Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = murine multi-reporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3219 KB  
Article
Development of a Mechanism of Action-Reflective Cell-Based Reporter Gene Assay for Measuring Bioactivities of Therapeutic Glucagon-like Peptide-2 Analogues
by Xiaoming Zhang, Chunyan Li, Zhe Deng, Chenggang Liang and Jing Li
Molecules 2025, 30(9), 1915; https://doi.org/10.3390/molecules30091915 - 25 Apr 2025
Viewed by 1098
Abstract
Glucagon-like peptide-2 (GLP-2) is a gut hormone that plays a pivotal role in regulating intestinal epithelial cell growth and function, making it a promising therapeutic agent for intestinal damage and bone-related diseases. Nonetheless, the therapeutic potential of GLP-2 is substantially diminished due to [...] Read more.
Glucagon-like peptide-2 (GLP-2) is a gut hormone that plays a pivotal role in regulating intestinal epithelial cell growth and function, making it a promising therapeutic agent for intestinal damage and bone-related diseases. Nonetheless, the therapeutic potential of GLP-2 is substantially diminished due to its inactivation by dipeptidyl peptidase 4 (DPP-4). In recent years, advancements have been made in developing dipeptidyl peptidase 4 (DPP-4) resistant GLP-2 analogues with an extended half-life. The murine model with extensive experimental bowel resection maintained on parenteral nutrition has been used for assessing the physiology and pharmacology of GLP-2, and for the preclinical validation of GLP-2 analogues. However, it possesses certain limitations, such as complex procedure, considerable variability, and time-consuming nature. Consequently, there is a pressing need for the development of a cell-based bioassay to assess GLP-2 analogues. Here, we successfully developed a mechanism-of-action (MOA)-reflective cell-based reporter gene assay (RGA), utilizing a stable HEK293 cell line expressing the GLP-2 receptor and a luciferase reporter gene. This innovative approach allows for precise quantification of the potency of GLP-2 analogues. The RGA demonstrated good accuracy, linearity, precision, and specificity, with potential applications in stability testing, drug screening, and therapeutic monitoring of GLP-2 analogues. Moreover, RNA sequencing reveals the multi-target regulatory effect of GLP-2 analogues. The establishment of this RGA provides a valuable tool for evaluating the potency of GLP-2 analogues and the screening of potential therapeutic drugs targeting to GLP-2 receptor. Full article
Show Figures

Figure 1

13 pages, 2192 KB  
Article
The Role of the N-Terminal Domain of Thrombomodulin and the Potential of Recombinant Human Thrombomodulin as a Therapeutic Intervention for Shiga Toxin-Induced Hemolytic-Uremic Syndrome
by Sarah Kröller, Jana Schober, Nadine Krieg, Sophie Dennhardt, Wiebke Pirschel, Michael Kiehntopf, Edward M. Conway and Sina M. Coldewey
Toxins 2024, 16(9), 409; https://doi.org/10.3390/toxins16090409 - 20 Sep 2024
Viewed by 1625
Abstract
Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing Escherichia coli (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein [...] Read more.
Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing Escherichia coli (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein and its N-terminal domain has been implicated in the pathophysiology of some cases of HUS. Indeed, the administration of recombinant human TM (rhTM) may have efficacy in HUS. We used a Stx-based murine model of HUS to characterize the role of the N-terminal domain of TM. We show that mice lacking that domain (TMLed (−/−)) are more sensitive to Stx, with enhanced HUS progression seen at 4 days and increased mortality at 7 days post-HUS induction. In spite of these changes, renal function was less affected in surviving Stx-challenged TMLed (−/−) mice compared to their wild-type counterparts TMLed (+/+) at 7 days. Contrary to few clinical case reports from Japan, the administration of rhTM (0.06 mg/kg) to wild-type mice (C57BL/6J) with HUS did not protect against disease progression. This overall promising, but also contradictory body of evidence, requires further systematic preclinical and clinical investigations to clarify the role of TM in HUS as a potential therapeutic strategy. Full article
Show Figures

Figure 1

22 pages, 6209 KB  
Article
Functional Characterisation of Surfactant Protein A as a Novel Prophylactic Means against Oncogenic HPV Infections
by Sinead Carse, Tim Reid, Jens Madsen, Howard Clark, Artur Kirjakulov, Martina Bergant Marušič and Georgia Schäfer
Int. J. Mol. Sci. 2024, 25(14), 7712; https://doi.org/10.3390/ijms25147712 - 14 Jul 2024
Cited by 1 | Viewed by 2598
Abstract
Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule [...] Read more.
Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule capable of recognising HPV16 pseudovirions (HPV16-PsVs) and reducing infection in a murine cervicovaginal HPV challenge model. Building on these findings, our current study aimed to assess SP-A’s suitability as a broad-spectrum HPV-targeting molecule and its impact on innate immune responses. We demonstrate SP-A’s ability to agglutinate and opsonise multiple oncogenic HPV-PsVs types, enhancing their uptake and clearance by RAW264.7 murine macrophages and THP-1 human-derived immune cells. The SP-A opsonisation of HPV not only led to increased lysosomal accumulation in macrophages and HaCaT keratinocytes but also resulted in a decreased infection of HaCaT cells, which was further decreased when co-cultured with innate immune cells. An analysis of human innate immune cell cytokine profiles revealed a significant inflammatory response upon SP-A exposure, potentially contributing to the overall inhibition of HPV infection. These results highlight the multi-layered impact of SP-A on HPV, innate immune cells and keratinocytes and lay the basis for the development of alternative prophylactic interventions against diverse HPV types. Full article
(This article belongs to the Special Issue Viral Infections and Host Immune Responses)
Show Figures

Figure 1

31 pages, 3113 KB  
Article
Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19
by David Kartchner, Kevin McCoy, Janhvi Dubey, Dongyu Zhang, Kevin Zheng, Rushda Umrani, James J. Kim and Cassie S. Mitchell
Biology 2023, 12(9), 1269; https://doi.org/10.3390/biology12091269 - 21 Sep 2023
Cited by 4 | Viewed by 4175
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within [...] Read more.
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin–angiotensin–aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%. Full article
(This article belongs to the Special Issue Machine Learning Applications in Biology)
Show Figures

Figure 1

20 pages, 3262 KB  
Article
Inhibitory Effect of Isopanduratin A on Adipogenesis: A Study of Possible Mechanisms
by Prapenpuksiri Rungsa, Htoo Tint San, Boonchoo Sritularak, Chotima Böttcher, Eakachai Prompetchara, Chatchai Chaotham and Kittisak Likhitwitayawuid
Foods 2023, 12(5), 1014; https://doi.org/10.3390/foods12051014 - 27 Feb 2023
Cited by 7 | Viewed by 3853
Abstract
The root of Boesenbergia rotunda, a culinary plant commonly known as fingerroot, has previously been reported to possess anti-obesity activity, with four flavonoids identified as active principles, including pinostrobin, panduratin A, cardamonin, and isopanduratin A. However, the molecular mechanisms underlying the antiadipogenic [...] Read more.
The root of Boesenbergia rotunda, a culinary plant commonly known as fingerroot, has previously been reported to possess anti-obesity activity, with four flavonoids identified as active principles, including pinostrobin, panduratin A, cardamonin, and isopanduratin A. However, the molecular mechanisms underlying the antiadipogenic potential of isopanduratin A remain unknown. In this study, isopanduratin A at non-cytotoxic concentrations (1–10 μM) significantly suppressed lipid accumulation in murine (3T3-L1) and human (PCS-210-010) adipocytes in a dose-dependent manner. Downregulation of adipogenic effectors (FAS, PLIN1, LPL, and adiponectin) and adipogenic transcription factors (SREBP-1c, PPARγ, and C/EBPα) occurred in differentiated 3T3-L1 cells treated with varying concentrations of isopanduratin A. The compound deactivated the upstream regulatory signals of AKT/GSK3β and MAPKs (ERK, JNK, and p38) but stimulated the AMPK-ACC pathway. The inhibitory trend of isopanduratin A was also observed with the proliferation of 3T3-L1 cells. The compound also paused the passage of 3T3-L1 cells by inducing cell cycle arrest at the G0/G1 phase, supported by altered levels of cyclins D1 and D3 and CDK2. Impaired p-ERK/ERK signaling might be responsible for the delay in mitotic clonal expansion. These findings revealed that isopanduratin A is a strong adipogenic suppressor with multi-target mechanisms and contributes significantly to anti-obesogenic activity. These results suggest the potential of fingerroot as a functional food for weight control and obesity prevention. Full article
Show Figures

Graphical abstract

21 pages, 2375 KB  
Article
Overlapping and Distinct Features of Cardiac Pathology in Inherited Human and Murine Ether Lipid Deficiency
by Fabian Dorninger, Attila Kiss, Peter Rothauer, Alexander Stiglbauer-Tscholakoff, Stefan Kummer, Wedad Fallatah, Mireia Perera-Gonzalez, Ouafa Hamza, Theresa König, Michael B. Bober, Tiscar Cavallé-Garrido, Nancy E. Braverman, Sonja Forss-Petter, Christian Pifl, Jan Bauer, Reginald E. Bittner, Thomas H. Helbich, Bruno K. Podesser, Hannes Todt and Johannes Berger
Int. J. Mol. Sci. 2023, 24(3), 1884; https://doi.org/10.3390/ijms24031884 - 18 Jan 2023
Cited by 3 | Viewed by 2799
Abstract
Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human [...] Read more.
Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function. Full article
(This article belongs to the Special Issue Lipid Metabolism in Pathology and Health)
Show Figures

Figure 1

18 pages, 4605 KB  
Article
Pharmacological Activation of YAP/TAZ by Targeting LATS1/2 Enhances Periodontal Tissue Regeneration in a Murine Model
by Akiko Sato, Shigeki Suzuki, Hang Yuan, Rahmad Rifqi Fahreza, Xiuting Wang, Eiji Nemoto, Masahiro Saito and Satoru Yamada
Int. J. Mol. Sci. 2023, 24(2), 970; https://doi.org/10.3390/ijms24020970 - 4 Jan 2023
Cited by 9 | Viewed by 3154
Abstract
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal [...] Read more.
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies. Full article
(This article belongs to the Special Issue Periodontal Tissue Regeneration)
Show Figures

Figure 1

22 pages, 5947 KB  
Article
Multi Species Analyses Reveal Testicular T3 Metabolism and Signalling as a Target of Environmental Pesticides
by Valeria Nittoli, Marco Colella, Alfonsina Porciello, Carla Reale, Luca Roberto, Filomena Russo, Nicola A. Russo, Immacalata Porreca, Mario De Felice, Massimo Mallardo and Concetta Ambrosino
Cells 2021, 10(9), 2187; https://doi.org/10.3390/cells10092187 - 25 Aug 2021
Cited by 11 | Viewed by 4001
Abstract
Thyroid hormones (THs) regulate many biological processes in vertebrates, including reproduction. Testicular somatic and germ cells are equipped with the arrays of enzymes (deiodinases), transporters, and receptors necessary to locally maintain the optimal level of THs and their signalling, needed for their functions [...] Read more.
Thyroid hormones (THs) regulate many biological processes in vertebrates, including reproduction. Testicular somatic and germ cells are equipped with the arrays of enzymes (deiodinases), transporters, and receptors necessary to locally maintain the optimal level of THs and their signalling, needed for their functions and spermatogenesis. Pesticides, as chlorpyrifos (CPF) and ethylene thiourea (ETU), impair the function of thyroid and testis, affecting male fertility. However, their ability to disarrange testicular T3 (t-T3) metabolism and signalling is poorly considered. Here, a multi-species analysis involving zebrafish and mouse suggests the damage of t-T3 metabolism and signalling as a mechanism of gonadic toxicity of low-doses CPF and ETU. Indeed, the developmental exposure to both compounds reduces Dio2 transcript in both models, as well as in ex-vivo cultures of murine seminiferous tubules, and it is linked to alteration of steroidogenesis and germ cell differentiation. A major impact on spermatogonia was confirmed molecularly by the expression of their markers and morphologically evidenced in zebrafish. The results reveal that in the adopted models, exposure to both pesticides alters the t-T3 metabolism and signalling, affecting the reproductive capability. Our data, together with previous reports suggest zebrafish as an evaluable model in assessing the action of compounds impairing locally T3 signalling. Full article
Show Figures

Figure 1

27 pages, 5255 KB  
Article
Annexin A1 Is Required for Efficient Tumor Initiation and Cancer Stem Cell Maintenance in a Model of Human Breast Cancer
by Cameron N. Johnstone, Yan Tu, Shenna Langenbach, David Baloyan, Andrew D. Pattison, Peter Lock, Kara L. Britt, Brian D. Lehmann, Traude H. Beilharz, Matthias Ernst, Robin L. Anderson and Alastair G. Stewart
Cancers 2021, 13(5), 1154; https://doi.org/10.3390/cancers13051154 - 8 Mar 2021
Cited by 11 | Viewed by 4272
Abstract
Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin [...] Read more.
Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory. Here, we sought to clarify the functions of Annexin A1 in the development and progression of TNBC. The association of Annexin A1 expression with patient prognosis in subtypes of TNBC was examined. Annexin A1 was stably knocked down in a panel of human and murine TNBC cell lines with high endogenous Annexin A1 expression that were then evaluated for orthotopic growth and spontaneous metastasis in vivo and for alterations in cell morphology in vitro. The impact of Annexin A1 knockdown on the expression of genes involved in mammary epithelial cell differentia tion and epithelial to mesenchymal transition was also determined. Annexin A1 mRNA levels correlated with poor patient prognosis in basal-like breast tumors and also in the basal-like 2 subset of TNBCs. Unexpectedly, loss of Annexin A1 expression had no effect on either primary tumor growth or spontaneous metastasis of MDA-MB-231_HM xenografts, but abrogated the growth rate of SUM149 orthotopic tumors. In an MMTV-PyMT driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation in both immuno-competent and immuno-deficient mice and induced epithelial to mesenchymal transition and upregulation of basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1 population containing putative tumor initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in a model of human breast cancer and suggest that some basal-like TNBCs may require high endogenous tumor cell Annexin A1 expression for continued growth. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

20 pages, 3190 KB  
Review
Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells
by Jolanda. J.D. de Roo and Frank. J.T. Staal
Cells 2020, 9(10), 2264; https://doi.org/10.3390/cells9102264 - 9 Oct 2020
Cited by 12 | Viewed by 6092
Abstract
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by [...] Read more.
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by reporter models and loss- or gain of function experiments, yet results differ in many cases according to the approach. In this review, we discuss existing murine reporter models regarding these pathways, considering the genetic constructs and reporter proteins in the context of HSC studies; yet these models are relevant for all other stem cell systems. Lastly, we describe a multi-reporter model to properly study and understand the cross-pathway interaction and how reporter models are highly valuable tools to understand complex signaling dynamics in stem cells. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

15 pages, 2197 KB  
Article
A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1
by Bernhard Ellinger, Daniel Pohlmann, Jannis Woens, Felix M. Jäkel, Jeanette Reinshagen, Carol Stocking, Vladimir S. Prassolov, Boris Fehse and Kristoffer Riecken
Viruses 2020, 12(5), 580; https://doi.org/10.3390/v12050580 - 25 May 2020
Cited by 5 | Viewed by 4685
Abstract
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 [...] Read more.
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z’ values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors. Full article
(This article belongs to the Special Issue Antiretroviral Drug Development and HIV Cure Research)
Show Figures

Figure 1

20 pages, 3082 KB  
Article
Quantitative Phosphoproteomic Analysis Reveals the Regulatory Networks of Elovl6 on Lipid and Glucose Metabolism in Zebrafish
by Xueting Wang, Shouxiang Sun, Xiaojuan Cao and Jian Gao
Int. J. Mol. Sci. 2020, 21(8), 2860; https://doi.org/10.3390/ijms21082860 - 19 Apr 2020
Cited by 19 | Viewed by 4806
Abstract
Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and [...] Read more.
Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and phosphorylation levels. We established the first knock-out (KO), elovl6−/−, in zebrafish. Compared with wild type (WT) zebrafish, KO presented significant higher whole-body lipid content and lower content of fasting blood glucose. We utilized RNA-Seq, tandem mass tag (TMT) labeling-based quantitative technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to perform the transcriptomic, proteomic and phosphoproteomic analyses of livers from WT and elovl6−/− zebrafish. There were 734 differentially expressed genes (DEG) and 559 differentially expressed proteins (DEP) between elovl6−/− and WT zebrafish, identified out of quantifiable 47251 transcripts and 5525 proteins. Meanwhile, 680 differentially expressed phosphoproteins (DEPP) with 1054 sites were found out of quantifiable 1230 proteins with 3604 sites. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the transcriptomic and proteomic data further suggested that the abnormal lipid metabolism and glucose metabolism in KO were mainly related to fatty acid degradation and biosynthesis, glycolysis/gluconeogenesis and PPAR signaling pathway. Based on phosphoproteomic analyses, some kinases critical for lipid metabolism and glucose metabolism, including ribosomal protein S6 kinase (Rps6kb), mitogen-activated protein kinase14 (Mapk14) and V-akt murine thymoma viral oncogene homolog 2-like (Akt2l), were identified. These results allowed us to catch on the regulatory networks of elovl6 on lipid and glucose metabolism in zebrafish. To our knowledge, this is the first multi-omic study of zebrafish lacking elovl6, which provides strong datasets to better understand many lipid/glucose metabolic risks posed to human health. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 5087 KB  
Article
N-Dihydrogalactochitosan Potentiates the Radiosensitivity of Liver Metastatic Tumor Cells Originated from Murine Breast Tumors
by Chung-Yih Wang, Chun-Yuan Chang, Chun-Yu Wang, Kaili Liu, Chia-Yun Kang, Yi-Jang Lee and Wei R. Chen
Int. J. Mol. Sci. 2019, 20(22), 5581; https://doi.org/10.3390/ijms20225581 - 8 Nov 2019
Cited by 8 | Viewed by 3516
Abstract
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to [...] Read more.
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors. Full article
Show Figures

Graphical abstract

17 pages, 2426 KB  
Article
Comparative in Vitro Cytotoxicity of Realistic Doses of Benchmark Multi-Walled Carbon Nanotubes towards Macrophages and Airway Epithelial Cells
by Luisana Di Cristo, Massimiliano G. Bianchi, Martina Chiu, Giuseppe Taurino, Francesca Donato, Giacomo Garzaro, Ovidio Bussolati and Enrico Bergamaschi
Nanomaterials 2019, 9(7), 982; https://doi.org/10.3390/nano9070982 - 6 Jul 2019
Cited by 20 | Viewed by 4330
Abstract
Multi-walled carbon nanotubes (MWCNT) have many outstanding physical and chemical properties that make them useful in many applications in nanotechnology. However, these properties are reported to be potentially harmful for the human body. The effects of low and realistic doses of three well-characterized [...] Read more.
Multi-walled carbon nanotubes (MWCNT) have many outstanding physical and chemical properties that make them useful in many applications in nanotechnology. However, these properties are reported to be potentially harmful for the human body. The effects of low and realistic doses of three well-characterized preparations of MWCNT, obtained from the Joint Research Centre (JRC) (NM-400, NM-401, and NM-402), were assessed in two murine macrophage lines, Raw264.7, of peritoneal origin, and MH-S, derived from alveolar macrophages. Macrophage viability, evaluated with two distinct methods, was significantly lowered by NM-401 (needle-like, average length 4 μm, diameter 67 nm) with IC50 values of 10 μg/cm2, whereas NM-400 and NM-402 (tangled, average lengths 846–1372 nm, diameter 11 nm) had much smaller effects. In contrast, at 10 μg/cm2, NM-400 and NM-402 induced the M1 marker Nos2 and, consistently, a sizable accumulation of nitrites in the medium, whereas NM-401 had no significant effect. None of the MWCNT preparations induced the M2 marker Arg1. Phagocytic activity, assessed in Raw264.7 macrophages, was significantly reduced in cells exposed to NM-401, but not to NM-400 or NM-402. When tested on Calu-3 bronchial epithelial cell monolayers, the three MWCNT preparations did not affect cell viability, but decreased the trans-epithelial electrical resistance at the maximal dose tested (80 μg/cm2), with the most evident effect detected for NM-401, even at 10 μg/cm2. In conclusion, among the possible structural determinants of the toxic effects exerted by MWCNT towards macrophages and airway epithelial cells, shape and length appear the most relevant at low, realistic doses. Full article
(This article belongs to the Special Issue Toxicology of Carbon Nanomaterials)
Show Figures

Figure 1

43 pages, 825 KB  
Review
Review of Natural Compounds for Potential Skin Cancer Treatment
by Tawona N. Chinembiri, Lissinda H. Du Plessis, Minja Gerber, Josias H. Hamman and Jeanetta Du Plessis
Molecules 2014, 19(8), 11679-11721; https://doi.org/10.3390/molecules190811679 - 6 Aug 2014
Cited by 244 | Viewed by 32492
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development [...] Read more.
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop