Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,035)

Search Parameters:
Keywords = muscle timing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

15 pages, 1306 KiB  
Article
Measurement Reliability for the Anatomical Characteristics of Cervical Muscles Using Musculoskeletal Ultrasound in Healthy Individuals
by Georgios Sidiropoulos, Nikolaos Strimpakos, Asimakis K. Kanellopoulos, Maria Tsekoura, Konstantinos Alexiou, Olympia Papakonstantinou and Zacharias Dimitriadis
Muscles 2025, 4(3), 28; https://doi.org/10.3390/muscles4030028 - 5 Aug 2025
Abstract
Background: The reliable assessment of cervical muscle morphology is essential for both clinical and research use. However, evidence on the reliability of ultrasound measurements remains limited. Objective: To investigate the intra-rater and test–retest reliability of morphological measurements of the Longus Colli, Sternocleidomastoid, Multifidus [...] Read more.
Background: The reliable assessment of cervical muscle morphology is essential for both clinical and research use. However, evidence on the reliability of ultrasound measurements remains limited. Objective: To investigate the intra-rater and test–retest reliability of morphological measurements of the Longus Colli, Sternocleidomastoid, Multifidus Cervicis, and Semispinalis Capitis muscles using musculoskeletal ultrasound. Methods: Cross-sectional area, anteroposterior, and lateral dimensions were assessed using B-mode ultrasound. Anterior neck muscles were scanned in the supine position, while posterior neck muscles were scanned in the prone position. Each muscle was measured three times (to assess intra-rater reliability), which was repeated after 30 min (to assess test–retest reliability). Measurements were also normalized according to BMI and neck circumference. Results: Intra-rater reliability was found to be good to excellent for the Longus Colli (ICC = 0.77–0.92), excellent for the Sternocleidomastoid (ICC = 0.93–0.99), good to excellent for the Semispinalis Capitis (ICC = 0.89–0.97), and moderate to excellent for the Multifidus Cervicis (ICC = 0.69–0.92). Test–retest reliability was found to be moderate to good for the Longus Colli (ICC = 0.73–0.87), good to excellent for the Sternocleidomastoid (ICC = 0.84–0.98), good to excellent for the Semispinalis Capitis (ICC = 0.78–0.95), and good to excellent for the Multifidus Cervicis (ICC = 0.80–0.92). Conclusions: Musculoskeletal ultrasound demonstrates strong reliability for cervical muscle assessment, supporting its clinical use. Full article
Show Figures

Figure 1

20 pages, 1773 KiB  
Article
Make Acetylcholine Great Again! Australian Skinks Evolved Multiple Neurotoxin-Proof Nicotinic Acetylcholine Receptors in Defiance of Snake Venom
by Uthpala Chandrasekara, Marco Mancuso, Glenn Shea, Lee Jones, Jacek Kwiatkowski, Dane Trembath, Abhinandan Chowdhury, Terry Bertozzi, Michael G. Gardner, Conrad J. Hoskin, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2025, 26(15), 7510; https://doi.org/10.3390/ijms26157510 - 4 Aug 2025
Viewed by 200
Abstract
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the [...] Read more.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit’s orthosteric site that prevent pathophysiological binding by α-neurotoxins. We sampled a broad taxonomic range of Australian skinks and sequenced the nAChR α1 subunit gene. Key resistance-conferring mutations at the toxin-binding site (N-glycosylation motifs, proline substitutions, arginine insertions, changes in the electrochemical state of the receptor, and novel cysteines) were identified and mapped onto the skink organismal phylogeny. Comparisons with other venom-resistant taxa (amphibians, mammals, and reptiles) were performed, and structural modelling and binding assays were used to evaluate the impact of these mutations. Multiple independent origins of α-neurotoxin resistance were found across diverse skink lineages. Thirteen lineages evolved at least one resistance motif and twelve additional motifs evolved within these lineages, for a total of twenty-five times of α-neurotoxic venoms resistance. These changes sterically or electrostatically inhibit neurotoxin binding. Convergent mutations at the orthosteric site include the introduction of N-linked glycosylation sites previously known from animals as diverse as cobras and mongooses. However, an arginine (R) substitution at position 187 was also shown to have evolved on multiple occasions in Australian skinks, a modification previously shown to be responsible for the Honey Badger’s iconic resistance to cobra venom. Functional testing confirmed this mode of resistance in skinks. Our findings reveal that venom resistance has evolved extensively and convergently in Australian skinks through repeated molecular adaptations of the nAChR in response to the enormous selection pressure exerted by elapid snakes subsequent to their arrival and continent-wide dispersal in Australia. These toxicological findings highlight a remarkable example of convergent evolution across vertebrates and provide insight into the adaptive significance of toxin resistance in snake–lizard ecological interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 278
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 - 2 Aug 2025
Viewed by 203
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 - 2 Aug 2025
Viewed by 235
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 680 KiB  
Article
Anthropometric Characteristics and Somatotype of Young Slovenian Tennis Players
by Ales Germic, Tjasa Filipcic and Ales Filipcic
Appl. Sci. 2025, 15(15), 8584; https://doi.org/10.3390/app15158584 (registering DOI) - 1 Aug 2025
Viewed by 225
Abstract
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 [...] Read more.
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 years) over the last two decades. Using standardised anthropometric measurements and the Heath-Carter method, somatotypes were calculated and analysed by age and gender. The results showed clear age- and gender-specific trends and differences in both somatotype profiles and detailed anthropometric characteristics. Significant differences were found in height, body mass, BMI, skinfolds, girths, and limb lengths, with gender differences becoming more pronounced in the older age groups. In boys, mesomorphy increased with age, reflecting an increase in musculature, while in girls, a shift from ectomorphic to endomorphic profiles was observed during adolescence, probably influenced by pubertal and hormonal changes. Significant sex-specific differences were observed in all three somatotype components in most age groups, especially in fat mass and muscle. The longitudinal design provides valuable data and insights into the evolving physical profiles of adolescent tennis players that support more effective talent identification and training. Despite the changes that have taken place in tennis over time, standardised measurement protocols ensured comparability, making the results relevant for practitioners working with adolescents in tennis development. Full article
(This article belongs to the Special Issue Human Performance and Health in Sport and Exercise—2nd Edition)
Show Figures

Figure 1

18 pages, 1467 KiB  
Article
Effects of a 16-Week Green Exercise Program on Body Composition, Sleep, and Nature Connection in Postmenopausal Women
by Helena Moreira, Chiara Tuccella, Emília Alves, Andreia Teixeira, Carlos Moreira, Irene Oliveira, Valerio Bonavolontà and Catarina Abrantes
Int. J. Environ. Res. Public Health 2025, 22(8), 1216; https://doi.org/10.3390/ijerph22081216 - 1 Aug 2025
Viewed by 149
Abstract
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program [...] Read more.
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program (cardiorespiratory, strength, balance, coordination, and flexibility training) in postmenopausal women, consisting of three 60 min sessions per week. Participants were non-randomly assigned to an experimental group (EG, n = 55) and a control group (CG, n = 20). Measurements were taken at baseline and after 16 weeks, including body composition, sleep (duration and quality), and connection with nature. No significant differences were observed between groups at baseline. After the intervention, the EG and CG presented significant differences (p ≤ 0.01) in the rates of change in body mass, fat mass (FM; −9.26% and −1.21%, respectively), and visceral fat level (VFL; −13.46 points and −3.80 points). These differences were also observed for the sleep fragmentation index (p ≤ 0.01), but not for connection with nature. A significant interaction effect (p < 0.01) of time × group was observed for %FM, VFL, and appendicular skeletal muscle mass. Exercise duration had an effect (p = 0.043) on participants’ personal and affective identification with nature, and the time × group × medication interaction significantly influenced sleep efficiency (p = 0.034). The exercise program proved effective in reducing total and central adiposity levels; however, it did not lead to improvements in sleep duration, sleep quality, or connection with nature. Full article
Show Figures

Figure 1

12 pages, 501 KiB  
Article
Effect of Sarcopenia on the Outcomes of Radiofrequency Ablation of Medial Branch Nerves for Lumbar Facet Arthropathy in Patients Aged 60 Years and Older: A Retrospective Analysis
by Seung Hee Yoo and Won-Joong Kim
J. Pers. Med. 2025, 15(8), 344; https://doi.org/10.3390/jpm15080344 - 1 Aug 2025
Viewed by 153
Abstract
Background/Objectives: Sarcopenia is defined by the progressive loss of muscle mass, strength, and/or physical performance associated with aging. Radiofrequency ablation (RFA) of the medial branch nerves is a well-established and effective treatment for lumbar facetogenic pain. While sarcopenia is associated with poor [...] Read more.
Background/Objectives: Sarcopenia is defined by the progressive loss of muscle mass, strength, and/or physical performance associated with aging. Radiofrequency ablation (RFA) of the medial branch nerves is a well-established and effective treatment for lumbar facetogenic pain. While sarcopenia is associated with poor outcomes following epidural steroid injections and lumbar spine surgeries, its impact on clinical outcomes in patients undergoing RFA for facetogenic pain remains unexplored. This study aims to evaluate the influence of sarcopenia on treatment outcomes in this patient cohort. Methods: Patients were classified into sarcopenia (n = 35) and non-sarcopenia groups (n = 67) based on predefined psoas muscle index (PMI) thresholds. The primary outcomes included changes in back pain intensity and the proportion of responders at 1, 3, and 6 months following RFA. The secondary outcome was to identify demographic, clinical, and sarcopenia-related factors predictive of treatment response at each follow-up interval. Results: Both groups demonstrated statistically significant improvements in pain scores compared to baseline at all follow-up points. However, the median pain scores at 3 months post-RFA remained significantly higher in the sarcopenia group. Despite this, the proportion of responders did not differ significantly between the two groups at any time point. At 3 months, the absence of prior spinal surgery was identified as a significant predictor of treatment response. At 6 months, favorable outcomes were significantly associated with the absence of diabetes, no history of spinal surgery, and a higher PMI. Conclusions: Sarcopenia may influence the extent of pain improvement following medial branch nerve RFA. Additionally, patient-specific factors, such as diabetes, prior spinal surgery, and PMI, should be considered when predicting treatment outcomes. Full article
Show Figures

Figure 1

13 pages, 286 KiB  
Article
Animal Performance and Carcass Characteristics of Crossbred Bulls Finished in Different Production Systems in the Tropics
by Jean Fagner Pauly, Jéssica Geralda Ferracini, Henrique Rorato Freire, Bianka Rocha Saraiva, Maribel Valero Velandia, Ana Guerrero, Rodolpho Martin do Prado and Ivanor Nunes do Prado
Appl. Sci. 2025, 15(15), 8497; https://doi.org/10.3390/app15158497 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Extensive beef systems in the tropics are the cheapest but require more land and longer rearing times with environmental impact. This study was carried out to evaluate three beef bull’s production systems in tropics: pasture-based system (PASTU), feedlot system immediately after weaning (FELOT) [...] Read more.
Extensive beef systems in the tropics are the cheapest but require more land and longer rearing times with environmental impact. This study was carried out to evaluate three beef bull’s production systems in tropics: pasture-based system (PASTU), feedlot system immediately after weaning (FELOT) and a system with the combination of rearing in pasture and finishing in feedlot (PRIME) on animal performance and carcass characteristics of 30 bulls crossbred Angus x Nellore. The final weight, average daily gain and carcass weight (hot and cold) were higher (p < 0.050) for the FELOT system, intermediate for the PRIME system and lowest for the PASTU system. The carcass dressing (hot and cold), dripping losses, ratio (Longissimus dorsi) and degree of finishing were similar (p > 0.050). The carcass pH24h was higher for the PRIME system (p < 0.010). Subcutaneous fat thickness (mm) was lower for the PASTU system (p < 0.050). Marbling was better for the PRIME system. The tissular composition was similar among systems related to muscle percentage but PASTU showed the highest bone percentage (p < 0.050) and lowest of adipose (p < 0.050). PRIME enable cost-effective, fast beef production with less environmental impact. Full article
(This article belongs to the Section Food Science and Technology)
10 pages, 529 KiB  
Article
Comparative Outcomes in Metastatic Spinal Cord Compression and Femoral Metastatic Disease: Distinct Clinical Entities with Divergent Prognoses?
by Oded Hershkovich, Mojahed Sakhnini, Eyal Ramu, Boaz Liberman, Alon Friedlander and Raphael Lotan
Medicina 2025, 61(8), 1390; https://doi.org/10.3390/medicina61081390 - 31 Jul 2025
Viewed by 162
Abstract
Background and Objectives: Acute metastatic cord compression (AMSCC) and femoral impending/pathological fracture negatively impact a patient’s quality of life, morbidity and survival, and are considered significant life events. This study aims to compare AMSCC and FMD as distinct yet overlapping metastatic orthopedic [...] Read more.
Background and Objectives: Acute metastatic cord compression (AMSCC) and femoral impending/pathological fracture negatively impact a patient’s quality of life, morbidity and survival, and are considered significant life events. This study aims to compare AMSCC and FMD as distinct yet overlapping metastatic orthopedic emergencies, addressing whether they represent sequential disease stages or distinct patient subpopulations—an analysis critical for prognosis and treatment planning. Materials and Methods: Records of all patients who underwent surgery for a femoral metastatic disease (FMD) over a decade (2004–2015) and patients who were treated for acute metastatic spinal compression (AMSCC) (2007–2017) were retrieved. There were no patients lost to follow-up. Results: The treatment cohorts were similar in terms of age, gender, tumour origin, and the number of spinal metastases. Fifty-four patients were diagnosed with AMSCC. Following treatment, the Frankel muscle grading improved by 0.5 ± 0.8 grades. Two hundred and eighteen patients underwent surgical intervention for FMD. Seventy percent of femoral metastases were located in the femoral neck and trochanteric area. Impending fractures accounted for 52% of the cohort. The FMD cohort, including impending and pathological fractures, was similar to the AMSCC cohort in terms of age and the time interval between cancer diagnosis and surgery (56.7 ± 74.2 vs. 51.6 ± 69.6, respectively, p = 0.646). The Karnofsky functional score was higher for the FMD cohort (63.3 ± 16.2) than for the AMSCC cohort (48.5 ± 19.5; p < 0.001). The mean survival time for the FMD cohort was double that of the AMSCC, at 18.4 ± 23.5 months versus 9.1 ± 13.6 months, respectively (p = 0.006). Conclusions: In conclusion, this study is novel in proposing that FMD and AMSCC are distinct clinical entities, differing in their impact on patient function and, most importantly, on patient survival. Full article
Show Figures

Figure 1

16 pages, 791 KiB  
Article
Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up
by Georges Kakavas, Florian Forelli, Yoann Demangeot, Vasileios Korakakis, Nikolaos Malliaropoulos and Nicola Maffulli
Diagnostics 2025, 15(15), 1920; https://doi.org/10.3390/diagnostics15151920 - 30 Jul 2025
Viewed by 230
Abstract
Background: Persistent neuromuscular deficits following anterior cruciate ligament reconstruction (ACLR) are frequently attributed to arthrogenic muscle inhibition (AMI). The type of autologous graft used may influence the trajectory of neuromuscular recovery. Objective: To investigate the influence of graft type—bone–patellar tendon–bone (BPTB), [...] Read more.
Background: Persistent neuromuscular deficits following anterior cruciate ligament reconstruction (ACLR) are frequently attributed to arthrogenic muscle inhibition (AMI). The type of autologous graft used may influence the trajectory of neuromuscular recovery. Objective: To investigate the influence of graft type—bone–patellar tendon–bone (BPTB), hamstring tendon (HT), and quadriceps tendon (QT)—on the contractile properties of periarticular knee muscles over a 9-month post-operative period. Hypothesis: Each graft type would result in distinct recovery patterns of muscle contractility, as measured by tensiomyography (TMG). Methods: Thirty-one patients undergoing ACLR with BPTB (n = 8), HT (n = 12), or QT (n = 11) autografts were evaluated at 3, 6, and 9 months post-operatively. TMG was used to measure contraction time (Tc) and maximal displacement (Dm) in the rectus femoris, vastus medialis, vastus lateralis, and biceps femoris. Results: Significant within-group improvements in Tc and Dm were observed across all graft types from 3 to 9 months (Tc: p < 0.001 to p = 0.02; Dm: p < 0.001 to p = 0.01). The QT group showed the most pronounced Tc reduction in RF (from 30.16 ± 2.4 ms to 15.44 ± 1.6 ms, p < 0.001) and VM (from 31.05 ± 2.6 ms to 18.65 ± 1.8 ms, p = 0.004). In contrast, HT grafts demonstrated limited Tc recovery in BF between 6 and 9 months compared to BPTB and QT (p < 0.001), indicating a stagnation phase. BPTB exhibited persistent bilateral deficits in both quadriceps and BF at 9 months. Conclusions: Autograft type significantly influences neuromuscular recovery patterns after ACLR. TMG enables objective, muscle-specific monitoring of contractile dynamics and may support future individualized rehabilitation strategies. Full article
(This article belongs to the Special Issue Diagnosis and Management of Sports Medicine)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Differences in Lower Limb Muscle Activity and Gait According to Walking Speed Variation in Chronic Stroke
by Yong Gyun Shin and Ki Hun Cho
Appl. Sci. 2025, 15(15), 8479; https://doi.org/10.3390/app15158479 - 30 Jul 2025
Viewed by 153
Abstract
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different [...] Read more.
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different speeds: slow (80% of self-selected speed), self-selected, and maximal speed. Surface electromyography was used to measure muscle activity in five paretic-side muscles (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius, and gluteus medius), while gait parameters, including stride length, stance and swing phases, single-limb support time, and the gait asymmetry index were assessed using a triaxial accelerometer. As walking speed increased, activity in the rectus femoris, biceps femoris, and gastrocnemius muscles significantly increased during the stance and swing phases (p < 0.05), whereas the gluteus medius activity tended to decrease. Stride length on the paretic and non-paretic sides significantly increased with faster walking speed (p < 0.05); however, no significant improvements were observed in other gait parameters or gait asymmetry. These findings suggest that although increasing walking speed enhances specific muscle activities, it does not necessarily improve overall gait quality or symmetry. Therefore, rehabilitation programs should incorporate multidimensional gait training that addresses speed and neuromuscular control factors such as balance and proprioception. Full article
Show Figures

Figure 1

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 - 30 Jul 2025
Viewed by 255
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 9867 KiB  
Article
Recurrence Patterns After Resection of Sacral Chordoma: Toward an Optimized Postoperative Target Volume Definition
by Hanna Waldsperger, Burkhard Lehner, Andreas Geisbuesch, Felix Jotzo, Eva Meixner, Laila König, Sebastian Regnery, Katharina Kozyra, Lars Wessel, Sandro Krieg, Klaus Herfarth, Jürgen Debus and Katharina Seidensaal
Cancers 2025, 17(15), 2521; https://doi.org/10.3390/cancers17152521 - 30 Jul 2025
Viewed by 133
Abstract
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing [...] Read more.
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing recurrence locations considering initial tumor extent, resection levels, and postoperative anatomical changes on MRI. In 18 patients, pre- and postoperative imaging enabled the spatial mapping of early recurrence origins relative to the initial tumor volume using isotropic expansions. The median initial gross tumor volume was 113 mL. Results: Recurrences were mostly multifocal and predominantly involved soft tissues (e.g., mesorectal/perirectal space (80.6%), piriformis and gluteal muscles (80.6% and 67.7%, respectively) and osseous structures, particularly the sacrum (87.1%)). The median time to recurrence was 15 months. The initial surgery was R0 in 17 patients (55%). The highest infiltrated sacral vertebra was S1 in 3%, S2 in 10%, S3 in 35%, S4 in 23%, S5 in 10%, and coccygeal in 19%. Anatomical changes post-resection, including rectal herniation into gluteal and subcutaneous tissues, significantly affected radiotherapy planning. Expansion of the initial tumor volume by 2 cm failed to encompass all recurrence origins in 72% of cases. A 5 cm expansion was required to achieve full coverage in 56% of patients, though 22% of recurrences still lay beyond this margin and the remaining were covered only partially. Conclusions: Recurrent sacrococcygeal chordomas exhibit complex, soft-tissue-dominant patterns and are influenced by significant anatomical displacement post-surgery. Standard target volume expansions are often insufficient to cover the predominantly multifocal recurrences. Full article
(This article belongs to the Special Issue Advanced Research on Spine Tumor)
Show Figures

Figure 1

Back to TopTop