Next Article in Journal
Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping
Previous Article in Journal
Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging
Previous Article in Special Issue
Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model
Article Menu

Export Article

Open AccessArticle

Comparative in Vitro Cytotoxicity of Realistic Doses of Benchmark Multi-Walled Carbon Nanotubes towards Macrophages and Airway Epithelial Cells

1
Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
2
Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy
*
Authors to whom correspondence should be addressed.
Nanomaterials 2019, 9(7), 982; https://doi.org/10.3390/nano9070982
Received: 13 June 2019 / Revised: 28 June 2019 / Accepted: 3 July 2019 / Published: 6 July 2019
(This article belongs to the Special Issue Toxicology of Carbon Nanomaterials)
  |  
PDF [2426 KB, uploaded 8 July 2019]
  |  

Abstract

Multi-walled carbon nanotubes (MWCNT) have many outstanding physical and chemical properties that make them useful in many applications in nanotechnology. However, these properties are reported to be potentially harmful for the human body. The effects of low and realistic doses of three well-characterized preparations of MWCNT, obtained from the Joint Research Centre (JRC) (NM-400, NM-401, and NM-402), were assessed in two murine macrophage lines, Raw264.7, of peritoneal origin, and MH-S, derived from alveolar macrophages. Macrophage viability, evaluated with two distinct methods, was significantly lowered by NM-401 (needle-like, average length 4 μm, diameter 67 nm) with IC50 values of 10 μg/cm2, whereas NM-400 and NM-402 (tangled, average lengths 846–1372 nm, diameter 11 nm) had much smaller effects. In contrast, at 10 μg/cm2, NM-400 and NM-402 induced the M1 marker Nos2 and, consistently, a sizable accumulation of nitrites in the medium, whereas NM-401 had no significant effect. None of the MWCNT preparations induced the M2 marker Arg1. Phagocytic activity, assessed in Raw264.7 macrophages, was significantly reduced in cells exposed to NM-401, but not to NM-400 or NM-402. When tested on Calu-3 bronchial epithelial cell monolayers, the three MWCNT preparations did not affect cell viability, but decreased the trans-epithelial electrical resistance at the maximal dose tested (80 μg/cm2), with the most evident effect detected for NM-401, even at 10 μg/cm2. In conclusion, among the possible structural determinants of the toxic effects exerted by MWCNT towards macrophages and airway epithelial cells, shape and length appear the most relevant at low, realistic doses. View Full-Text
Keywords: airway epithelium; barrier permeability; inflammation; macrophages; multiwalled carbon nanotubes; realistic doses airway epithelium; barrier permeability; inflammation; macrophages; multiwalled carbon nanotubes; realistic doses
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Di Cristo, L.; Bianchi, M.G.; Chiu, M.; Taurino, G.; Donato, F.; Garzaro, G.; Bussolati, O.; Bergamaschi, E. Comparative in Vitro Cytotoxicity of Realistic Doses of Benchmark Multi-Walled Carbon Nanotubes towards Macrophages and Airway Epithelial Cells. Nanomaterials 2019, 9, 982.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top