Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,604)

Search Parameters:
Keywords = mx

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3267 KiB  
Article
Sodium Caseinate Induces Apoptosis in Cytarabine-Resistant AML by Modulating SIRT1 and Chemoresistance Genes, Alone or in Combination with Cytarabine or Daunorubicin
by Daniel Romero-Trejo, Itzen Aguiñiga-Sánchez, Amanda Velasco-García, Katia Michell Rodríguez-Terán, Fabian Flores-Borja, Isabel Soto-Cruz, Martha Legorreta-Herrera, Víctor Manuel Macías-Zaragoza, Ernesto Romero-López, Benny Weiss-Steider, Karen Miranda-Duarte, Claudia Itzel Sandoval-Franco and Edelmiro Santiago-Osorio
Int. J. Mol. Sci. 2025, 26(15), 7468; https://doi.org/10.3390/ijms26157468 (registering DOI) - 1 Aug 2025
Abstract
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, [...] Read more.
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, inhibits proliferation and modulates the expression of Ara-C resistance-related genes in chemoresistant cells. However, it remains unclear whether the combination of SC with antineoplastic agents enhances apoptosis, modulates chemoresistance-related genes, and prolongs the survival of tumor-bearing mice implanted with chemoresistant cells. Here, we investigated the effects of SC in combination with Ara-C or daunorubicin (DNR) on cell proliferation, apoptosis, the expression of chemoresistance-associated genes, and the survival of tumor-bearing mice. Crystal violet assays, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence, flow cytometry, and Kaplan–Meier survival curves were used to evaluate the effects of combinations in chemoresistant cells. We demonstrate that the IC25 concentration of SC, when combined with antileukemic agents, increases the sensitivity of chemoresistant WEHI-CR50 cells to Ara-C by downregulating SIRT1 and MDR1, upregulating the expression of ENT1 and dCK, enhancing apoptosis, and prolonging the survival of WEHI-CR50 tumor-bearing mice. Our data suggest that SC in combination with antileukemic agents could be an effective adjuvant for Ara-C-resistant AML. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Graphical abstract

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 (registering DOI) - 1 Aug 2025
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

13 pages, 1350 KiB  
Article
GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation
by Fernando Daniel García-Ayala, María de la Luz Ayala-Madrigal, Jorge Peregrina-Sandoval, José Miguel Moreno-Ortiz, Anahí González-Mercado and Melva Gutiérrez-Angulo
Int. J. Mol. Sci. 2025, 26(15), 7455; https://doi.org/10.3390/ijms26157455 (registering DOI) - 1 Aug 2025
Abstract
The TP53 gene, frequently mutated across multiple cancer types, plays a pivotal role in regulating the cell cycle and apoptosis through its protein, p53. Missense variants of uncertain significance (VUSs) in TP53 present challenges in understanding their impact on protein function and complicate [...] Read more.
The TP53 gene, frequently mutated across multiple cancer types, plays a pivotal role in regulating the cell cycle and apoptosis through its protein, p53. Missense variants of uncertain significance (VUSs) in TP53 present challenges in understanding their impact on protein function and complicate clinical interpretation. This study aims to analyze the effects of missense VUSs in p53, as reported in the gnomAD database, with a specific focus on their impact on protein stability and phosphorylation. In this study, 33 missense VUSs in TP53 reported in the gnomAD database were analyzed using in silico tools, including PhosphositePlus v6.7.4, the Kinase Library v0.0.11, and Dynamut2. Of these analyzed variants, five disrupted known phosphorylation sites, while another five created new consensus sequences for phosphorylation. Moreover, 20 variants exhibited a moderate destabilizing effect on the protein structure. At least three missense VUSs were identified as potentially affecting p53 function, which may contribute to cancer development. These findings highlight the importance of integrating in silico structural and functional analysis to assess the pathogenic potential of missense VUSs. Full article
Show Figures

Figure 1

23 pages, 5040 KiB  
Article
Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics
by Carlos Suriel, Julián Bueno-Villegas and Ulises J. Jauregui-Haza
Ecologies 2025, 6(3), 55; https://doi.org/10.3390/ecologies6030055 (registering DOI) - 1 Aug 2025
Abstract
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships [...] Read more.
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships between population density/diversity and soil physicochemical variables. The research was cross-sectional and non-manipulative, with a descriptive and correlational scope; sampling followed a stratified systematic design, with eight transects and 32 quadrats of 1 m2, covering 21.7 km. We found a sandy loam soil with an extremely acidic pH. The highest population density of millipedes was recorded in Sabapa, and the lowest in Ecoag. The highest alpha diversity was shared between Boslat (Margalef = 1.72) and Pinoc (Shannon = 2.53); Sabapa and Boslat showed the highest Jaccard similarity (0.56). The null hypothesis test using the weighted Shannon index revealed a statistically significant difference in diversity between the Boslat–Sabapa and Pinoc–Sabapa pairs. Two of the species recorded highly significant indicator values (IndVal) for two habitat classes. We found significant correlations (p < 0.05) between various soil physicochemical variables and millipede density and diversity. Full article
Show Figures

Figure 1

28 pages, 1063 KiB  
Article
A Digital Identity Blockchain Ecosystem: Linking Government-Certified and Uncertified Tokenized Objects
by Juan-Carlos López-Pimentel, Javier Gonzalez-Sanchez and Luis Alberto Morales-Rosales
Appl. Sci. 2025, 15(15), 8577; https://doi.org/10.3390/app15158577 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a novel digital identity ecosystem built upon a hierarchical structure of Blockchain tokens, where both government-certified and uncertified tokens can coexist to represent various attributes of an individual’s identity. At the core of this system is the government, which functions [...] Read more.
This paper presents a novel digital identity ecosystem built upon a hierarchical structure of Blockchain tokens, where both government-certified and uncertified tokens can coexist to represent various attributes of an individual’s identity. At the core of this system is the government, which functions as a trusted authority capable of creating entities and issuing a unique, non-replicable digital identity token for each one. Entities are the exclusive owners of their identity tokens and can attach additional tokens—such as those issued by the government, educational institutions, or financial entities—to form a verifiable, token-based digital identity tree. This model accommodates a flexible identity framework that enables decentralized yet accountable identity construction. Our contributions include the design of a digital identity system (supported by smart contracts) that enforces uniqueness through state-issued identity tokens while supporting user-driven identity formation. The model differentiates between user types and certifies tokens according to their source, enabling a scalable and extensible structure. We also analyze the economic, technical, and social feasibility of deploying this system, including a breakdown of transaction costs for key stakeholders such as governments, end-users, and institutions like universities. Considering the benefits of blockchain, implementing a digital identity ecosystem in this technology is economically viable for all involved stakeholders. Full article
(This article belongs to the Special Issue Advanced Blockchain Technology and Its Applications)
Show Figures

Figure 1

14 pages, 3378 KiB  
Article
The pcGR Within the Hořava-Lifshitz Gravity and the Wheeler-deWitt Quantization
by Peter O. Hess, César A. Zen Vasconcellos and Dimiter Hadjimichef
Galaxies 2025, 13(4), 85; https://doi.org/10.3390/galaxies13040085 (registering DOI) - 1 Aug 2025
Abstract
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild [...] Read more.
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a quantized description of pcGR. Using perturbative methods and semi-classical approximations, we analyze the solutions of the equations and their physical implications. A key finding is the avoidance of the central singularity due to nonlinear interaction terms in the Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove essential for singularity resolution, even in standard GR. Furthermore, the theory offers new perspectives on dark energy, proposing an alternative mechanism for its accumulation. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

31 pages, 4915 KiB  
Article
Disaccharides and Fructooligosaccharides (FOS) Production by Wild Yeasts Isolated from Agave
by Yadira Belmonte-Izquierdo, Luis Francisco Salomé-Abarca, Mercedes G. López and Juan Carlos González-Hernández
Foods 2025, 14(15), 2714; https://doi.org/10.3390/foods14152714 (registering DOI) - 1 Aug 2025
Abstract
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic [...] Read more.
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic effects. In recent years, depending on the link type in the FOS structure, prebiotic activity has been shown to be increased. Studies on β-fructanofuranosidases (Ffasa), enzymes with fructosyltransferase activity in yeasts, have reported the production of 1F-FOS, 6F-FOS, and 6G-FOS. The aims of this investigation were to evaluate the capability of fifteen different yeasts to grow in Agave sp. juices and to determine the potential of these juices as substrates for FOS production. Additionally, the research aimed to corroborate and analyze the fructosyltransferase activity of enzymatic extracts obtained from agave yeasts by distinct induction media and to identify the role and optimal parameters (time and sucrose and glucose concentrations) for FOS and disaccharides production through Box–Behnken designs. To carry out such a task, different techniques were employed: FT-IR, TLC, and HPAEC-PAD. We found two yeasts with fructosyltransferase activity, P. kudriavzevii ITMLB97 and C. lusitaniae ITMLB85. In addition, within the most relevant results, the production of the FOS 1-kestose, 6-kestose, and neokestose, as well as disaccharides inulobiose, levanobiose, and blastose, molecules with potential applications, was determined. Overall, FOS production requires suitable yeast species, which grow in a medium under optimal conditions, from which microbial enzymes with industrial potential can be obtained. Full article
Show Figures

Figure 1

1 pages, 121 KiB  
Correction
Correction: Hernández-Juárez et al. Low-Frequency Acoustic Emissions During Granular Discharge in Inclined Silos. Fluids 2025, 10, 138
by Josué Roberto Hernández-Juárez, Abel López-Villa, Abraham Medina and Daniel Armando Serrano Huerta
Fluids 2025, 10(8), 202; https://doi.org/10.3390/fluids10080202 (registering DOI) - 1 Aug 2025
Abstract
The authors would like to make the following correction to this published paper [...] Full article
20 pages, 1334 KiB  
Article
Chitosan Nanoparticles Encapsulating Oregano Oil: Effects on In Vitro Ruminal Fermentation from Goat Rumen Fluid
by Gerardo Méndez-Zamora, Jorge R. Kawas, Sara Paola Hernández-Martínez, Gustavo Sobrevilla-Hernández, Sugey Ramona Sinagawa-García, Daniela S. Rico-Costilla and Jocelyn Cyan López-Puga
Animals 2025, 15(15), 2261; https://doi.org/10.3390/ani15152261 (registering DOI) - 1 Aug 2025
Abstract
This study evaluated the effects of liquid oregano oil, chitosan nanoparticles with encapsulated liquid oregano oil, and a negative control of empty chitosan nanoparticles on in vitro ruminal fermentation. Three Boer goats were used as ruminal fluid donors, fed with a formulated ration [...] Read more.
This study evaluated the effects of liquid oregano oil, chitosan nanoparticles with encapsulated liquid oregano oil, and a negative control of empty chitosan nanoparticles on in vitro ruminal fermentation. Three Boer goats were used as ruminal fluid donors, fed with a formulated ration for 21 d for inoculum adaptation. Treatments tested on in vitro assays were diet without oregano oil or nanoparticles (CON); diet with 100 ppm of oregano oil in nanoparticles (100N); diet with 300 ppm of liquid oregano oil (300L); diet with 300 ppm of oregano oil in nanoparticles (300N); and diet with 300 ppm of empty nanoparticles (300CHN). The variables studied were in vitro dry matter digestibility (ivDMD), in vitro neutral detergent fiber digestibility (ivNDFDom), total gas production (TGP), ammonia nitrogen concentration (NH3), and pH. The experimental design was a randomized complete block design. Linear and quadratic regressions were used to identify dependence and inflection points. The ivDMD increased at 12, 36, and 48 h, with 300N and with 300L exhibiting increased ivNDFDom at 36 h. Ruminal pH was highest (p < 0.05) with 300CHN at 36 h. For first-order regression analysis of TGP, coefficients (β) were highest (p < 0.05) for 300N. In conclusion, 300N increased ruminal fermentation in vitro, as reflected by increases in ivDMD, ivNDFDom, and TGP. Full article
Show Figures

Figure 1

21 pages, 1306 KiB  
Article
Dual Quaternion-Based Forward and Inverse Kinematics for Two-Dimensional Gait Analysis
by Rodolfo Vergara-Hernandez, Juan-Carlos Gonzalez-Islas, Omar-Arturo Dominguez-Ramirez, Esteban Rueda-Soriano and Ricardo Serrano-Chavez
J. Funct. Morphol. Kinesiol. 2025, 10(3), 298; https://doi.org/10.3390/jfmk10030298 (registering DOI) - 1 Aug 2025
Abstract
Background: Gait kinematics address the analysis of joint angles and segment movements during walking. Although there is work in the literature to solve the problems of forward (FK) and inverse kinematics (IK), there are still problems related to the accuracy of the estimation [...] Read more.
Background: Gait kinematics address the analysis of joint angles and segment movements during walking. Although there is work in the literature to solve the problems of forward (FK) and inverse kinematics (IK), there are still problems related to the accuracy of the estimation of Cartesian and joint variables, singularities, and modeling complexity on gait analysis approaches. Objective: In this work, we propose a framework for two-dimensional gait analysis addressing the singularities in the estimation of the joint variables using quaternion-based kinematic modeling. Methods: To solve the forward and inverse kinematics problems we use the dual quaternions’ composition and Damped Least Square (DLS) Jacobian method, respectively. We assess the performance of the proposed methods with three gait patterns including normal, toe-walking, and heel-walking using the RMSE value in both Cartesian and joint spaces. Results: The main results demonstrate that the forward and inverse kinematics methods are capable of calculating the posture and the joint angles of the three-DoF kinematic chain representing a lower limb. Conclusions: This framework could be extended for modeling the full or partial human body as a kinematic chain with more degrees of freedom and multiple end-effectors. Finally, these methods are useful for both diagnostic disease and performance evaluation in clinical gait analysis environments. Full article
Show Figures

Figure 1

27 pages, 4070 KiB  
Article
Quantum Transport in GFETs Combining Landauer–Büttiker Formalism with Self-Consistent Schrödinger–Poisson Solutions
by Modesto Herrera-González, Jaime Martínez-Castillo, Pedro J. García-Ramírez, Enrique Delgado-Alvarado, Pedro Mabil-Espinosa, Jairo C. Nolasco-Montaño and Agustín L. Herrera-May
Technologies 2025, 13(8), 333; https://doi.org/10.3390/technologies13080333 (registering DOI) - 1 Aug 2025
Abstract
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based [...] Read more.
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based field-effect transistors (GFETs) implemented in the open-source Octave programming language. The proposed simulation model (named SimQ) combines the Landauer–Büttiker formalism with self-consistent Schrödinger–Poisson solutions, enabling reliable simulations of transport phenomena. Our approach agrees well with established models, achieving Landauer–Büttiker transmission and tunneling transmission of 0.28 and 0.92, respectively, which are validated against experimental data. The model can predict key GFET characteristics, including carrier mobilities (500–4000 cm2/V·s), quantum capacitance effects, and high-frequency operation (80–100 GHz). SimQ offers detailed insights into charge distribution and wave function evolution, achieving an enhanced computational efficiency through optimized algorithms. Our work contributes to the modeling of graphene-based field-effect transistors, providing a flexible and accessible simulation platform for designing and optimizing GFETs with potential applications in the next generation of electronic devices. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

20 pages, 1876 KiB  
Article
Evaluation of Clean-Label Additives to Inhibit Molds and Extend the Shelf Life of Preservative-Free Bread
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo, Beatriz Mejía-Garibay, Nelly Ramírez-Corona and Emma Mani-López
Microbiol. Res. 2025, 16(8), 179; https://doi.org/10.3390/microbiolres16080179 (registering DOI) - 1 Aug 2025
Abstract
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and [...] Read more.
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and moisture content of fresh bread were determined. In addition, selected fermentates were characterized physicochemically. Fermentates, defined as liquid or powdered preparations containing microorganisms, their metabolites, and culture supernatants, were tested at varying concentrations (1% to 12%) to assess their antimicrobial performance and impact on bread quality parameters, including moisture content, water activity, and pH. The results showed significant differences in fermentate efficacy, with Product A as the best mold growth inhibitor in vitro and a clear dose-dependent response. For Penicillium corylophilum, inhibition increased from 51.90% at 1% to 62.60% at 4%, while P. chrysogenum had an inhibition ranging from 32.26% to 34.49%. Product F exhibited moderate activity on both molds at 4%, inhibiting between 28.48% and 46.27%. The two molds exhibited differing sensitivities to the fermentates, with P. corylophilum consistently more susceptible to inhibition. Product A displayed a low pH (2.61) and high levels of lactic acid (1053.6 mmol/L) and acetic acid (1061.3 mmol/L). Product F presented a similar pH but lower levels of lactic and acetic acid. A time-to-growth model, validated by significant coefficients (p < 0.05) and high predictive accuracy (R2 > 0.95), was employed to predict the appearance of mold on bread loaves. The model revealed that higher concentrations of fermentates A and F delayed mold growth, with fermentate A demonstrating superior efficacy. At 2% concentration, fermentate A delayed mold growth for 8 days, compared to 6 days for fermentate F. At 8% concentration, fermentate A prevented mold growth for over 25 days, significantly outperforming the control (4 days). Additionally, fermentates influenced bread quality parameters, with fermentate A improving crust moisture retention and reducing water activity at higher concentrations. These findings highlight the potential of fermentates as sustainable, consumer-friendly alternatives to synthetic preservatives, offering a viable solution to the challenge of bread spoilage while maintaining product quality. Full article
(This article belongs to the Collection Microbiology and Technology of Fermented Foods)
Show Figures

Figure 1

12 pages, 2519 KiB  
Article
Mathematical Formulation of Causal Propagation in Relativistic Ideal Fluids
by Dominique Brun-Battistini, Alfredo Sandoval-Villalbazo and Hernando Efrain Caicedo-Ortiz
Axioms 2025, 14(8), 598; https://doi.org/10.3390/axioms14080598 (registering DOI) - 1 Aug 2025
Abstract
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and [...] Read more.
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and density fluctuations, clarifying its hyperbolic nature and the associated characteristic propagation speeds. The analysis confirms that thermal fluctuations in a simple non-degenerate relativistic fluid satisfy a causal wave equation in the Euler regime, and it recovers the classical expression for the speed of sound in the non-relativistic limit. This work offers enhanced mathematical and physical insights, reinforcing the validity of the hyperbolic description and suggesting a foundation for future studies in dissipative relativistic hydrodynamics. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 (registering DOI) - 1 Aug 2025
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

18 pages, 1922 KiB  
Article
Genomic and Cytotoxic Damage in Wistar Rats and Their Newborns After Transplacental Exposure to Hibiscus sabdariffa Hydroalcoholic Extract
by Yelin Tobanche Mireles, Ana Lourdes Zamora-Pérez, Marisol Galván Valencia, Susana Vanessa Sánchez de la Rosa, Fuensanta del Rocío Reyes Escobedo and Blanca Patricia Lazalde-Ramos
Int. J. Mol. Sci. 2025, 26(15), 7448; https://doi.org/10.3390/ijms26157448 (registering DOI) - 1 Aug 2025
Abstract
Hibiscus sabdariffa (Hs) is a tropical plant with a wide range of therapeutic properties; however, few studies have evaluated its potential adverse effects. In the present study, the cytotoxic and genotoxic effects of the hydroalcoholic extract of Hs (EHHs) dried calyces [...] Read more.
Hibiscus sabdariffa (Hs) is a tropical plant with a wide range of therapeutic properties; however, few studies have evaluated its potential adverse effects. In the present study, the cytotoxic and genotoxic effects of the hydroalcoholic extract of Hs (EHHs) dried calyces administered during gestation were assessed in Wistar rats and their newborns using the micronucleus assay in peripheral blood and the quantification of malondialdehyde (MDA) in various tissues. Three different doses of EHHs (500, 1000, and 2000 mg/Kg) were administered orally to five pregnant Wistar rats per group during the final days of gestation (days 16–20). Blood samples were collected every 24 h during the last six days of gestation and from the neonates at birth, along with tissue samples for MDA quantification. EHHs induced myelosuppression in the mothers and genotoxicity in their newborns, as well as cytotoxicity, evidenced by increased MDA levels in serum, liver, and kidneys of the mothers, and in the liver, kidneys, brain, and muscle tissues of the neonates. These findings provide important insights into the safety profile of Hs, and its use is therefore recommended only under the supervision of a qualified healthcare professional. Full article
(This article belongs to the Special Issue Reproductive Toxicity of Chemicals)
Show Figures

Figure 1

Back to TopTop