Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = muscarinic receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 899 KB  
Article
Analysis of Pharmacokinetic and Pharmacodynamic Interactions Between Chlorpromazine and Risperidone via Simultaneous Measurement of Multiple Receptor Occupancy in the Rat Brain
by Gaku Akashita, Eriko Nakatani, Shimako Tanaka and Takashi Okura
Biomedicines 2026, 14(1), 118; https://doi.org/10.3390/biomedicines14010118 - 6 Jan 2026
Viewed by 261
Abstract
Background/Objectives: Combination therapy for schizophrenia may exacerbate side effects mediated by multiple brain receptors. This study aimed to elucidate the pharmacodynamic and pharmacokinetic interactions between chlorpromazine and risperidone. We investigated dopamine 2 (D2), serotonin 2A (5-HT2A), histamine 1 (H [...] Read more.
Background/Objectives: Combination therapy for schizophrenia may exacerbate side effects mediated by multiple brain receptors. This study aimed to elucidate the pharmacodynamic and pharmacokinetic interactions between chlorpromazine and risperidone. We investigated dopamine 2 (D2), serotonin 2A (5-HT2A), histamine 1 (H1), and muscarinic acetylcholine (mACh) receptor occupancy in the brain as well as pharmacokinetic interactions after oral administration of chlorpromazine and risperidone in rats. Methods: Rats were orally administered chlorpromazine, risperidone, or their combination. A tracer cocktail solution was injected intravenously to measure multiple receptor occupancies simultaneously. Tracer and drug concentrations in the brain tissue and plasma were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Receptor occupancy increased in a dose-dependent manner. The doses required for 70% D2 receptor occupancy were 4.5 mg/kg for chlorpromazine and 1.5 mg/kg for risperidone. Co-administration of chlorpromazine (4.5 mg/kg) and risperidone (1.5 mg/kg) resulted in an increase in D2 and 5-HT2A receptor occupancy to approximately 90%. Risperidone alone caused a transient increase in H1 receptor occupancy to 80%, while co-administration increased mACh receptor occupancy to 60%. Co-administration with chlorpromazine significantly increased the plasma concentrations of risperidone and its metabolite, paliperidone, and decreased the oral clearance of risperidone by 5.9-fold. Conclusions: Co-administration of chlorpromazine and risperidone increases the occupancy of D2, 5-HT2A, and mACh receptors in the rat brain and increases the plasma concentrations of risperidone and paliperidone, suggesting a potential risk of enhanced adverse effects due to both pharmacokinetic and pharmacodynamic interactions involving target and non-target brain receptors. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Graphical abstract

25 pages, 23264 KB  
Article
Influence of the Cholinergic System on the Pathogenesis of Glioblastoma: Impact of the Neutrophil Granulocytes
by Alejandra Infante Cruz, Paula María Saibene Vélez, Cynthia Arasanz, Micaela Rosato, Federico Remes Lenicov, Juan Iturrizaga, Martín Abelleyro, Marianela Candolfi, Eleonora Regueira, Gladys Hermida, Mónica Vermeulen, Silvia Berner, Francisco José Barrantes, Silvia de la Vega, Carolina Jancic, Marcela Solange Villaverde and Gabriela Verónica Salamone
Int. J. Mol. Sci. 2026, 27(1), 321; https://doi.org/10.3390/ijms27010321 - 27 Dec 2025
Viewed by 344
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Since numerous studies highlight the significance of cholinergic system components in tumor development, acetylcholine (ACh) and the differential activation of its receptors could play a crucial role in GBM progression. The [...] Read more.
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Since numerous studies highlight the significance of cholinergic system components in tumor development, acetylcholine (ACh) and the differential activation of its receptors could play a crucial role in GBM progression. The aim of this study was to test this hypothesis by assessing the relevance of the cholinergic system in GBM cells and their microenvironment. We analyzed bulk RNA-seq expression data using the TIMER2.0 web server, focusing on the impact of patient survival in relation to muscarinic receptors (CHRM) and neutrophil infiltration in low-grade glioma (LGG) and GBM. Our analysis revealed a marked decrease in survival associated with all CHRMs, particularly in LGG. Moreover, GBM showed higher neutrophil infiltration and reduced survival, especially in relation to CHRM3. These findings were validated in the U251 cell line and in human GBM tumor biopsies (GBM-b), which also displayed CHRM3 expression. Additionally, we show that GBM cells exposed to cholinergic stimulation exhibited increased vascular endothelial growth factor (VEGF), IL-8 production, and PD-L1 expression, while the VEGF increase was blocked by tiotropium (Tio), a CHRM3 antagonist. Similarly, polymorphonuclear cells from GBM patients (PMN-p) displayed increased PD-L1 expression and IL-8 production upon cholinergic stimulation. Finally, as we previously reported on the relevance of thymic stromal lymphopoietin (TSLP) in GBM pathophysiology, here, we found that TSLP upregulated CHRM3 expression. Our findings highlight the importance of the cholinergic system in the tumor microenvironment, where it may act directly on tumor cells or influence neutrophil physiology, thereby modulating tumor progression. Full article
Show Figures

Figure 1

27 pages, 4806 KB  
Article
Contractile Effects of Glucagon in Mouse Cardiac Preparations
by Joachim Neumann, Franziska Schmidt, Pauline Braekow, Uwe Kirchhefer, Jan Klimas, Katarina Hadova and Ulrich Gergs
Int. J. Mol. Sci. 2026, 27(1), 126; https://doi.org/10.3390/ijms27010126 - 22 Dec 2025
Viewed by 314
Abstract
Glucagon is an endogenous peptide that is produced in the pancreas. Via glucagon receptors, glucagon increases the beating rate in cultured rat neonatal cardiomyocytes and also in isolated right atrial preparations from adult rats. Moreover, in living adult mice, injections of glucagon can [...] Read more.
Glucagon is an endogenous peptide that is produced in the pancreas. Via glucagon receptors, glucagon increases the beating rate in cultured rat neonatal cardiomyocytes and also in isolated right atrial preparations from adult rats. Moreover, in living adult mice, injections of glucagon can elevate the heart rate. It is unknown whether these effects of glucagon in living adult mice are mediated via central glucagon receptors or via a direct effect on cardiac glucagon receptors. Thus, we tested the hypothesis that glucagon can exert a direct positive chronotropic effect in the adult mouse heart. We measured the contractile effects of cumulatively increasing concentrations of glucagon (0.1–100 nM) in isolated paced (1 Hz) left atrial preparations, in isolated spontaneously beating right atrial preparations and in isolated spontaneously beating retrogradely perfused whole hearts. We detected in isolated right atrial preparations time- and concentration-dependent positive chronotropic effects of glucagon that were reversed by the glucagon receptor antagonists SC203972 and desglucagon. The positive chronotropic effects of glucagon were also attenuated by 1 µM of ivabradine, an inhibitor of the hyperpolarization-activated cation channels (HCN), but not by 100 nM rolipram, a phosphodiesterase 4 inhibitor, nor by 10 µM of propranolol, a β-adrenoceptor antagonist. Moreover, the positive chronotropic effects of glucagon were also attenuated by stimulation of the A1-adenosine receptor or muscarinic receptors. Glucagon decreased the force of contraction in right atrial preparations. In left atrial preparations, glucagon failed to alter the force of contraction. In isolated adult mouse hearts perfused in the Langendorff mode, 10 nM of glucagon increased the beating rate and reduced left ventricular force of contraction. The gene expression of the glucagon receptors was lowest in the left atrium, higher in the ventricle and highest in the right atrium of adult mice. In summary, glucagon exerted a positive chronotropic effect in the mouse heart via glucagon receptors, mediated, at least in part, via HCN channels in the sinus node. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 1249 KB  
Article
Rosmarinic Acid Induces Vasorelaxation via Endothelium-Dependent, Potassium Channel-Related, and Calcium-Modulated Pathways: Evidence from Rat Aortic Rings
by Serdar Sahinturk and Naciye Isbil
Biomedicines 2025, 13(12), 2936; https://doi.org/10.3390/biomedicines13122936 - 29 Nov 2025
Viewed by 662
Abstract
Background: Hypertension and its complications are a major global health problem, and natural compounds with vasorelaxant effects are being investigated as potential antihypertensive agents. Objective: This study aimed to determine whether rosmarinic acid (RA) induces vasorelaxation in the rat thoracic aorta and to [...] Read more.
Background: Hypertension and its complications are a major global health problem, and natural compounds with vasorelaxant effects are being investigated as potential antihypertensive agents. Objective: This study aimed to determine whether rosmarinic acid (RA) induces vasorelaxation in the rat thoracic aorta and to elucidate the underlying mechanisms. Methods: Isolated thoracic aortic rings, with or without endothelium, were precontracted with phenylephrine and subsequently exposed to cumulative concentrations of RA. The roles of endothelium-derived factors, potassium channels, and calcium signaling were evaluated using selective pharmacological inhibitors and activators. In addition, the involvement of the AMPK pathway, adenylate cyclase/cAMP pathway, PKC signaling, β-adrenergic receptors, muscarinic receptors, and angiotensin II in RA-induced vasorelaxation was investigated. Results: RA induced a concentration-dependent vasorelaxation in endothelium-intact thoracic aortic rings (p < 0.001; pD2 = 7.67 ± 0.04). The vasorelaxant effect of RA was attenuated in endothelium-denuded vessels (pD2: 5.26 ± 0.18). The relaxation response was significantly attenuated by inhibitors of the PI3K/Akt/eNOS/NO/cGMP pathway and by blockers of BKCa, IKCa, and Kv potassium channels (p < 0.001). Furthermore, RA markedly inhibited both extracellular Ca2+ influx and intracellular Ca2+ release from the sarcoplasmic reticulum (p < 0.001). RA incubation also significantly reduced the contractions induced by angiotensin II (Ang II) and by the PKC activator PMA (p < 0.001). Other tested pathways had no significant influence on the vasorelaxant effect of RA (p > 0.05). Conclusions: These findings demonstrate that rosmarinic acid induces both endothelium-dependent and endothelium-independent vasorelaxation in the rat thoracic aorta through activation of the PI3K/Akt/eNOS/NO/cGMP pathway, opening of BKCa, IKCa, and Kv potassium channels, and suppression of Ca2+ mobilization. Additionally, inhibition of PKC- and angiotensin II-mediated vascular contraction contributes to RA-induced vasorelaxation. RA may therefore have therapeutic potential in the management of hypertension. Full article
Show Figures

Graphical abstract

21 pages, 2904 KB  
Article
Negative Allosteric Modulation of Agonist-Induced M2 Muscarinic Receptor/β-Arrestin Interaction by Serum Autoantibodies from Patients with Chronic Chagas Disease
by Laura C. Carrera Páez, Sabrina P. Beltrame, Sergio R. Auger, Ahmad H. Sabra, Claudio R. Bilder, Isabel M. Irurzun, Claudia I. Waldner and Juan C. Goin
Cells 2025, 14(23), 1857; https://doi.org/10.3390/cells14231857 - 25 Nov 2025
Viewed by 636
Abstract
Inhibition of agonist-induced M2 muscarinic receptor (M2R) activation by functional anti-M2R autoantibodies has been associated with cardiac parasympathetic dysfunction in patients with chronic Chagas disease (CD). This study explored the allosteric nature of that inhibitory effect by assessing [...] Read more.
Inhibition of agonist-induced M2 muscarinic receptor (M2R) activation by functional anti-M2R autoantibodies has been associated with cardiac parasympathetic dysfunction in patients with chronic Chagas disease (CD). This study explored the allosteric nature of that inhibitory effect by assessing the ability of serum IgG from patients with CD and dysautonomia (DCD IgG) to modulate the interaction between M2R and β-arrestins in HEK 293T cells using bioluminescence resonance energy transfer. DCD IgG alone did not stimulate arrestin-2 or arrestin-3 recruitment. When cells were preincubated with DCD IgG and then treated with carbachol, arrestin-2 translocation decreased in a concentration-dependent manner, while arrestin-3 recruitment remained unaffected. Inhibition curve analysis showed a submaximal inhibitory effect (68.1 ± 2.4%) and a Hill slope less than −1 (−4.03 ± 0.39). Carbachol concentration–response assays after preincubation with DCD IgG revealed a noncompetitive inhibition of arrestin-2 recruitment, with no change in arrestin-3 translocation. Unlikely, simultaneous exposure to DCD IgG and carbachol potentiated agonist-induced Arr-2 recruitment. We conclude that anti-M2R autoantibodies selectively inhibit agonist-induced arrestin-2 recruitment, acting as negative allosteric modulators of agonist efficacy. The direction of autoantibody-induced allosteric modulation depends on the timing of IgG application relative to the agonist and the duration of receptor exposure to autoantibodies. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

12 pages, 1559 KB  
Article
Modulation of Master Transcription Factor Expression of Nile Tilapia Leukocytes via Cholinergic Pathways
by Manuel Ivan Girón-Pérez, Kenia María Ramírez-Ibarra, Carlos Eduardo Covantes-Rosales, Daniel Alberto Girón-Pérez, Francisco Fabián Razura-Carmona, Arturo Contis-Montes de Oca, Jorge Morales-Montor, Lenin Pavón and Gladys Alejandra Toledo-Ibarra
Int. J. Mol. Sci. 2025, 26(22), 11206; https://doi.org/10.3390/ijms262211206 - 20 Nov 2025
Viewed by 326
Abstract
Teleost fish are the first evolutionary group to exhibit an innate and adaptive immune system. Within the mechanisms of adaptive immunity, fish possess, among others, T-helper cells (CD4-like) and their differentiation machinery, regulated by the master transcription factors T-bet, GATA3, Foxp3, and RORγ. [...] Read more.
Teleost fish are the first evolutionary group to exhibit an innate and adaptive immune system. Within the mechanisms of adaptive immunity, fish possess, among others, T-helper cells (CD4-like) and their differentiation machinery, regulated by the master transcription factors T-bet, GATA3, Foxp3, and RORγ. Many studies support the existence of a non-neuronal cholinergic system involved in the immune response, named after the ability of leukocytes to synthesize de novo acetylcholine (ACh). Organophosphorus pesticides (OPs), such as diazoxon (DXN), are examples of compounds that act as cholinergic disruptors with immunotoxic effects. The present study aimed to evaluate the expression of transcription factors in leukocytes (spleen mononuclear cells, SMNCs) of Nile tilapia by modulating cholinergic pathways in immune cells using agonists, antagonists, and diazoxon (DXN), an anticholinesterase substance. The obtained data showed a significant increase in RORγ mRNA expression upon stimulation with the nicotinic agonist, whereas activation of the muscarinic receptor with its agonist increased T-bet mRNA expression. An alteration in RORγ expression levels induced by DXN exposure was also observed. The results suggest a probable directing of the immune response towards a pro-inflammatory profile orchestrated mainly by RORγ and T-bet transcription factors in response to cholinergic stimuli. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Toxicity Caused by Environmental Pollutants)
Show Figures

Figure 1

28 pages, 5847 KB  
Article
Dual-Algorithm Integration Framework Reveals Qing-Wei-Zhi-Tong’s Dual Mechanisms in Chronic Gastritis
by Zhijie Shu, Ying Huang, Yujie Xi, Bo Zhang, Rui Cai, He Xu and Feifei Guo
Pharmaceuticals 2025, 18(11), 1743; https://doi.org/10.3390/ph18111743 - 17 Nov 2025
Viewed by 1309
Abstract
Background: Chronic gastritis (CG) involves gastric mucosal imbalance, with H. pylori (>90% cases), acid-pepsin imbalance, and bile reflux as druggable mechanisms. FDA-approved drugs show limited efficacy against antibiotic-resistant strains and fail to target undruggable pathways (e.g., inflammation, autoimmune atrophy). Traditional Chinese Medicine [...] Read more.
Background: Chronic gastritis (CG) involves gastric mucosal imbalance, with H. pylori (>90% cases), acid-pepsin imbalance, and bile reflux as druggable mechanisms. FDA-approved drugs show limited efficacy against antibiotic-resistant strains and fail to target undruggable pathways (e.g., inflammation, autoimmune atrophy). Traditional Chinese Medicine (TCM), particularly Qing-Wei-Zhi-Tong micro-pills (QWZT), offers multi-target advantages, though its mechanisms remain poorly understood. Methods: The dual-algorithm integration framework predicts QWZT’s pharmacological effects to treat gastritis. For druggable processes (pathways targeted by existing drugs), the structure–target–pathway similarity algorithm quantifies QWZT similar activities to FDA drugs, validated by gastrointestinal smooth muscle experiments. For undruggable processes (novel biological mechanisms not addressed by current therapies), the multi-target perturbation algorithm predicts QWZT’s unique capacity to undruggable processes and is validated via LPS-induced inflammation in RAW264.7 and GES-1 cells. Results: Structure–target–pathway similarity algorithm identified QWZT compounds sharing prokinetic mechanisms with FDA drugs, validated by dopamine-induced relaxations and acetylcholine-induced contractions in gastrointestinal smooth muscle. Multi-target perturbation algorithm quantified QWZT’s superior disruption of undruggable immune/inflammation networks, confirmed by restored cell viability in LPS-injured GES-1 cells and significantly reduced the expression of NO, IL-6, and TNF-α in RAW264.7 cells via key compounds (paeoniflorin and berberine). Conclusions: QWZT may exert its regulatory effects on gastrointestinal smooth muscle by mediating muscarinic and dopamine receptor D2 (DRD2), and reduce the expression of NO, IL-6, and TNF-α to achieve anti-inflammatory effects, thereby effectively treating CG. The integration strategy that integrates algorithms and experiments to reveal the common and distinct mechanisms of QWZT compared to FDA-approved drugs, offering a novel approach for studying Traditional Chinese Medicine mechanisms. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

33 pages, 5246 KB  
Article
Mechanisms Underlying the Cognitive Benefits of Solanum macrocarpon Leaf n-Butanol Extract: Acetylcholinesterase Inhibition and Oxidative Stress Modulation
by Ion Brinza, Ibukun Oluwabukola Oresanya, Ilkay Erdogan Orhan, Hasya Nazlı Gök, Lucian Hritcu and Razvan Stefan Boiangiu
Plants 2025, 14(21), 3283; https://doi.org/10.3390/plants14213283 - 27 Oct 2025
Viewed by 690
Abstract
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like [...] Read more.
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like behaviors associated with neurodegenerative conditions. Zebrafish were chronically exposed to SMB at concentrations of 1, 3, and 6 mg/L. Behavioral assessments included anxiety-related paradigms, such as novel tank diving (NTT), novel approach (NA), and light–dark transition (LD) tests, as well as cognitive assays, including the Y-maze and novel object recognition (NOR) tests. SMB significantly mitigated SCOP-induced anxiety-like behaviors and cognitive deficits in a dose-dependent manner. Biochemical analyses demonstrated that SMB inhibited acetylcholinesterase (AChE) overactivity, indicating restoration of cholinergic function. Furthermore, SMB enhanced the activity of endogenous antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) and significantly reduced oxidative stress biomarkers, including malondialdehyde (MDA) and protein carbonyls. These findings suggest that SMB may exert neuroprotective effects through modulation of cholinergic signaling and oxidative stress. Overall, SMB represents a promising phytotherapeutic candidate for mitigating cognitive and anxiety-related symptoms linked to oxidative damage. Further investigations are warranted to characterize its active constituents and assess long-term efficacy and safety in models of neurodegeneration. Full article
(This article belongs to the Special Issue Phytochemical Compounds and Antioxidant Properties of Plants)
Show Figures

Figure 1

22 pages, 7453 KB  
Article
Comparative Analysis of Cholinergic Machinery in Carcinomas: Discovery of Membrane-Tethered ChAT as Evidence for Surface-Based ACh Synthesis in Neuroblastoma Cells
by Banita Thakur, Samar Tarazi, Lada Doležalová, Homira Behbahani and Taher Darreh-Shori
Int. J. Mol. Sci. 2025, 26(21), 10311; https://doi.org/10.3390/ijms262110311 - 23 Oct 2025
Viewed by 677
Abstract
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models [...] Read more.
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models to enable drug screening, mechanistic studies, and exploration of new therapeutic avenues. In this study, we investigated four cancer cell lines: one of neuroblastoma origin previously used in cholinergic signaling studies (SH-SY5Y), one non-small cell lung adenocarcinoma line (A549), and two small cell lung carcinoma lines (H69 and H82). We assessed the expression and localization of key components of the cholinergic system, along with the cellular capacity for acetylcholine (ACh) synthesis and release. Whole-cell flow cytometry following membrane permeabilization revealed that all cell lines expressed the ACh-synthesizing enzyme choline acetyltransferase (ChAT). HPLC-MS analysis confirmed that ChAT was functionally active, as all cell lines synthesized and released ACh into the conditioned media, suggesting the presence of autocrine and/or paracrine ACh signaling circuits, consistent with previous reports. The cell lines also demonstrated choline uptake, indicative of functional choline and/or organic cation transporters. Additionally, all lines expressed the ACh-degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as the alfa seven (α7) nicotinic and M1 muscarinic ACh receptor subtypes. Notably, flow cytometry of intact SH-SY5Y cells revealed two novel findings: (1) ChAT was localized to the extracellular membrane, a feature not observed in the lung cancer cell lines, and (2) BChE, rather than AChE, was the predominant membrane-bound ACh-degrading enzyme. These results were corroborated by both whole-cell and surface-confocal microscopy. In conclusion, our findings suggest that a functional cholinergic phenotype is a shared feature of several carcinoma cell lines, potentially serving as a survival checkpoint that could be therapeutically explored. The discovery of extracellular membrane-bound ChAT uniquely in neuroblastoma SH-SY5Y cells points to a novel form of in situ ACh signaling that warrants further investigation. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

30 pages, 2981 KB  
Review
Polyphenols as Modulators of Gastrointestinal Motility: Mechanistic Insights from Multi-Model Studies
by Andrzej Chomentowski, Krzysztof Drygalski, Tomasz Kleszczewski, Marta Berczyńska, Marzena Tylicka, Jacek Kapała, Agnieszka Raciborska, Przemysław Zubrzycki, Hady Razak Hady and Beata Modzelewska
Pharmaceuticals 2025, 18(10), 1564; https://doi.org/10.3390/ph18101564 - 16 Oct 2025
Viewed by 1340
Abstract
Dietary polyphenols are recognized as crucial modulators of gastrointestinal motility, holding therapeutic promise for conditions like irritable bowel syndrome, postoperative ileus, and functional dyspepsia. However, their reported effects are heterogeneous, ranging from spasmolytic to prokinetic. This review aims to clarify these inconsistencies by [...] Read more.
Dietary polyphenols are recognized as crucial modulators of gastrointestinal motility, holding therapeutic promise for conditions like irritable bowel syndrome, postoperative ileus, and functional dyspepsia. However, their reported effects are heterogeneous, ranging from spasmolytic to prokinetic. This review aims to clarify these inconsistencies by synthesizing experimental evidence on structure–activity relationships and underlying mechanisms. Relevant publications were identified in PubMed and Google Scholar using terms related to polyphenols and gastrointestinal motility. References were selected for relevance, and the narrative review integrates findings from in vitro, ex vivo, in vivo, and clinical studies. Across various experimental models, polyphenols function as multi-target modulators of gastrointestinal smooth muscle. The primary mechanisms identified involve the blockade of voltage-dependent L-type Ca2+ channels, activation of K+ channels (BK, KATP), and modulation of the NO/cGMP and cAMP/PKA pathways. Flavones and multiple flavonols consistently demonstrate spasmolytic activity via Ca2+ channel antagonism. In contrast, flavanones engage BK and KATP channels to induce membrane hyperpolarization. Complex extracts from plants like ginger and turmeric exhibit mixed pro- or antimotility effects, reflecting the diverse profiles of their constituent compounds. While robust ex vivo pharmacology and some in vivo and human data exist, a high degree of dataset heterogeneity and inconsistent reporting impedes direct translational efforts. Polyphenols are promising multi-mechanistic modulators of gastrointestinal motility with clear structure–activity patterns. To advance their clinical application, future research must focus on establishing standardized in vivo pharmacokinetics, conducting targeted structure–activity studies, employing bioassay-guided fractionation, and designing rigorous clinical trials. Full article
(This article belongs to the Special Issue Advances in Smooth Muscle Pharmacology)
Show Figures

Figure 1

16 pages, 3102 KB  
Article
Synaptic Plasticity-Enhancing and Cognitive-Improving Effects of Standardized Ethanol Extract of Perilla frutescens var. acuta in a Scopolamine-Induced Mouse Model
by Jihye Lee, Eunhong Lee, Hyunji Kwon, Somin Moon, Ho Jung Bae, Joon-Ho Hwang, Gun Hee Cho, Haram Kong, Mi-Houn Park, Sung-Kyu Kim, Dong Hyun Kim and Ji Wook Jung
Int. J. Mol. Sci. 2025, 26(20), 9925; https://doi.org/10.3390/ijms26209925 - 12 Oct 2025
Cited by 1 | Viewed by 1000
Abstract
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts [...] Read more.
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts additional cognitive benefits independent of Aβ pathology remained unclear. Here, we aimed to evaluate the effects of PE on synaptic plasticity and learning and memory functions. Male ICR mice were used, and cognitive impairment was induced by scopolamine administration. PE was orally administered at doses determined from previous studies, and cognitive performance was assessed using the passive avoidance, Y-maze, and Morris water maze tests. In parallel, hippocampal slices were employed to examine the effects of PE on synaptic plasticity. PE (100 and 300 μg/mL) significantly enhanced long-term potentiation (LTP) in a concentration-dependent manner without altering basal synaptic transmission. This facilitation of LTP was blocked by scopolamine (1 μM), a muscarinic acetylcholine receptor (mAChR) antagonist, and IEM-1460 (50 μM), a calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) inhibitor, indicating the involvement of mAChR and CP-AMPAR pathways. In vivo, PE (100, 250, and 500 mg/kg) treatment improved memory performance across all behavioral tasks and upregulated hippocampal synaptic proteins including GluN2B, PSD-95, and CaMKII. Collectively, these results demonstrate that PE ameliorates scopolamine (1 mg/kg)-induced cognitive impairment by enhancing synaptic plasticity, likely through modulation of mAChR, CP-AMPAR, and NMDA receptor signaling. These findings highlight the therapeutic potential of PE for memory deficits associated with cholinergic dysfunction. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2978 KB  
Article
Bladder Dysfunction in Sickle Cell Disease Is Associated with Inflammation and Oxidative Stress
by Dalila Andrade Pereira, Fabiano Beraldi Calmasini, Tammyris Helena Rebecchi Silveira, Danillo Andrade Pereira, Mariana G. de Oliveira, Fernando Ferreira Costa and Fábio Henrique Silva
Int. J. Mol. Sci. 2025, 26(19), 9776; https://doi.org/10.3390/ijms26199776 - 8 Oct 2025
Cited by 1 | Viewed by 760
Abstract
Bladder dysfunction, particularly overactive bladder (OAB), is increasingly recognized as a clinical concern in patients with sickle cell disease (SCD), yet its pathophysiological mechanisms remain poorly understood. This study investigated the relationship between oxidative stress, inflammation, and bladder dysfunction in the Townes transgenic [...] Read more.
Bladder dysfunction, particularly overactive bladder (OAB), is increasingly recognized as a clinical concern in patients with sickle cell disease (SCD), yet its pathophysiological mechanisms remain poorly understood. This study investigated the relationship between oxidative stress, inflammation, and bladder dysfunction in the Townes transgenic SCD mouse model. Cystometric analysis revealed that SCD mice exhibit an OAB phenotype, characterized by increased frequencies of voiding and non-voiding contractions and reduced bladder compliance. In vitro functional assays demonstrated detrusor hypocontractility in SCD mice, associated with a significant reduction in carbachol- and EFS-induced contractions and downregulation of muscarinic M3 receptor expression. Purinergic signaling and calcium-dependent contractility remained preserved. Molecular analyses showed increased mRNA expression of NOX-2 and IL-1β, and elevated protein levels of 3-nitrotyrosine and myeloperoxidase (MPO) activity, indicating redox imbalance and chronic inflammation in bladder tissue. Together, these changes suggest that oxidative and nitrosative stress, combined with inflammation, contribute to bladder remodeling and dysfunction in SCD. This is the first study to characterize bladder alterations in Townes SCD mice, establishing this model as a valuable tool for investigating lower urinary tract complications in SCD. Our findings provide mechanistic insight into the genitourinary manifestations of SCD and identify redox and inflammatory pathways as potential therapeutic targets for bladder dysfunction in affected individuals. Full article
Show Figures

Figure 1

19 pages, 2397 KB  
Article
Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice
by Yaqui Valenzuela-Schejtman, Marvin A. Soriano-Ursúa, Elizabeth Estevez-Fregoso, Daniel García-López, R. Ivan Cordova-Chavez, Maricarmen Hernández-Rodríguez, Andrei Biță, Alejandra Contreras-Ramos, Miriam Hernández-Zamora and Eunice D. Farfán-García
Pharmaceuticals 2025, 18(10), 1470; https://doi.org/10.3390/ph18101470 - 30 Sep 2025
Viewed by 1249
Abstract
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 [...] Read more.
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 (from D-arabinose), as well as phenylboronic acid, were recently reported as sedative and safe agents in mice. Their sedative properties and structural similarity to topiramate suggest potential antiseizure activity. Objective: The objective of this study was to evaluate the antiseizure potential of FB1 and AB1. Methods: Boron-containing compounds were administered to mice with seizures induced by pentylenetetrazol (a GABA-A receptor antagonist), 4-aminopyridine (a non-selective K+ channel blocker), or pilocarpine (a muscarinic agonist) to assess efficacy across models and explore potential mechanisms of action. Neuronal and glial toxicity was evaluated both in vitro and in vivo. Results: AB1 reduced seizure activity after intraperitoneal administration, whereas FB1 did not exhibit anticonvulsant effects, although it modified motor performance and limited neuronal loss. The effect of AB1 was comparable to that of topiramate across all three seizure models. Docking studies suggested that these compounds can interact with GABA-A (chloride), NMDA (glutamate), calcium, and potassium channels. Toxicity assays indicated that the concentrations required to affect neurons or glial cells were ≥300 µM, supporting the safety of these compounds. Conclusions: This preliminary evaluation demonstrates the antiseizure potential of AB1. Further experimental studies are needed to clearly establish its mechanism(s) of action. Full article
Show Figures

Figure 1

14 pages, 560 KB  
Article
Impact of Fixed-Dose Combination Versus Single-Component Therapy for Benign Prostatic Hyperplasia-Related Urinary Symptoms on Persistence, Adherence, and Satisfaction in a Real-Life Setting
by Mateusz Małkowski, Anna Chudek, Agnieszka Almgren-Rachtan, Jerzy Tadeusz Chudek and Piotr Ludwik Chłosta
Pharmaceuticals 2025, 18(10), 1439; https://doi.org/10.3390/ph18101439 - 25 Sep 2025
Cited by 1 | Viewed by 1258
Abstract
Background: Fixed-dose combination medications (FDCs) are recognized methods of increasing adherence to polytherapy in chronic diseases. However, the role of FDCs in patients with benign prostatic hyperplasia (BPH) associated with lower urinary tract symptoms (LUTS) remains uncertain. We designed this study to assess [...] Read more.
Background: Fixed-dose combination medications (FDCs) are recognized methods of increasing adherence to polytherapy in chronic diseases. However, the role of FDCs in patients with benign prostatic hyperplasia (BPH) associated with lower urinary tract symptoms (LUTS) remains uncertain. We designed this study to assess persistence, adherence, and patient satisfaction with FDCs recently introduced to the Polish pharmaceutical market, which contain tamsulosin (an α1-adrenergic receptor antagonist) in combination with solifenacin (a muscarinic receptor antagonist) or dutasteride (a 5-α reductase inhibitor). Methods: The analysis included 50,435 men (67.8 ± 8.8 years old) managed by urologists for BPH-associated LUTS, who had been on combination therapies for at least 3 months. Two study visits, with an interval of 2.1 ± 1.4 months, were conducted between February and December 2024. Results: Single-component drugs (83.1%) were more common forms of therapy compared to FDCs (16.9%). ARAs (α1-adrenergic receptor antagonists) with 5-α reductase inhibitors comprised 70.2%, while ARAs with muscarinic receptor antagonists or β3-adrenergic agonists comprised 29.5%. Persistence with therapy across two visits was 82.0% for single-component drugs and 93.6% for FDCs (p < 0.001); OR = 1.31 (95% CI: 1.02–1.63). Similarly, adherence was better in patients treated with FDCs (96.6% vs. 91.0% at visit 1, p < 0.001; 99.3% vs. 97.9% at visit 2, p < 0.05). Patients prescribed FDCs were satisfied with therapy more often than those prescribed single-component drugs (62.6% and 76.8% vs. 50.6% and 67.5% at visits 1 and 2, respectively; p < 0.001). Conclusions: 1. Combination therapies are still more commonly administered as separate tablets than FDCs in patients with BPH-associated LUTS. 2. The use of FDCs increases short-term satisfaction and persistence with therapy, with a mild effect on adherence. Full article
Show Figures

Graphical abstract

20 pages, 2861 KB  
Article
Metabolite Signatures and Particle Size as Determinants of Anti-Inflammatory and Gastrointestinal Smooth Muscle Modulation by Chlorella vulgaris
by Natalina Panova, Anelia Gerasimova, Mina Todorova, Mina Pencheva, Ivayla Dincheva, Daniela Batovska, Vera Gledacheva, Valeri Slavchev, Iliyana Stefanova, Stoyanka Nikolova, Irena Mincheva, Magdalena Szechyńska-Hebda and Krastena Nikolova
Foods 2025, 14(19), 3319; https://doi.org/10.3390/foods14193319 - 25 Sep 2025
Viewed by 3406
Abstract
Chlorella vulgaris is a nutrient-dense microalga with recognized antioxidant, anti-inflammatory, and metabolic regulatory properties, making it an attractive candidate for functional food applications. In such contexts, both chemical composition and particle size can influence dispersibility, bioactive release, and physiological effects. In this study, [...] Read more.
Chlorella vulgaris is a nutrient-dense microalga with recognized antioxidant, anti-inflammatory, and metabolic regulatory properties, making it an attractive candidate for functional food applications. In such contexts, both chemical composition and particle size can influence dispersibility, bioactive release, and physiological effects. In this study, two commercial C. vulgaris powders from India (Sample 1) and the UK (Sample 2) were compared with respect to particle size, metabolite composition, and biological activity. Sample 1 exhibited finer particles, while Sample 2 was coarser. GC–MS profiling revealed distinct compositional differences: Sample 1 displayed a higher relative abundance of saturated fatty acids, β-sitosterol, β-amyrin, and glucitol, whereas Sample 2 contained higher levels of unsaturated fatty acids, betulin, salicylic acid, and specific carbohydrates. In vitro assays showed stronger inhibition of albumin denaturation by Sample 1 compared with Sample 2 and prednisolone. Ex vivo tests indicated that both samples induced tonic contraction of gastric smooth muscle through muscarinic acetylcholine receptors (mAChRs) and L-type calcium channels, as evidenced by the marked reduction in responses after atropine and verapamil treatment, with Sample 1 producing a more pronounced effect. Immunohistochemistry further demonstrated broader IL-1β upregulation with Sample 1 and localized nNOS modulation with Sample 2. Overall, the results demonstrate that the interplay between composition and particle size shapes the bioactivity of C. vulgaris, supporting its targeted use in digestive, neuroimmune, and cardiometabolic health. Full article
Show Figures

Figure 1

Back to TopTop