Overexpression of Heat Shock Protein 20 Genes of Different Species of Yellow Camellia in Arabidopsis thaliana Reveals Their Roles in High Calcium Resistance. BMC Plant Biol. 2024, 24, 5. [Google Scholar] [CrossRef]
- Shen, W.; Zeng, C.; Sun, J.; Meng, J.; Yuan, P.; Bu, F.; Zhu, K.; Liu, J.; Li, G. PpHSP20-26, a Small Heat Shock Protein, Confers Enhanced Autotoxicity Stress Tolerance in Peach. Hortic. Plant J. 2024, S2468014124001481. [Google Scholar] [CrossRef]
- An, H.; Ding, J.; Chen, E.; Li, R.; Lin, M.; Qian, H.; Zhao, G. Characterization and Functional Analysis of Small Heat Shock Protein Gene HSP20.1 in Bombyx mandarina. Int. J. Trop. Insect Sci. 2024, 44, 3003–3012. [Google Scholar] [CrossRef]
- Xue, M.; You, Y.; Zhang, L.; Cao, J.; Xu, M.; Chen, S. ZmHsp18 Screened from the ZmHsp20 Gene Family Confers Thermotolerance in Maize. BMC Plant Biol. 2024, 24, 1048. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, W.J. Responses of Water Accumulation and Solute Metabolism in Tomato Fruit to Water Scarcity and Implications for Main Fruit Quality Variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Liu, Y.; Lu, X.; Li, S.; Cui, J.; Qi, J.; Yu, W. Involvement of Energy and Cell Wall Metabolisms in Chilling Tolerance Improved by Hydrogen Sulfide in Cold-Stored Tomato Fruits. Plant Cell Rep. 2024, 43, 180. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Z.; Chen, J.; Wang, M.; Ding, Y.; Xue, Q.; Liu, W.; Niu, Z.; Ding, X. Genome-Wide Identification and Expression Analysis of the Hsp20, Hsp70 and Hsp90 Gene Family in Dendrobium officinale. Front. Plant Sci. 2022, 13, 979801. [Google Scholar] [CrossRef]
- Scharf, K.-D.; Siddique, M.; Vierling, E. The Expanding Family of Arabidopsis thaliana Small Heat Stress Proteins and a New Family of Proteins Containing A-Crystallin Domains (Acd Proteins). Cell Stress Chaperones 2001, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Chen, J.; Xie, W.; Wang, L.; Zhang, Q. Comprehensive Sequence and Expression Profile Analysis of Hsp20 Gene Family in Rice. Plant Mol. Biol. 2009, 70, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Caitar, V.S.; De Carvalho, M.C.; Darben, L.M.; Kuwahara, M.K.; Nepomuceno, A.L.; Dias, W.P.; Abdelnoor, R.V.; Marcelino-Guimarães, F.C. Genome-Wide Analysis of the Hsp 20 Gene Family in Soybean: Comprehensive Sequence, Genomic Organization and Expression Profile Analysis Under Abiotic and Biotic Stresses. BMC Genom. 2013, 14, 577. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.-H.; Lu, J.-P.; Zhai, Y.-F.; Wang, H.; Gong, Z.-H.; Wang, S.-B.; Lu, M.-H. Genome-Wide Analysis of the CaHsp20 Gene Family in Pepper: Comprehensive Sequence and Expression Profile Analysis Under Heat Stress. Front. Plant Sci. 2015, 6, 806. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, Y.; Feng, K.; Ruan, M.; Ye, Q.; Wang, R.; Li, Z.; Zhou, G.; Yao, Z.; Yang, Y.; et al. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2016, 7, 1215. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Heinrich, M.; Weckerle, C.S. The Genus Lycium as Food and Medicine: A Botanical, Ethnobotanical and Historical Review. J. Ethnopharmacol. 2018, 212, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-L.; Li, Y.; Fan, Y.-F.; Li, Z.; Yoshida, K.; Wang, J.-Y.; Ma, X.-K.; Wang, N.; Mitsuda, N.; Kotake, T.; et al. Wolfberry Genomes and the Evolution of Lycium (Solanaceae). Commun. Biol. 2021, 4, 671. [Google Scholar] [CrossRef]
- He, W.; Liu, M.; Qin, X.; Liang, A.; Chen, Y.; Yin, Y.; Qin, K.; Mu, Z. Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in L. barbarum During Fruit Ripening and Seedling Response to Heat Stress. Curr. Issues Mol. Biol. 2022, 44, 5933–5948. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Chen, Y.; Liang, A.; He, W.; Qin, X.; Qin, K.; Mu, Z. Genome-Wide Identification of PYL/RCAR ABA Receptors and Functional Analysis of LbPYL10 in Heat Tolerance in Goji (L. barbarum). Plants 2024, 13, 887. [Google Scholar] [CrossRef]
Gene Name | Version | cds (bp) | Protein Length | Molecular Weight (kD) | Instability Index | Isoelectric Point |
---|---|---|---|---|---|---|
LbHsp17.6A | XM_060319191.1 | 465 | 154 | 17.62 | 43.95 | 6.56 |
LbHsp17.7A | XM_060319183.1 | 465 | 154 | 17.65 | 43.77 | 6.56 |
LbHsp17.6B | XM_060319222.1 | 465 | 154 | 17.61 | 45.55 | 6.56 |
LbHsp17.6C | XM_060319213.1 | 465 | 154 | 17.61 | 52.45 | 5.89 |
LbHsp17.6D | XM_060358525.1 | 465 | 154 | 17.58 | 51.65 | 5.89 |
LbHsp17.9A | XM_060354035.1 | 480 | 159 | 17.94 | 52.55 | 5.88 |
LbHsp17.5A | XM_060352452.1 | 468 | 155 | 17.54 | 57.04 | 6.56 |
LbHsp18.0A | XM_060346165.1 | 480 | 159 | 17.97 | 62.07 | 7.7 |
LbHsp17.5B | XM_060354037.1 | 467 | 155 | 17.48 | 58.55 | 5.88 |
LbHsp21.6A | XM_060333068.1 | 576 | 191 | 21.61 | 42.93 | 7.9 |
LbHsp18.0B | XM_060354036.1 | 480 | 159 | 17.96 | 61.95 | 5.88 |
LbHsp17.5C | XM_060330013.1 | 468 | 155 | 17.45 | 63.75 | 5.88 |
LbHsp22.0A | XM_060313235.1 | 582 | 193 | 21.98 | 43.8 | 6.54 |
LbHsp17.8 | XM_060315404.1 | 477 | 158 | 17.77 | 37.34 | 6.8 |
LbHsp17.6E | XM_060352575.1 | 477 | 158 | 17.63 | 35.92 | 6.55 |
LbHsp17.7B | XM_060358882.1 | 477 | 158 | 17.68 | 38.22 | 7.6 |
LbHsp17.6F | XM_060347156.1 | 471 | 156 | 17.61 | 59.4 | 10.32 |
LbHsp17.9B | XM_060318377.1 | 474 | 157 | 17.89 | 62.72 | 5.42 |
LbHsp17.5D | XM_060355297.1 | 474 | 157 | 17.5 | 36.99 | 7.51 |
LbHsp18.1 | XM_060352578.1 | 483 | 160 | 18.1 | 29.11 | 8.43 |
LbHsp22.2 | XM_060342004.1 | 597 | 198 | 22.24 | 42.4 | 5.06 |
LbHsp17.4A | XM_060352574.1 | 474 | 157 | 17.44 | 35.03 | 6.54 |
LbHsp18.0C | XM_060355099.1 | 480 | 159 | 18.04 | 63.71 | 5.9 |
LbHsp27.1 | XM_060316795.1 | 726 | 241 | 27.1 | 56.94 | 8.43 |
LbHsp26.1 | XM_060347996.1 | 711 | 236 | 26.15 | 40.27 | 8.23 |
LbHsp22.0B | XM_060345998.1 | 585 | 194 | 22.07 | 37.91 | 9.52 |
LbHsp18.0D | XM_060342758.1 | 501 | 166 | 18.09 | 64.23 | 5.66 |
LbHsp21.2A | XM_060352576.1 | 582 | 193 | 21.24 | 31.51 | 4.9 |
LbHsp16.3 | XM_060337959.1 | 432 | 143 | 16.26 | 29.4 | 7.35 |
LbHsp27.6 | XM_060352573.1 | 732 | 243 | 27.62 | 34.67 | 9.28 |
LbHsp24.9 | XM_060346161.1 | 648 | 215 | 24.94 | 47.9 | 7.57 |
LbHsp16.6 | XM_060350036.1 | 447 | 148 | 16.63 | 63.04 | 5.09 |
LbHsp22.9 | XM_060318505.1 | 600 | 199 | 22.88 | 51.2 | 10.46 |
LbHsp15.9 | XM_060330065.1 | 435 | 144 | 15.88 | 45.37 | 7.84 |
LbHspP23.3 | XM_060351341.1 | 624 | 207 | 23.48 | 59.54 | 5.24 |
LbHsp25.6 | XM_060318504.1 | 672 | 223 | 25.55 | 50.61 | 9.78 |
LbHsp26.0 | XM_060358140.1 | 681 | 226 | 26.02 | 53.8 | 7.29 |
LbHsp15.8 | XM_060336286.1 | 414 | 137 | 15.8 | 45.17 | 5.7 |
LbHsp24.2 | XM_060350504.1 | 648 | 215 | 24.22 | 50.07 | 4.61 |
LbHsp21.2B | XM_060355129.1 | 573 | 190 | 21.23 | 52.44 | 9.04 |
LbHsp21.6B | XM_060332688.1 | 576 | 191 | 21.63 | 34.03 | 5.11 |
LbHsp17.7C | XM_060318664.1 | 471 | 156 | 17.69 | 16.01 | 6.28 |
LbHsp17.4B | XM_060351340.1 | 495 | 164 | 17.74 | 40.42 | 5.05 |
Motif | Best Possible Match | Width |
---|---|---|
1 | FMRRFRLPENAKMDAIKAAMENGVLTVTVPKE | 32 |
2 | DWKETPEAHVFKVDLPGJKKEEVKVZVEE | 29 |
3 | KKNDKWHRMERSSGK | 15 |
4 | SFFGGRRSNIFDPFSLDVFDPFEGFPFPN | 29 |
5 | DRVLQISGERKREEE | 15 |
6 | RETSAFANARI | 11 |
7 | KKPEVKAIDIS | 11 |
8 | LFHTLQHMMDIAGDDSDKPVN | 21 |
9 | MDFRLMGIDNP | 11 |
10 | PTIKITRQSQPNRGRQDPYDPSREFYLZNPRSLIAPALSFPQEPPSQAPI | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Wang, Y.; Mu, Z. Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties. Genes 2025, 16, 440. https://doi.org/10.3390/genes16040440
Wu Q, Wang Y, Mu Z. Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties. Genes. 2025; 16(4):440. https://doi.org/10.3390/genes16040440
Chicago/Turabian StyleWu, Qichen, Yuejie Wang, and Zixin Mu. 2025. "Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties" Genes 16, no. 4: 440. https://doi.org/10.3390/genes16040440
APA StyleWu, Q., Wang, Y., & Mu, Z. (2025). Identification of the HSP20 Gene Family in L. barbarum and Their Contrasting Response to Heat Stress Between Two Varieties. Genes, 16(4), 440. https://doi.org/10.3390/genes16040440